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Abstract. This paper presents numerical solution of some nonlinear degenerate parabolic equa-
tions arising in the spatial diffusion of biological populations. The SBA method based on combina-
tion of Adomian decomposition method, principle of Picard and successive approximations is used
for solving these equations. The analytical obtained solutions show that the SBA method leads to
more accurate results.
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1. Introduction

The spatial diffusion of some biological species is described by nonlinear partial differ-
ential equations. In the last years, various numerical powerful methods have been applied
to get the solutions of general degenerate parabolic equations, such as collocation methods
with mesh-free technique [2], variational iteration method [10], Adomian decomposition
method (ADM) [1, 13], homotopy perturbation method [8, 9], homotopy analysis Sumudu
transform method [12], etc.

The objective of this paper is to apply Some Blaise Abbo(SBA) method, which is an
elegant combination of ADM [3], and Picard principle and successive approximations [5]
to find the analytical solution of some degenerate parabolic equations arising in the spatial
diffusion of time fractional biological populations. A particular form of these equations is
given by :

ou(zx,y,t)

T AP (z,y,t) + g(u), (v,y) ER® t>0 (1)
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with given initial conditions u(z,y,0) = f(x,y)

The function u(z,y,t) denotes the population density (number of minimal species per-
unit volume at position (x,y) and time t ), g(u) the population supply due to birth and
death of species. In this study, a form of g(u) is :

9(uw) = hu(z,y,t) (1 = r’ (@, .1)) @)

where h, a, 3,7 are real numbers.

The SBA method overcomes the difficulty arising in calculating the Adomian’s poly-
nomials which is an important advantage over the ADM and other numerical methods
(6, 11]

2. The numerical SBA method
Let us consider the following functional equation:
Au=f (3)

Where A : H — H, is an operator not necessarily linear and H is a Hilbert space
adequately chosen given the operator A, f is given function and u the unknown function.

Let :
A=L+R+N (4)

Where L is an invertible operator in the Adomian ”sense”, R the linear remainder and
N a nonlinear operator. The equation (3) therefore becomes :

Lu+ Ru+ Nu=f

u=0-+L""(f)— L' (Ru) — L7' (Nu) (5)

Where 6 is such that L () = 0. The equation (5) is the Adomian canonical form , using
the successive approximations [10]we get :

W =0+ L7 (f)— L7 (Ruk> e (Nuk_1> k> 1 (6)
This yields the following Adomian algorithm [4, 7, 14, 15]

uf =0+ L7 (f) = L7 (Nub1) sk > 1 )
“24-1 =Lt (Ruﬁ) in>0

The Picard principle is then applied to the equation (7) let u° be such that N (uo) =0,
for k =1, we get :
uy =0+ L7 (f)+ L (Nu)
ul , =—L7! (Rul) in >0 (8)
n+1 — n) -
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+00 +oo
If the series (Z u#) converges, then u! = Z ul. For k = 2, we get:

n=0 n=0
w=0+L"1(f)+L
{ %—H B ( n)sn (O ") ©)

00 +o0
If the series (Z ui) converges, then u? = Z ui This process is repeated to k.

n=0 n=0

n—0 k——+o0
solution of the problem.
With the following hypothesize : At the step k, N(u*) =0,Vk > 1.

o0
If the series (Z uﬁ) converges, then u” Zuk therefore v¥ = lim w* is the

2.1. Test examples

In this section, we present some examples with analytical solution to show the efficiency
of method described in previous section for solving equation (1)

2.2. Example 1

Consider equation (1) witha =8 =1,r #0,h # 0 and f(x,y) = exp <;\ [B (z + y)>

Putting these values in this equation, we write :

Qulewl) — Au(x,y,t) + hu(z,y,t) (1 — ru(z,y,1)), (z,y) € R2,t >0
10
u(z,y,0) = exp (éx/}‘{(wry)) (10)

ou(x,y,t)

5 = hu(z,y,t) + Au®(z,y,t) — rhu?(z,y,t) (11)
Let
( Lt(u(x7y’tt)) = % ()
-1 _
L = /0 (\)ds
R(u(z,y,t)) = hu(z,y,t) (12)
2u?(x 2u?(x
N(u(z,y,t)) = 0 8($;y,t) + 0 a(y;y’t) — rhu®(z,y,t)
We obtain :
L(u(z,y,t)) = R(u(z,y,1)) + N(u(z,y,1t) (13)

Integrating the equation (13) with respect to t gives the following canonical form:



Y. Paré et al. / Eur. J. Pure Appl. Math, 12 (3) (2019), 1096-1105 1099

u(z,y,t) = exp (; % (x + y)) —i—/o R(u(z,y,s))ds —l—/o N(u(z,y,s)ds (14)

In Applying the method of successive approximations to equation (14) we obtain:

Wt (a,9,1) = exp (;\/Z <x+y>)+ | R ppas+ [ N @ds (15)

If now we Apply the Adomian algorithm to equation (15), we obtain:

U’é(w,y,t):exp< w+y> /N M (x,y, s)ds

(16)
uk (2,y,1) = /OtR(uﬁl(x,y,s))ds,n >1
The solution at each stage is :
(x,y,t) Zu z,y,t), k=123, (17)

First step k=1
In Applying the Picard principle and if we take u°(z,vy, s) such as N(u’(z,y,s)) = 0,

we obtain :
u(z,y,t) = exp (é\/ br (@ + y))

(18)
t
uhoet) = [ Rk (o g9)dsin > 1
0
It follows that expressions of function ul(z,y,t) were :
1 _ 1 /hr
uy(z,y,t) = exp (2\ /% (z+ y))
ul(z,y,t) = (ht) exp <§\ / % (x + y)>
(19)

W) = & (e (3l (0+0)
o) = & )" exo (35 (240)
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In this representation,ul(x, y,t) form the finite sequence :

(z,y,t Zu r,y,t) = (Z % (ht)”> exp (; % (:C+y)> (20)

n=0

and we can write :

ut(z,y,t) = exp (ht) x exp <; % (x+ y)> = exp <ht + ;@(x + y)) (21)

which is the solution in step 1
Second step k = 2

u%(x,y,t)zexp( J:—i—y) /N (x,y,s

(22)
t
2 wet) = [ R (o 9)dsin > 1
0
gold
10 100 S
N 1\ — _ 1
(’U, ) 8%2 + ayz T’h (u )
2 2
626xp<ht+éyﬂg(m+@ﬁ>> azpr<ht+;,ﬂg<$+4o>)
= 5z 2 + 5 -
rh <exp (ht + 3/ (x+ y)))
(23)
0? (exp (,/}’2’”(1’+y)+2ht>> 0? <exp <\/h{(x—|—y)+2ht>>
- 2 + Oy? -
rhexp (th + /2 (z + y))
= (rh — rh)exp <2ht +/ 2 (z+ y)>
=0
From where in step 2, we have the following SBA algorithm:
ug(a,y,t) = exp (5\/ (e + y))
t (24)

W (g, 1) = / R
0

n—1
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Again, we write :

2(2,y,t Zu 2yt <Z

u(z,y,t) = limoo uF(z,y,t) = exp

\

o

n=0

ud(x,y,t) = exp (éﬁ(w + y))
ui(x,y,t) = (ht) exp (;ﬁ (z+ y))
) = & (e (35 (040)

o) = b )" exo (35 (24)

So the finite sequence form of u?(x,y,t) is

é(ht)") exp (
u?(z,y,t) = exp (ht + ;ﬁ(x + y)>

is the solution in step 2
In a recurrent way, for the following steps (k > 3), we obtain:

1
2

hr
2

(z + y))

> 1 /hr
k k /
u(z,y,t) = nEO uy (x,y,t) = exp <ht + 5V 5 (x + y))

Therefore, the exact solution of this equation is:

2.3. Example 2

Consider equation (1) with a = =1,7r=0,h # 0 and f(z,y) =

Ou(x,y,t)

where

ot

u(z,y,0) =

k—+

(ht—i— ;\/?(x—ky))

v/cos x coshy

= hu(z,y,t) + N (u(z,y,1)), (z,y) ER* t>0

v/cos x coshy

N (u(z,y,t)) =

Au?(z,y,1)

1101

(27)

(28)

(30)

(31)
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From (30), we obtain the following canonical Adomian form:

u(zx,y,t) = y/cosz coshy —i—h/ u(z,y, s ds—l—/ N (u(z,y,s))ds

From (32), the successive approximations give us

t
(z,y,t) = \/cosz coshy + N*~ (u(z, v, ))+h/ uF(x,y, s)ds
0

Where

N (uk_l(x,y,t)) = /OtN (uk_l(fc,y,s)) ds

From (33), we have the following algorithm of Adomian :

ub(z,y,t) = v/eosz coshy + N¥1 (u(z, y, 1))

t
u§z+1(xayvt) = h/O Ufl(az,y,s)ds,n >0

1102

(32)

Let us apply to (35), the principle of Picard. We remark that u(z,y,t) = 0 is a root

of the N (uo(x,y,t)) =0
For k = 1, we obtain:

( uj(z,y,t) = \/cosx coshy
ui(x,y,t) = (th) \/cosx coshy

ul(z,y,t) = 5 (th)? \/cosz coshy
ul(z,y,t) = 5 (th)? \/cosx coshy

ul(z,y,t) = & (th)" \/cosz coshy

Let us put
ul(xayat) = u(l)(xay7t) + U%(l‘,y,t) + U%(.’L’,y,t) +oee
= (1 + (th) + (th)? + & (th)® + - ) V/cos z coshy
= /cos z cosh ye!”

Second step
For k = 2, we have:
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. t

N (u!(z,y,t)) = / N( (x y,s)) ds

/ v/cos z coshy ) Sh)2 0? ((\/cosxcosh y) eSh)2
+ ds
0x? oy?
¢ J2sh (cosz coshy) 02 (cosz coshy) (38)
5 + 5 ds

0 Ox oy

1
/ 625h —cos z coshy + cos z cosh y) ds

0

0

From (35),we obtain:

(u3(w,y,t) = \/cosx coshy
u?(z,y,t) = (th) \/cosz coshy
ud(z,y,t) = % (th)? \/cos z cosh y (39)
ui(z,y,t) = 3 (th)? \/cos z cosh y

Therefore,
w2y, t) = ug(z,y,t) + ui(z,y,t) + u3(@,y,t) + -
= (14 (th) + & (th)* + § (th)* + -+ ) VVeosweoshy (40)
= (\/m) eth

Using the procedure for k£ > 3, the solution to the k step is

uk($7y7t) = u’é(w,y,t) + U’f(l‘,y,t) + u§($7yat) T+

:<1+(th) + L (th)? + %(th)gqt--«)\/icosxcoshy (41)
= eth\/cos x coshy

So the exact solution of equation (30) with initial boundaries u(x,y,0) = y/cosx coshy
is

w(z,y,t) = lim uF(z,y,t) = e"\/cosxcoshy (42)

k——+o0
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3. Conclusion

The SBA numerical method permitted us to resolve a few nonlinear partial differen-

tial equations modelling diffusion, convection, reaction problems Cauchy type. The SBA
method permitted us to resolve the problems proposed in this paper. It is then a very
powerful numerical tool of analysis for the resolution of these kinds of problems.
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