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Abstract. In this article, a new cubic transmuted (CT ) family of distributions has been proposed
by adding one more parameter. We have introduced cubic transmuted uniform (CTU) distribution
by using the proposed class. We have also provided a detail description of the statistical properties
of the proposed CTU distribution along with its estimation and real-life application.
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1. Introduction

In statistical data analysis, quality of the procedures mainly depends upon the assumed
probability model of the phenomenon. Large numbers of probability models are, therefore,
being developed by the researcher. Enormous practical problems are on hand where the
standard and extended probability distributions does not work.

The generalization of standard probability distributions has been an area of interest
by several authors. Azzalini [4] proposed a new method of generalizing the probability
distributions by adding skewness parameter to symmetric distributions and this class is
referred to as the skew-symmetric distributions. Eugene et al. [9] developed the Beta−G
family of distributions by using the logit of beta distribution. The Beta−G family of dis-
tributions extends the distribution of order statistics. Cordeiro and de Castro [8] proposed
an alternative to Beta − G family of distributions by using Kumaraswamy distribution
in place of beta distribution and named the family as Kum − G family. Alzaatreh et al.
[3] have developed a more general method of extending probability distributions for any
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baseline distribution and named the family as T − X family of distributions. Shaw and
Buckley [16] introduced transmuted family of distributions for any baseline distribution
and has cdf

F (x) = (1 + λ)G(x)− λG2(x), λ ∈ [−1, 1] (1)

The transmutation approach (1) captures the quadratic behavior in the data. Rahman
et al. [13, 14] have extended the transmuted family of distributions, given in (1), by
introducing two cubic transmuted families of distributions for any base distribution.

In this article, we have proposed a new cubic transmuted family of distributions and
have linked it both with the distribution of order statistics and with the T −X family of
distributions.

The rest of the paper is organized as follows: The new family of cubic transmuted
distributions is proposed in Section 2. In Section 3, cubic transmuted uniform distribu-
tions are proposed by using existing families, as given by Rahman et al. [13, 14], and by
using a new family. In Section 4, statistical properties of the cubic transmuted uniform
distribution, obtained by using the new family, are given. Section 5 provides distribution
of the order statistics and the maximum likelihood estimation is given in Section 6. Sim-
ulation study and real-life application are presented in Section 7. The paper ends with
some concluding remarks.

2. New Cubic Transmuted Family of Distributions

In this section, we will propose a new cubic transmuted family of distributions. The
cdf of new family of distributions is given as

F (x) = (1− λ)G(x) + 3λG2(x)− 2λG3(x), x ∈ R, (2)

with corresponding pdf

f(x) = (1− λ)g(x) + 6λG(x)g(x)− 6λG2(x)g(x), x ∈ R, (3)

where λ ∈ [−1, 1]. The proposed family of distributions provides the base distribution for
λ = 0.

The proposed cubic transmuted family given in (2) can be obtain as the distribution
of order statistics and as a member of T −X family of distributions. We will obtain the
propose family as distribution of order statistics and as a member of T −X family in the
following theorems.

Theorem 1. Suppose X1, X2 and X3 be the iid random variables each with cdf G(x),
then the proposed cubic transmuted family of distributions given in (2) can be obtained as
a weighted sum of three order statistics.

Proof. Consider following three order statistics

X(1) = min(X1, X2, X3), X(2) and X(3) = max(X1, X2, X3).
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Now consider the random variable Z as

Z
d
= X(3), with probability p1,

Z
d
= X(2), with probability p2,

Z
d
= X(1), with probability p3,

where p1 + p2 + p3 = 1. Now, FZ(x) is given as

FZ(x) = p1F(3)(x) + p2F(2)(x) + p3F(1)(x)

= (3− 3p1 − 3p2)G(x)− (3− 3p1 − 6p2)G
2(x) + (1− 3p2)G

3(x). (4)

Now setting 3p1 + 3p2 − 2 = λ and 3p2 − 1 = 2λ the distribution function given in (4)
corresponds to the cubic transmuted family given in (2).

Theorem 2. Let a random variable X has cdf G(x) and p(t) be the pdf of a bounded
random variable T with support on [0,1] such that p(t) can be written as weighted sum of
three bounded densities p1(t), p2(t) and p3(t) each with support [0,1]. The cubic transmuted
family given in (2) can be obtained by using T −X family, introduced by Alzaatreh et al.
[3], for suitable choice of p1(t), p2(t) and p3(t).

Proof. The cdf of T −X family of distributions, proposed by Alzaatreh et al. [3], is

F (x) =

∫ G(x)

0
p(t) dt, x ∈ R, (5)

where p(t) denotes a pdf with support on [0, 1]. As noticed by Alizadeh et al. [2], the
cdf given in (1), corresponds to the cdf given by (5) for the pdf p(t) = 1 + λ− 2λt. Now,
considering

p(t) = (1− λ)p1(t) + 3λp2(t)− 2λp3(t), (6)

where p1(t) = 1, p2(t) = 2t and p3(t) = 3t2, each having support of [0, 1] and using
(6) in (5) we have

F (x) =

∫ G(x)

0
[(1− λ)p1(t) + 3λp2(t)− 2λp3(t)] dt. (7)

On simplification, the cdf given in (7), turned out to be the cdf of cubic transmuted
family of distributions given in (2).

Some cubic transmuted distributions are given in the Table 1 by using different base
distributions in the proposed cubic transmuted family of distributions given in (2).

We will now propose some CTU distributions by using the cubic transmuted families
proposed by Rahman et al. [13, 14] and by using (2). These distributions are obtained in
the following section.
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Table 1: Special Cases of Proposed Cubic Transmuted Family of Distributions.

Distribution Cumulative Distribution Function

CT-Normal (1− λ)Φ(x) + 3λΦ2(x)− 2λΦ3(x), x ∈ R
CT-Exponential e−

3x
θ

[
2λ+ (λ− 1)e

2x
θ − 3λex/θ

]
+ 1, x ∈ [0,∞)

CT-Rayleigh e−
3x2

2σ2

[
(λ− 1)e

x2

σ2 − 3λe
x2

2σ2 + 2λ

]
+ 1, x ∈ [0,∞)

CT-Weibull

[
(λ− 1)e2(

x
λ)

k

− 3λe(
x
λ)

k

+ 2λ

]
e−3(

x
λ)

k

+ 1, x ∈ [0,∞)

CT-Gompertz (λ− 1)eη−ηe
bx

+ λe−3η(e
bx−1)

[
2− 3eη(e

bx−1)
]

+ 1, x ∈ [0,∞)

CT-Kumaraswamy
[
(1− xa)b − 1

] [
λ (1− xa)b

{
2 (1− xa)b − 1

}
− 1
]
, x ∈ [0, 1]

CT-Log-logistic xβ

(αβ+xβ)
3

[
(1− λ)α2β + x2β + (λ+ 2)αβxβ

]
, x ∈ [0,∞)

CT-Pareto
[(

k
x

)θ − 1
] [
λ
{

2
(
k
x

)θ − 1
}(

k
x

)θ − 1
]
, x ∈ [k,∞)

CT-Dagum

[
3λ
{
(xb )

−a
+1
}p
−(λ−1)

{
(xb )

−a
+1
}2p
−2λ

]
[
(xb )

−a
+1
]3p , x ∈ R+

CT-Burr XII
[(xc+1)k−1][λ{(xc+1)k−2}+(xc+1)2k]

(xc+1)3k
, x ∈ R+

3. Cubic Transmuted Uniform Distributions

The uniform distribution is a useful distribution and plays important role in sampling
from any distribution. Several researchers have extended the uniform distribution, see for
example, Shaw and Buckley [16], Nadarajah and Aryal, [12] among others.

In this section, we will propose different cubic transmuted uniform distributions. We
will first propose cubic transmuted uniform distributions by using cubic transmuted fam-
ilies of distributions given by Rahman et al. [13, 14]. We will also propose a cubic
transmuted uniform distribution by using the new proposed family of distributions, given
in (2). The cubic transmuted uniform distributions, obtained by using Rahman et al.
[13, 14], will be named as cubic transmuted uniform distribution-I (for short, CTUI) and
cubic transmuted uniform distribution-II (for short, CTUII). These distributions are given
in the following subsection.

3.1. Cubic Transmuted Uniform Distributions Using Existing Families

The density and distribution function of uniform distribution over the interval [0, 1] are,
respectively, g(x) = 1 and G(x) = x. Using pdf and cdf of standard uniform distribution
in equation (3) of Rahman et al. [13], we have following cdf of CTUI distribution

FI(x) = (1 + λ1)x+ (λ2 − λ1)x2 − λ2x3, x ∈ [0, 1],

with corresponding pdf

fI(x) = (1 + λ1) + 2(λ2 − λ1)x− 3λ2x
2, x ∈ [0, 1],
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where λ1, λ2 ∈ [−1, 1] and −2 ≤ λ1 + λ2 ≤ 1. Again, using pdf and cdf of standard

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00

x

f1
(x

)

Parameters

(−0.25, −0.25, 0.25)

(−0.75, −0.75, 0.75)

(−1.00, −1.00, 1.00)

(0.25, 0.25, −0.25)

(0.75, 0.75, −0.75)

(1.00, 1.00, −1.00)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

F
1(

x)

Parameters

(−0.25, −0.25, 0.25)

(−0.75, −0.75, 0.75)

(−1.00, −1.00, 1.00)

(0.25, 0.25, −0.25)

(0.75, 0.75, −0.75)

(1.00, 1.00, −1.00)

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00

x

f2
(x

)

Parameters

(−0.25, −0.25, 0.25)

(−0.75, −0.75, 0.75)

(−1.00, −1.00, 1.00)

(0.25, 0.25, −0.25)

(0.75, 0.75, −0.75)

(1.00, 1.00, −1.00)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

F
2(

x)

Parameters

(−0.25, −0.25, 0.25)

(−0.75, −0.75, 0.75)

(−1.00, −1.00, 1.00)

(0.25, 0.25, −0.25)

(0.75, 0.75, −0.75)

(1.00, 1.00, −1.00)

Figure 1: Density and Distribution Functions Plots for CTUI (Top) and CTUII (Bottom) Distributions.

uniform distribution in (7) of Rahman et al. [14], we have the cdf of CTUII distribution
as

FII(x) = (1 + λ1 + λ2)x− (λ1 + 2λ2)x
2 + λ2x

3, x ∈ [0, 1],

with corresponding pdf as

fII(x) = (1 + λ1 + λ2)− 2(λ1 + 2λ2)x+ 3λ2x
2, x ∈ [0, 1],

where λ1 ∈ [−1, 1] and λ2 ∈ [0, 1].
Figure 1 presents the density and distribution functions of CTUI and CTUII distribu-

tions. It can be seen that CTUI distribution is skewed to the left and CTUII distribution
is skewed to the right.
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3.2. Cubic Transmuted Uniform Distribution Using Proposed Family

We will now propose a cubic transmuted uniform distribution (CTU for short) by
using the family of distributions given in (2). Using pdf and cdf of standard uniform
distribution in (2), we obtain the cdf of CTU distribution as

F (x) = (1− λ)x+ 3λx2 − 2λx3, x ∈ [0, 1], (8)

with corresponding pdf

f(x) = (1− λ) + 6λx− 6λx2, x ∈ [0, 1], (9)

where λ ∈ [−1, 1].
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Figure 2: Density and Distribution Functions Plots for Proposed CTU Distribution.

Figure 2 present the plots of density and distribution functions for the proposed CTU
distribution. It can be seen that the proposed CTU distribution capture the complexity
alone that were captured by CTUI and CTUII distributions together.

We will now present the distributional properties, alongside real data application, of
the proposed CTU distribution in the following sections.

4. Statistical Properties

In this section we will discuss some distributional properties of the proposed CTU
distribution. These properties are discussed in the following subsections.

4.1. Moments

Moments play an important role in studying certain properties of the distribution. We
will give the rth moment of proposed CTU distribution in the following theorem.
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Theorem 3. The rth raw moment of CTU distribution, with density (9), is

µ′r =
r(λ− λr + r + 5) + 6

(r + 1)(r + 2)(r + 3)
.

The mean, variance, skewness and kurtosis are, respectively, 1
2 ,

1
60(5−2λ), 0 and −6[2λ(7λ−20)+35]

7(5−2λ)2
respectively.

Proof. The rth raw moment is defined as

µ′r = E(Xr) =

∫ 1

0
xrf(x)dx

=

∫ 1

0
xr
[
(1− λ) + 6λx− 6λx2

]
dx

= (1− λ)

∫ 1

0
xrdx+ 6λ

∫ 1

0
xr+1dx− 6λ

∫ 1

0
xr+2dx

=
(1− λ)

(r + 1)
+

6λ

(r + 2)
− 6λ

(r + 3)

=
r(λ− λr + r + 5) + 6

(r + 1)(r + 2)(r + 3)
. (10)

Mean of the distribution is obtained by using r = 1 in (10) and is

µ = µ′1 =
1

2
.

We can see that mean of CTU distribution is same as the uniform distribution over [0, 1].
The variance of proposed CTU distribution obtained as

σ2 = µ2 = µ′2 −
(
µ′1
)2

=
1

60
(2(7− λ) + 6)− 1

4
=

1

60
(5− 2λ).

The coefficient of skewness for the proposed CTU distribution is

γ1 =
√
β1 = E

[(
x− µ
σ

)3
]

= 0,

whereas the coefficient of kurtosis is

γ2 = β2 − 3 = E

[(
x− µ
σ

)4
]
− 3

=
45(7− 4λ)

7(5− 2λ)2
− 3

= −6 [2λ(7λ− 20) + 35]

7(5− 2λ)2
.

The proof is completed.
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4.2. Moments Generating Function

The moment generating function (MGF ) is used to obtain the moments of a distribu-
tion. The MGF of CTU distribution is given in the following theorem.

Theorem 4. Let X follows the CTU distribution, then the moment generating function,
MX(t) is given as

MX(t) =

∞∑
r=0

tr

r!

r(λ− λr + r + 5) + 6

(r + 1)(r + 2)(r + 3)
, (11)

where t ∈ R.

Proof. The moment generating function of CTU distribution is obtained by using

MX(t) =

∫ 1

0
etxf(x)dx

where f(x) is given in (9). Using the series representation of etx given in Gradshteyn and
Ryzhik [10], we have

Mx(t) =

∫ 1

0

∞∑
r=0

tr

r!
xrf(x)dt

=
∞∑
r=0

tr

r!
E(Xr). (12)

Using E(Xr) from (10) in (12), we have (11).

4.3. Characteristic Function

Characteristic function defines its probability distribution completely. The character-
istic function of CTU distribution is stated by the following theorem.

Theorem 5. Let X have the CTU distribution, then characteristic function, φX(t), of X
is given as

φX(t) =
1∑
r=0

(it)r

r!

r(λ− λr + r + 5) + 6

(r + 1)(r + 2)(r + 3)
,

where i =
√
−1 is the imaginary unit and t ∈ R.

Proof. The proof is simple as MGF .



M. Q. Shahbaz et al. / Eur. J. Pure Appl. Math, 12 (3) (2019), 1106-1121 1114

4.4. Mean Absolute Deviation

Let a random variable X has the CTU distribution. The mean absolute deviation
(MAD) about mean can be obtained for CTU distribution as

η = E|x− E(x)| = 4− λ
16

.

This MAD is easier to understand and easier to compute.

4.5. Quantile Function and Median

The quantile function for CTU distribution is obtained by solving (8) for x and is
obtain as

xq =
1

2
−

3

√
η1 +

√
4η32 + η21

6 3
√

2λ
+

η2

3 22/3λ 3

√
η1 +

√
4η32 + η21

, (13)

where η1 = −54λ2 + 108λ2q and η2 = −3λ2 − 6λ.
The first quartile, median and third quartile can be obtained by setting q = 0.25, 0.50

and 0.75 in (13) respectively.

4.6. Simulating Random Sample

The random numbers can be drawn from CTU distribution by solving

(1− λ)x+ 3λx2 − 2λx3 = u,

for x, where u ∼ U(0, 1). The equation for generating random sample from CTU distri-
bution can be further expressed as

X =
1

2
−

3

√
η1 +

√
4η32 + η21

6 3
√

2λ
+

η2

3 22/3λ 3

√
η1 +

√
4η32 + η21

, (14)

where η1 = −54λ2 + 108λ2u and η2 = −3λ2 − 6λ.
One can generate random sample from CTU distribution using (14) for various values

of model parameter λ.

4.7. Reliability Analysis

The reliability function is defined as R(t) = 1− F (t) and, for CTU distribution, it is

R(t) = 1− (1− λ)t− 3λt2 + 2λt3, t ∈ [0, 1].

The hazard function is the ratio of the probability distribution function to the reliability
function and is given as

h(t) =
(1− λ) + 6λt− 6λt2

1− (1− λ)t− 3λt2 + 2λt3
, t ∈ [0, 1].
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Figure 3: Reliability and Hazard Rate Functions Plots for Proposed CTU Distribution.

Figure 3 describes some possible shapes for the reliability and hazard functions of CTU
distribution for different values of model parameter λ.

4.8. Shannon Entropy

The uncertainty of a random variable X can be easily measured by using entropy.
The entropy H of a random variable X is defined by Shannon [15], and, for the CTU
distribution, it is obtained as

H = −E[log{f(x)}]
= −E

[
log
{

(1− λ) + 6λx− 6λx2
}]

= −
∫ 1

0
log
{

(1− λ) + 6λx− 6λx2
}{

(1− λ) + 6λx− 6λx2
}
dx

= −
3
√
λ {λ− 3 log(1− λ) + 4}+ 2

√
3(−λ− 2)3/2 tan−1

( √
3
√
λ√

−λ−2

)
9
√
λ

and can be computed numerically.

5. Order Statistics

The density function of rth order statistics for CTU distribution is given as

fX(r)
(x) =

n!

(r − 1)!(n− r)!
{

(1− λ) + 6λx− 6λx2
} [

(1− λ)x+ 3λx2 − 2λx3
]r−1

×
[
1− (1− λ)x− 3λx2 + 2λx3

]n−r
, (15)
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where r = 1, 2, · · · , n. Therefor, for r = 1, we have the pdf of the smallest order statistics
X(1), and is given as

fX(1)
(x) = n

{
(1− λ) + 6λx− 6λx2

} [
1− (1− λ)x− 3λx2 + 2λx3

]n−1
,

and for r = n, the pdf of the largest order statistics X(n), is

fX(n)
(x) = n

{
(1− λ) + 6λx− 6λx2

} [
(1− λ)x+ 3λx2 − 2λx3

]n−1
.

Note that λ = 0, we have pdf of the rth order statistics for uniform distribution The kth
moment of rth order statistics for CTU distribution is obtained as

E(Xk
(r)) =

∫ 1

0
xk(r) · fX(r)

(x) · dx,

where fX(r)
(x) is given in (15). Setting r = 1 and r = n one can obtain the kth moment

of smallest and largest order statistics for the CTU distribution.

6. Parameter Estimation

This section is dedicated to maximum likelihood estimation of the parameter of CTU
distribution. For this, suppose a random sample of size n is available from the CTU
distribution, then the likelihood function is

L =
n∏
i=1

[
(1− λ) + 6λxi − 6λx2i

]
.

The log-likelihood function is

l =
n∑
i=1

ln
[
(1− λ) + 6λxi − 6λx2i

]
. (16)

The derivatives of (16) with respect to λ is

δl

δλ
=

n∑
i=1

6xi − 6x2i − 1

(1− λ) + 6λxi − 6λx2i
,

Now setting δl
δλ = 0 one can get numerical estimate of λ. For the numerical estimate of λ

we apply R-package ”bbmle”, for details see [6].

7. Numerical Studies

In this section, simulation study has been conducted to assess the performance of
estimation method. Also, the CTU distribution has been applied on real-life data set to
observed the practicality. These are given by the following two subsection.
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Table 2: Average Estimate of Parameter and MSE for CTU Distribution.

Sample Size Estimate of λ MSE of λ

50 -0.526 0.106
100 -0.546 0.053
200 -0.540 0.026
500 -0.550 0.011
1000 -0.550 0.005

7.1. Simulation Study

In order to conduct this simulation study, we have drawn random samples of sizes 50,
100, 200, 500 and 1000 from CTU distribution by setting λ = −0.55. Maximum likelihood
estimate of λ is obtained by using each sample. The procedure is repeated 10000 times
and we have then taken the average value of the estimate alongside the mean square error.
The results are described in Table 2 which shows that the estimated value is very close
to the pre-selected value of λ. We can also see that the mean square error reduces with
increase in the sample size. This shows the adequacy of the estimation method.

7.2. Application

In this section we have given application of the proposed CTU distribution by using
a real data set. The data set is about lifetimes (in days) of 30 electronic devices and is
given in Table 3.

Table 3: Lifetimes of 30 Electronic Devices.

0.020, 0.029, 0.034, 0.044, 0.057, 0.096, 0.106, 0.139, 0.156, 0.164, 0.167,
0.177, 0.250, 0.326, 0.406, 0.607, 0.650, 0.672, 0.676, 0.736, 0.817, 0.838,
0.910, 0.931, 0.946, 0.953, 0.961, 0.981, 0.982 and 0.990.

Table 4: Summary Statistics for Lifetimes of 30 Electronic Devices.

Data Set Min. Q1 Median Mean Q3 Max. Skew.

Lifetimes 0.020 0.143 0.506 0.494 0.892 0.990 0.062

The summary statistics for the data is given in Table 4. It has been observed from
table 4 that data follows slightly positively skewed distribution.

The probability-probability (for short, P −P ) and quantile-quantile (for short, Q−Q)
plots are presented in Figure 4. We can see, from the Figure 4, that CTU distribution
closely agree with the actual data.

We have fitted various distributions; namely skew uniform, Beta and Kumaraswamy
distribution; alongside the CTU distribution on this data. The estimates of the model
parameters along with standard errors are obtained and presented in Table 5.
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Figure 4: P − P and Q−Q Plots of CTU Distribution for Lifetimes of 30 Electronic Devices.

Table 5: MLE′s of the Parameters and Respective SE′s for Selected Models.

Distribution Parameter Estimate SE

CTU λ -1 0.444
Skew Uniform λ 0.022 0.246
Beta α, β 0.607, 0.591 0.142, 0.138
Kumaraswamy α, β 0.588, 0.612 0.161, 0.134

Estimated density and reliability curves for the selected models have been plotted
over empirical histogram and empirical reliability curves in the upper left and upper right
corner of the Figure 5. It has been observed that CTU distribution fitted very well as
compare with other competitive models used in this study.

In order to verify the shape of hazard rate function, the total time on test (TTT ) plot
is used. For more details of TTT plot see [1, 5, 11]. TTT plot of CTU distribution are
presented in lower left of Figure 5. It has been observed a series of convex and concave
TTT plot with upward trend. Estimated hazard curve has been plotted in lower right of
Figure 5 and observed slight decreasing failure rate then constant failure rate and dramatic
increasing failure rate at the end.

Table 6: Selection Criteria Estimated for Selected Models.

Distribution logLike AIC AICc BIC

CTU 6.196 -10.393 -10.250 -8.991
Skew Uniform 0.004 1.992 2.135 3.393
Beta 3.625 -3.250 -2.805 -0.447
Kumaraswamy 3.503 -3.005 -2.561 -0.203

We have considered various selection criteria; like log-likelihood, Akaike’s information
criterion (AIC), corrected Akaike’s information criterion (AICc) and Bayesian informa-
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Figure 5: Estimated Density Curves (Top Left), Estimated Reliability Curves (Top Right), TTT Plot (Bottom
Left) and Hazard Estimate Curve (Bottom Right).

tion criterion (BIC); to see the goodness of fit of various models. The computed values of
these selection criteria are given in Table 6 and we have observed the positive log-likelihood
along with negative AIC, AICc and BIC values (for example, see [7]) for CTU , beta and
Kumaraswamy distributions. The computed selection criteria values are positive for skew
uniform distribution. According to the values of highest log-likelihood and lowest AIC,
AICc and BIC, the proposed CTU distribution is the most competitive model for this
data.

8. Concluding Remarks

We have proposed cubic transmuted family of distributions and have introduced CTU
distribution. Various statistical properties; including moments, quantile and generating
functions, random number generation, reliability function and Shannon entropy; of the
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proposed CTU distribution have been studied along with the distribution of order statis-
tics. The maximum likelihood estimate of parameter has been discussed and a simulation
study has been conducted to see the performance of estimation procedure. We have also
fitted the proposed CTU distribution on a real data set and have found that our proposed
distribution is most adequate fit to the data as compared with other competing models
used in the study.
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