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Abstract. In this paper, an optimal control problem of HIV infection model of delay differential
equations is taken into account. Two Optimal controls variables are explored. These optimal
control variables represent reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs).
The existence and uniqueness results for the optimal control pair are established. The optimality
system is derived using Pontryagin’s Maximum Principle and then solved numerically. Finally,
conclusion is drawn.
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1. Introduction

HIV stands for human immunodeficiency virus. It is the virus that can lead to ac-
quired immunodeficiency syndrome, or AIDS, if not treated. Unlike some other viruses,
the human body can’t get rid of HIV completely, even with treatment. HIV attacks the
body’s immune system, specifically the CD4 cells (T cells), which help the immune system
fight off infections. No effective cure currently exists, but with proper medical care, HIV
can be controlled. But with proper medical care, HIV can be controlled.
Mathematical models have evaluated a wide range of different HIV prevention and treat-
ment programmes. Mathematical modeling over the years has been useful in analyzing
various diseases dynamics, such as HIV/AIDS, Malaria and Tuberculosis, and also plays an
important role in the better understanding of epidemiological patterns for diseases control,
as it provides short and long term prediction of diseases incidence. Several mathemati-
cal models have been formulated in order to understand the dynamics of HIV infection
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[6, 9, 13–16, 19–22]. These models are utilized to explore optimal chemotherapy treatment
to avoid an excessive use of drugs. Indeed, when these drugs are administered in high dose
they are toxic to the human body and cause damages. Fister et al. [16] applied optimal
control on HIV-1 model and discussed the percentage effect of the chemotherapy on the
interaction of the CD4+ T cells with the virus. Similarly, Joshi [12] taken into account
two control variables, one for raising the immune system and the other for delaying HIV-1
progression. Garira et al. [4] used two controls strategies which simulate the effect of
reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) to integrate drug ef-
ficacy. Ghanbari and Farahi [5] obtained optimal control pair for nonlinear delay HIV
model with quadratic cost functional by using Fourier series approximation.
Recent research work has been focused on optimal control problem of delayed HIV model
(see for example [7, 8, 10, 11] ). All these models considered the effect of control strategy
on single pathogen virus. Here, we consider the delayed HIV-1 model consists of two types
of viruses, that is, pathogen virus and engineered virus.
In this paper, we develop the best strategy of treatment; more exactly we seek to search a
maximum count of healthy cells with a minimum dose of the administered drugs. To intro-
duce a control to the proposed model, we analyze the interactions of healthy CD4+T cells,
single infected CD4+T cells,double infected cells, free virus and recombinant virus: two
major categories of anti-retroviral drugs to combat HIV are reverse transcriptase inhibitors
(RTIs) and protease inhibitors (PIs). RTIs prevent new HIV infection by discrupting the
conversion of viral RNA into DNA inside of T cells. PIs reduce the number of viruses
particles produced by an actively-infected T cells. Hence, if we denote 0 ≤ u1(t) < 1 the
RTI control variable and 0 ≤ u2(t) < 1 the PI control variable equations. These controls
are measurable functions satisfying 0 ≤ uj(t) < 1 for j = 1; 2. Thus, the following optimal
control problem is formulated.

dx(t)

dt
= Λ− dx(t)− (1− u1(t))βx(t)v(t),

dy(t)

dt
= (1− u1(t))βe

−aτx(t− τ)v(t− τ)− ay(t)− αw(t)y(t),

dz(t)

dt
= αw(t)y(t)− bz(t), (1)

dv(t)

dt
= k(1− u2(t))y(t)− pv(t),

dw(t)

dt
= cz(t)− qw(t),

with initial conditions

x(0) = x0, y(0) = y0, z(0) = z0, v(0) = v0, w(0) = w0. (2)

Here, x(t), y(t), v(t), z(t) and w(t) denote the densities of uninfected target cells, infected
cells, free virus, double infected cells and recombinant viruses at time t, respectively. The
transitions between different states are described by the following parameters.

(i) Λ is the recruitment rate of uninfected cells.
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(ii) β is an effective contact rate.

(iii) d is the natural mortality rate.

(iv) a stands for death rate of infected cells.

(v) k is the rate of virus production.

(vi) α is the infection rate of pathogen infected cells.

(vii) p is the death rate of pathogen virus.

(viii) q is the death rate of recombinant virus.

(ix) c is the rate of production of double infected cells.

(x) τ can be regarded as the average time for a viral particle to go through the eclipse
phase (or average latent period).

Our target is to find the control functions u1(t) and u2(t) to get the following achievements.

(i) To maximize the density of uninfected cells and recombinant viruses during the time
period [0, T ].

(ii) To minimize the cost of treatment, the density of pathogen virus and the density of
infected cells.

In order to achieve our target, we construct the following objective functional:

J(u1(t), u2(t)) =

∫ T

0

(

ρ1x(t) + ρ2w(t)−
1

2
(ξ1u

2
1(t) + ξ2u

2
2(t))

)

dt, (3)

where ρ1 and ρ2 are weight constants which balance the size of the optimal conditions
and the parameters ξ1 ≥ 0 and ξ1 ≥ 0 are established on the benefits and costs of the
treatment. These parameters equalize the size of the terms u1(t) and u2(t) which reflect
the severeness of the side effects of the drugs.
To find the basic reproductive number, we follow the techniques presented in [1–3] for the
control problem is given by

R0(t) =
kβΛe−aτ (1− u1(t))(1− u2(t))

adp
.

Clearly, the value of R0 s decreased by increasing the values of u1(t) and u2(t). But the
infection starts if R0 > 1. For the system (1), with time delays τ = 0, the disease-free
equilibrium always exists.

E0 =

(

Λ

d
, 0, 0, 0, 0

)

.
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If R0 ≤ 1 or (1−u1(t))(1−u2(t)) ≤
apd
kβΛ , then the infection would die out. If R0 > 1 or (1−

u1(t))(1−u2(t)) ≥
apd
kβΛ , then there exists pathogen present equilibrium Ep(x1, y1, z1, v1, w1)

where,

x1 =
ap

(1− u1(t))(1− u2(t))βke−aτ
,

y1 =
Λkβe−aτ (1− u1(t))(1− u2(t))− adp

kaβe−aτ (1− u1(t))(1− u2(t))
,

z1 = 0,

v1 =
Λkβe−aτ (1− u1(t))(1− u2(t))− adp

(1− u1(t))paβe−aτ
,

w1 = 0.

The recombinant present equilibrium Er(x2, y2, z2, v2, w2) is given by

x2 =
(αλc+ γbq)p

αcdp+ βkqbe−aτ (1− u1(t))(1− u2(t))
,

y2 =
bq

αc
,

z2 =
q

αc
(
(1− u1(t))(1− u2(t))ckΛαβe

−a(τ) − aαcdp− (1− u1(t))(1− u2(t))abqkβe
−aτ

αcdp+ bkqβe−aτ
),

v2 =
kqb

αcp
,

w2 =
αckβλe−a(τ) − aαcdp(1− u1(t))(1− u2(t))− (1− u1(t))(1− u2(t))abqkβe

−aτ

α(αcdp+ (1− u1(t))(1− u2(t))bkqβe−aτ )
.

We find optimal control functions u⋆1(t) and u⋆2(t) such that

J(u⋆1(t), u
⋆
2(t)) = max{J(u1(t), u2(t)) \ (u1(t), u2(t)) ∈ U}, (4)

where U = {(u1(t), u2(t)) \ ui is lebesgue measurable on [0, 1], 0 ≤ ui(t) ≤ 1, i = 1, 2}, is
the control set.

2. Existence of control problem

In this section, we show the existence of the control problem. To do this, first we find
the lagrangian of the optimal control problem.

L(t) = ρ1x(t) + ρ2w(t)−
1

2
(ξ1u

2
1(t) + ξ2u

2
2(t)).

The corresponding Hamiltonian can be defined as

H
(

x, y, z, v, w, xτ , vτ , u1, u2, λ(t)
)

=
1

2

(

ξ1u
2
1 + ξ2u

2
2

)

− ρ1x(t)− ρ2w(t)
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+λ1(t)
(

Λ− dx(t)− (1− u1(t))βx(t)v(t)
)

+λ2(t)
(

(1− u1(t))βe
−aτxτvτ − ay(t)− αw(t)y(t)

)

+λ3(t)
(

αw(t)y(t)− bz(t)
)

+ λ4(t)
(

k(1− u2(t))y(t)

−pv(t)
)

+ λ5(t)
(

cz(t)− qw(t)
)

,

where xτ := x(t− τ) and vτ := v(t− τ).
This Hamiltonian determines the control functions for the proposed optimal control prob-
lem.
To show the existence of optimal pair, we use the idea of Fleming and Rishel in [? ].
Theorem 3.1: For the control problem with the model (1), there always exists u⋆ =
(u⋆1, u

⋆
2) ∈ U such that

max
(u1(t),u2(t))∈U

J(u1(t), u2(t)) = J(u⋆1(t), u
⋆
2(t)).

Proof : To prove the existence of optimal control, we will follow [? ].
We see that the set of controls and state variables are nonnegative and nonempty [17]. The
optimal system is bounded which determines the compactness needed for the existence of
the optimal control. Also, the state system is bounded by a linear function in the state and
control variables. Therefore, the control set U is convex and closed. Using the boundedness
of the solution, we see that the RHS of the integrand of the objective functional is concave
on U . Finally, we can prove that there exist constants h1, h2 > 0, and η > 1 such that the
integrand L(x(t), w(t), u1(t), u2(t)) of the objective functional satisfies

L
(

x(t), w(t), u1(t), u2(t)
)

= h2 − h1(|u1|
2 + |u2|

2)η/2.

Thus, conclude that there exists an optimal control.
Next, we use Pontryagin’s Maximum Principle [18] to discuss the following theorem.
Theorem 3.2: For the optimal control u⋆1(t), u

⋆
2(t) and solutions x⋆(t), y⋆(t), z⋆(t), v⋆(t),

and w⋆(t) of the corresponding state system (1), there are adjoint variables λi(t), i =
1, 2, ..., 5, satisfying the equations

dλ1

dt
= ρ1 + λ1(t)

(

d+ (1− u⋆1(t))βv
⋆(t)

)

+ λ1(t+ τ)λ2(t)βe
−aτv⋆(t− τ)(u⋆1(t)− 1),

dλ2

dt
= aλ2(t) + (λ2(t)− λ3(t))αw

⋆(t) + λ4k(u
⋆
1(t)− 1),

dλ3

dt
= bλ3(t)− cλ5(t), (5)

dλ4

dt
= λ1(t)(1− u⋆1(t))βx

⋆(t− τ) + λ4(t+ τ)λ2(t)βe
−aτx⋆(t)(u⋆1(t)− 1) + λ4(t)p,

dλ5

dt
= ρ2 + (λ2(t)− λ3(t))αy

⋆(t) + λ5(t)q,

with transversality conditions

λj(T ) = 0, j = 1, 2, ..., 5. (6)
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Proof : Using Pontryagin’s Minimum Principle presented in [18], we get the following
system of adjoint variables

dλ1

dt
= −

∂H(t)

∂x
− λ1(t+ τ)

∂H

∂xτ
, λ1(T ) = 0,

dλ2

dt
= −

∂H(t)

∂y
, λ2(T ) = 0,

dλ3

dt
= −

∂H(t)

∂z
, λ3(T ) = 0,

dλ4

dt
= −

∂H(t)

∂v
(t)− λ4(t+ τ)

∂H(t

∂vτ
, λ4(T ) = 0,

dλ5

dt
= −

∂H(t)

∂w
, λ5(T ) = 0.

Further, adjusting x(t) = x⋆(t), y(t) = y⋆(t), z(t) = z⋆(t), v(t) = v⋆(t) and w(t) = w⋆(t),
we get the adjoint system (5) satisfying tranversality conditions λj(T ) = 0, j = 1, 2, ..., 5.
Theorem 3.3: The control pair (u⋆1(t), u

⋆
2(t)), which maximizes the objective functional

J over the region U is given by

u⋆1(t) = max{min{
β

ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

, 1}, 0},

u⋆2(t) = max{min{
λ4(t)ky

⋆(t)

ξ2
, 1}, 0}.

Proof : The optimality conditions yields the following

∂H

∂u1
= ξ1u

⋆
1(t)+ λ1(t)βx

⋆(t)v⋆(t)− λ2(t)βe
−aτx⋆(t− τ)v⋆(t− τ), (7)

and

∂H

∂u2
= ξ2u

⋆
2(t)− λ4(t)ky

⋆(t). (8)

Solving equations (7) and (8) for the optimal control variables u⋆1(t) and u⋆2(t), we get

u⋆1(t) =
β

ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

, (9)

u⋆2(t) =
λ4(t)ky

⋆(t)

ξ2
. (10)

By using the property of control space, the equations (9) and (10) can be written as

u⋆1(t) =



















0 if β
ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

≤ 0,
β
ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

if

0 < β
ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

< 1,

1 if β
ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

≥ 1.
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u⋆2(t) =











0 if λ4(t)ky⋆(t)
ξ2

≤ 0,
λ4(t)ky⋆

ξ2
if 0 <

λ4(t)ky⋆(t)
ξ2

< 1,

1 if λ4(t)ky⋆(t)
ξ2

≥ 1.

The above two equations for u⋆1(t) and u⋆2(t) can be written as (using compact notation)

u⋆1(t) = max{min{
β

ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

, 1}, 0}, (11)

u⋆2(t) = max{min{
λ4(t)ky

⋆(t)

ξ2
, 1}, 0}. (12)

Here, we call formula (11) and (12) for u⋆1(t) and u⋆2(t), the characterization of the optimal
control.
Therefore, we get the following optimality system.

dx⋆(t)

dt
= Λ− dx⋆(t)− βx⋆(t)v⋆(t)

(

1−max{min{
β

ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))

− λ1(t)x
⋆(t)v⋆(t)

)

, 1}, 0}

)

,

dy⋆(t)

dt
=

(

1−max{min{
β

ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))

− λ1(t)x
⋆(t)v⋆(t)

)

, 1}, 0}

)

βx⋆(t− τ)v⋆(t− τ)− ay⋆(t)− αw⋆(t)y⋆(t),

dz⋆(t)

dt
= αy⋆(t)w⋆(t)− bz⋆(t),

dv⋆(t)

dt
= k(1−max{min{

λ4y
⋆(t)

ξ2
, 1}, 0})y⋆(t)− pv⋆(t),

dw⋆(t)

dt
= cz⋆(t)− qw⋆(t),

(13)
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along with equations (2) and (6), and Hamiltonian H⋆

at (x⋆, y⋆, z⋆, v⋆, w⋆, x⋆τ , v
⋆
τ , u

⋆
1, u

⋆
2, λ1, λ1, λ2, λ3, λ4, λ5,

)

H⋆(t) =
1

2

(

ξ1(max{min{
β

ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

, 1}, 0})2

+ ξ2(max{min{
λ4(t)ky

⋆(t)

ξ2
, 1}, 0})2

)

− ρ1x
⋆(t)− ρ2w

⋆(t) + λ1

[

Λ− dx⋆(t)

−
(

1−max{min{
β

ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))− λ1(t)x

⋆(t)v⋆(t)
)

, 1}, 0}
)

βx⋆(t)v⋆(t)

]

+ λ2

[

(

1−max{min{
β

ξ1

(

λ2(t)e
−aτx⋆(t− τ)v⋆(t− τ))

− λ1(t)x
⋆(t)v⋆(t)

)

, 1}, 0}
)

βe−aτx⋆(t− τ)v⋆(t− τ)− ay⋆(t)− αw⋆(t)y⋆(t)

]

+ λ3

[

αw⋆(t)y⋆(t)− bz⋆(t)

]

+ λ4

[

k
(

1−max{min{
λ4(t)ky

⋆(t)

ξ2
, 1}, 0}

)

y⋆(t)− pv⋆(t)

]

+ λ5

[

cz⋆(t)− qw⋆(t)

]

.

(14)

To find out the optimal control and state variables, we will solve numerically the above
system (13) and (14).

3. Numerical Simulation

In this section, we present numerical results of the optimal control problem. We solve
the state system forward in time by Runge-Kutta fourth order scheme and the adjoint
system by backward fourth order scheme. We illustrate a case for two different values for
50-day treatment schedule. Some of the parameter values are considered from real data
(see for more detail references [1–3]) and some are estimated. The given figures (1 − 6)
are the simulation results of our proved theoretical results.
We can make some decisions on the potency of drug therapies based on the densities of
uninfected cells, infected cells, double infected cells, free virus and recombinant virus.
We considered 70-day treatment and the following were observed. After some time, the
number of T cells consistently increased throughout the treatment period, the actively
infected cells and the viral load all decreased till the end of the treatment period. Fig 1
represents the concentration of T cells during the proposed treatment period. The T cell
population decreases up to some time, but increases after treatment. The concentration of
T cells increases in a logistic way. However, for a higher systemic cost, the T cell population
increases at a slower rate. With both weight factors, the maximal chemotherapy is given
for about the 20 days. Therefore, for the higher systemic cost, the optimal chemotherapy
given produces a lower T cell concentration and a higher virus concentration. (Fig 2) shows
that the number of infected cells approaches to a very small number after treatment,
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Figure 1: The graph represents in the density of uninfected cells verses time t in weeks. It shows the difference
in the density of uninfected cells before and after control strategy. The density of healthy cells increases after
control.
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Figure 2: The graph represents control in the density of infected cells verses time t in weeks. It shows the
difference in the density of infected cells before and after control strategy. The density of infected cells decreases
after control.

while without treatment, the number of infected cells increases. Fig 3 show that the
concentration of double infected cells is reduced to a small number after treatment. Fig
4 justifies the decrease in the number of pathogen viruses after applying optimal control.
The virus V does not cease to proliferate and so its abundance increases. After few days,
the effect of chemotherapy begins to appear; which explains the growth of uninfected T
cells and the diminishing of virus V (Figs. 2 and 4). Fig 5 shows that after treatment the
density of recombinant virus increases with the passage of time and as a result these viruses
may cause the control of infected cells. The optimal controls for drug administration are
represented through Figs. 6 respectively by u1 and u2.
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Figure 3: The graph represents control in the density of double infected cells verses time t in weeks. It shows
the difference in the density of double infected cells before and after control strategy. The density of double
infected cells decreases after control.
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Figure 4: The graph represents control in the density of pathogen verses time t in weeks. It clarify the difference
in the density of pathogen virus before and after control strategy. The density of pathogen virus decreases after
control decrease.
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Figure 5: The graph represents control in the density of recombinant virus verses time t in weeks. It shows
the difference in the density of recombinant virus before and after control strategy. The density of recombinant
virus increases after control.
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Figure 6: The graph shows the control variables in the optimal control problem.

4. Concluding Remarks

In this work, we have presented a single delayed HIV-1 mathematical model with two
controls variables. Although, there is no effective therapy for HIV infection but different
treatments are available to block off the development of the virus production in the body
and maintain balance between the virus and the defense system. These treatments can
cause heavy side effects such as nausea, diarrhea, fatigue, etc. Moreover, the cost of
treatment is beyond reach of many infected patients. Hence, we introduced an optimal
therapy in order to minimize the cost of treatment, reduce the viral load and improve the
immune response. We used two controls which measure the efficacy of reverse transcriptase
and protease inhibitors, respectively. In addition, we discussed an efficient numerical
method based on optimal control to identify the best treatment strategy of HIV infection
in order to block new infection, increase the density of recombinant viruses and minimize
the number of pathogen viruses by using drug therapy with minimum side effects. The
numerical simulations have shown that the viral load drops off after treatment while the
densities of CD4+ cells and recombinant virus increases.
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