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Convergence of an exponential Runge–Kutta method
for non-smooth initial data
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Abstract. The paper presents error bounds for the second order exponential Runge-Kutta method
for parabolic abstract linear time-dependent differential equations incorporating non-smooth initial
data. As an example for this particular type of problems, the paper presents a spatial discretization
of a partial integro-differential equation arising in financial mathematics, where non-smooth initial
conditions occur in option pricing models. For this example, numerical studies of the convergence
rate are given.
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1. Introduction

To give numerical solution of stiff differential equations, exponential integrators have
been constructed. Through Exponential integrators, unlike standard numerical integra-
tors, the exponential and related functions (often called ϕ-functions) of large matrices
can be used explicitly. The exponential Runge-Kutta methods of collocation type have
been constructed by Hochbruck & Ostermann [9] and their convergence properties were
analyzed for linear and semi-linear parabolic problems . Hochbruck & Ostermann [8] also
studied explicit exponential Rung-Kutta methods for the time integration of semi-linear
parabolic problems. Gondal [4] considered exponential Rosenbrock integrators for option
pricing. Different types of exponential integrators and their applications are discussed in
details in [6, 10, 11, 18, 19].

Henry [7] and Pazy [16] studied semi-linear problems and contributed significantly.
Le Roux [17] introduced for the first time non-smooth data error estimates for time dis-
cretizations of linear parabolic problems. The error bounds for time discretizations of
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semi-linear parabolic equations with non-smooth initial data have been inferred in [12].
Linearly implicit time discretization of semi-linear parabolic equations with non-smooth
initial data was studied by the authors in [15]. In [5], author proved convergence result
of an exponential Euler method using non-smooth initial data for option pricing. We
mean to examine convergence properties of exponential Runge-Kutta method for linear
parabolic problems that spring up in financial problems. To evaluate this, we cultivate in
an abstract Banach space framework of sectorial operators and analytic semi-groups and
prove convergence for Exponential Runge-Kutta method for non-smooth initial data.

The jump diffusion model, proposed in [14], is chosen as an application of our analysis. In
particular, we discuss the partial integro-differential equations(PIDE) for Mertons model.
Briani, La Chioma & Natalini [13] used an explicit method to solve Mertons model and
constituted a convergence theory for explicit schemes for varied integro-differential Cauchy
problems. Cont & Voltchkova [2] used implicit-explicit finite difference methods success-
fully for European and barrier options in jump diffusion and exponential Levy models.
In a paper [3], one can find different option pricing problems solved numerically through
Chebychev discretisation schemes and exponential integrators.

This article is attributed to a theoretical convergence analysis of exponential integrators
which is transported out within the framework of evolution equations in Banach spaces.In
financial applications, the initial information is generally non-smooth and lies of the payoff
function of the option. Therefore, in case of non-smooth initial data, the matter of concern
is to have practical error bounds. A bound of this nature is developed in [5] of order one
for the exponential Euler method. Following, in Section 3, a error bound is established
for the method called an exponential RungeKutta method of order two, and the result is
given in Theorem 1.

Besides this preamble, the paper comprises of four sections. Section 2 describes the expo-
nential Rung-Kutta and exponential Euler time integrators. Section 3 present the main
results and originate new error bounds. Although in case of non-smooth initial data, error
bounds derived in [12] and [15]. But the results for exponential integrators, however, have
not been experienced. For the application of analysis, Section 4 offers an example from
the Mertons models. The Conclusion includes few final remarks.

2. Numerical method

In this section,the abstract form of evaluation equation that results from partial integro-
differential equations, that arise in financial mathematics, is considered as follows:

u′(t) = Au(t) +Bu(t) + g(t), u(t0) = u0, 0 < t ≤ T, (1)

The variation-of-constants formula with the exact solution representation of (1) is

u(tn+1) = ehAu(tn) +

∫ h

0
e(h−τ)AB · u(tn + τ)dτ +

∫ h

0
e(h−τ)Ag

(
tn + τ

)
dτ.
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The approximation obtained through the left rectangular rule is

u(tn+1) ≈ ehAu(tn) +

∫ h

0
e(h−τ)AB · u(tn)dτ +

∫ h

0
e(h−τ)Ag

(
tn
)
dτ

and

un+1 = ehAun + hϕ1(hA)(Bun + g(tn)), ϕ1(hA) =
1

h

∫ h

0
e(h−τ)Adτ. (2)

which is known as the exponential Euler method of order one for problem given in (1).
Now for (1), we assume the following exponential Runge–Kutta methods

un+1 = ehAun + h

s∑
i=1

bi(hA)
(
Buni + g(tn + cih)

)
, (3)

uni = ecihAun + h
i−1∑
j=1

aij(hA)
(
Bunj + g(tn + cjh)

)
, 1 ≤ i ≤ s.

The exponential Runge–Kutta method (3) for a second-order method with two stages can
be written as

un+1 = ehAun + h
(
b1(hA)

(
Bun1 + g(tn + c1h)

)
+ b2(hA)

(
Bun2 + g(tn + c2h)

))
, (4)

un1 = ec1hAun,

un2 = ec2hAun + ha21(hA)
(
Bun1 + g(tn + c1h)

)
.

Further we know that for a second-order method with two stages it must satisfy the
following three order conditions given in Hochbruck & Ostermann [9]

b1(hA) + b2(hA) = ϕ1(hA),

c1b1(hA) + c2b2(hA) = ϕ2(hA), (5)

a21(hA) = c2ϕ1(c2hA),

where

ϕ1(z) =
ez − 1

z
, ϕ2(z) =

ϕ1(z)− 1

z
.

By taking c1 = 0 and c2 = 1, we find the values of b1 = ϕ1(hA) − ϕ2(hA), b2 = ϕ2(hA)
and a21 = ϕ1(hA). Hence we can write (4) as

un+1 = ehAun + h(ϕ1(hA)− ϕ2(hA))Bun1 + hϕ2(hA)Bun2

+ h(ϕ1(hA)− ϕ2(hA))g(tn) + hϕ2(hA)g(tn + h), (6)

un1 = un,

un2 = ehAun + hϕ1(hA)
(
Bun1 + g(tn)

)
. (7)

This is the exponential Runge–Kutta method of order two for the problem (1).
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3. Convergence of an exponential Runge–Kutta method of order two for
non-smooth initial data

In this section we study an exponential Runge–Kutta method of order two for dis-
cretizing an abstract problem (1) in time. On A, B and g, our assumptions are the same
as given in Gondal [5].
Now first we are going to prove vital properties of the exact solution and then we will
move to the numerical solution.

Lemma 1. Assume that problem (1) fulfill the hypotheses of Lemma 2 given in Gondal
[5]. Then the bounds

‖L−1u′′(t)‖ ≤ C

t
, on (0, T ], (8)

hold uniformly on 0 ≤ t ≤ T for non-smooth initial data.

Proof. From Lemma 2 given in Gondal [5] we use equation (18) given in Gondal [5] in

u′′(t) = Lu′(t) + g′(t), (9)

and we get

u′′(t) = L2etLu0 + LetLg(0) + etLg′(0) + tϕ1(tL)g′′(0) + . . . . (10)

Premultiplying with L−1 on both sides of (10), we get

L−1u′′(t) = LetLu0 + etLg(0) + . . . (11)

Now multiplying with t on both sides of (11), we have

tL−1u′′(t) = tLetLu0 + tetLg(0) + . . . (12)

Therefore

‖tL−1u′′(t)‖ ≤ C or ‖L−1u′′(t)‖ ≤ C

t
. (13)

In this section, we will also derive error bounds for exponential Runge–Kutta dis-
cretizations of (1). The exponential Runge–Kutta method of order two for given problem
is (6). To analyze (6), one can write the exact solution of (1) as

u(tn+1) = ehAu(tn) +

∫ tn+1

tn

e(tn+1−τ)ABu(τ)dτ +

∫ tn+1

tn

e(tn+1−τ)Ag(τ)dτ. (14)

To write (14) in the form of (6), below result will be helpful∫ tn+1

tn

e(tn+1−τ)Adτ =

∫ h

0
e(h−s)Ads = hϕ1(hA) (15)

∫ tn+1

tn

e(tn+1−τ)A(τ − tn)dτ =

∫ h

0
e(h−s)Asds = h2ϕ2(hA). (16)
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Theorem 1. Assume that problem (1) fulfill the hypotheses of Lemma 2 given in Gondal
[5] and that AB = BA. For the numerical solution, we consider the exponential Runge-
Kutta method (6). Also suppose that g′, g′′ are bounded and g : [0, T ]→ X is differentiable.
Then the following error bound

‖u(tn)− un‖ ≤
Ch2

tn
(| log h | +1) (17)

holds uniformly in 0 ≤ tn ≤ T for non-smooth initial data.

Proof. We can write the difference between the g terms from (14) and (6) as

εn+1(g) =

∫ tn+1

tn

e(tn+1−τ)Ag(τ)dτ − h(ϕ1(hA)− ϕ2(hA))g(tn)

− hϕ2(hA)g(tn + h). (18)

Using results (15) and (16) in (18) and simplifying, we get

εn+1(g) =

∫ tn+1

tn

e(tn+1−τ)A
(
g(τ)− g(tn) +

τ − tn
h

g(tn)

− τ − tn
h

g(tn + h)
)

dτ. (19)

By using Taylor series we can write

g(τ) = g(tn) + (τ − tn)g′(tn) +
1

2
(τ − tn)2g′′(tn) + . . . (20)

g(tn + h) = g(tn) + hg′(tn) +
h2

2
g′′(tn) + . . . . (21)

Now substitute g(τ) and g(tn + h) from equations (20) and (21) in (19) and after simpli-
fication and neglecting higher order terms we can write (19) as

εn+1(g) =

∫ tn+1

tn

e(tn+1−τ)A
((τ − tn)2

2
− h(τ − tn)

2

)
g′′(tn)dτ,

‖εn+1(g)‖ ≤
∫ tn+1

tn

‖e(tn+1−τ)A‖
∥∥∥(τ − tn)2

2
− h(τ − tn)

2

∥∥∥‖g′′(tn)‖dτ,

≤ C

∫ tn+1

tn

((τ − tn)2

2
+
h(τ − tn)

2

)
dτ,

≤ C
h3

6
+ C

h3

2
= Ch3. (22)

This is the one way to solve (19) in which we have to assume that all higher order deriva-
tives of g are bounded. There is another good and tricky way to prove that εn+1(g) is
bounded. For this trick, we can write g(τ) instead of Taylor series in the following form

g(τ) = g(tn) +

∫ τ

tn

g′(s)ds,
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= g(tn) +

∫ τ

tn

1 · g′(s)ds,

= g(tn) +

∫ τ

tn

(s− τ)′g′(s)ds. (23)

Integration by part yields

g(τ) = g(tn) + (τ − tn)g′(tn) +

∫ τ

tn

(τ − s)g′′(s)ds, (24)

since we can write g(tn + h) = g(tn+1). Using (24), one can write

g(tn+1) = g(tn) + (tn+1 − tn)g′(tn) +

∫ tn+1

tn

(tn+1 − s)g′′(s)ds,

= g(tn) + hg′(tn) +

∫ tn+1

tn

(tn+1 − s)g′′(s)ds. (25)

Now we can use expressions (24) and (25) for g(τ) and g(tn + h) instead of (20) and (21)
in (19) to get (22). In this case we only assume that first and second order derivatives of
g are bounded.

Now in the same way we can write the difference between the u terms from (14) and
(6) as

εn+1(u) =

∫ tn+1

tn

e(tn+1−τ)ABu(τ)dτ − h(ϕ1(hA)− ϕ2(hA))Bun

− hϕ2(hA)Bun2, (26)

since we can write∫ tn+1

tn

e(tn+1−τ)ABu(τ)dτ =

∫ tn+1

tn

e(tn+1−τ)AB
(
u(tn)− τ − tn

h
u(tn) +

τ − tn
h

u(tn + h)

+ u(τ)− u(tn) +
τ − tn
h

u(tn)− τ − tn
h

u(tn + h)
)

dτ

= hϕ1(hA)Bu(tn)− hϕ2(hA)Bu(tn) + hϕ2(hA)Bu(tn+1)

+

∫ tn+1

tn

e(tn+1−τ)AB
(
u(τ)− u(tn) +

τ − tn
h

u(tn)

− τ − tn
h

u(tn + h)
)

dτ. (27)

Using (27) in (26) and simplifying, we have

εn+1(u) = hϕ1(hA)B(u(tn)− un)− hϕ2(hA)B(u(tn)− un)

+ hϕ2(hA)B(u(tn+1)− un2) +Rn+1,

‖εn+1(u)‖ ≤ Ch‖εn‖+ Ch‖εn‖+ Ch‖u(tn+1)− un2‖+ ‖Rn+1‖, (28)



M. A. Gondal, I. Rehman, A. Razzaque / Eur. J. Pure Appl. Math, 12 (3) (2019), 1215-1230 1221

where

Rn+1 =

∫ tn+1

tn

e(tn+1−τ)AB
(
u(τ)− u(tn) +

τ − tn
h

u(tn)− τ − tn
h

u(tn + h)
)

dτ. (29)

Since one can write

u(tn+1)− un2 = u(tn+1)− un+1 + un+1 − un2,
= εn+1 + un+1 − un2,

‖u(tn+1)− un2‖ ≤ ‖εn+1‖+ ‖un+1 − un2‖. (30)

Now from (6) and (7) we can write

un+1 − un2 = hϕ2(hA)B(un2 − un) + hϕ2(hA)(g(tn + h)− g(tn)),

‖un+1 − un2‖ ≤ Ch‖un2 − un‖+ Ch2, (31)

since ‖g(tn + h)− g(tn)‖ ≤ Ch. Now

un2 − un = un2 − un+1 + un+1 − un,
‖un2 − un‖ ≤ ‖un+1 − un‖+ ‖un+1 − un2‖. (32)

From (6) we can write for n ≥ 1

un+1 − un = ehAun − un +O(h),

= (ehA − 1)un +O(h) = hAϕ1(hA)un +O(h),

= hAϕ1(hA)(u(tn) + εn) +O(h), since un = u(tn) + un − u(tn),

= hAϕ1(hA)εn + hAϕ1(hA)u(tn) +O(h),

‖un+1 − un‖ ≤ C‖εn‖+ Ch · C
tn

+O(h), (33)

since ‖Au(tn)‖ ≤ C
tn

for n > 0.
Using (33) in (32) and then (32) in (31) yields

‖un+1 − un2‖ ≤ Ch‖un+1 − un2‖+ Ch‖εn‖+ Ch2 · 1

tn
+ Ch2,

(1− hC)‖un+1 − un2‖ ≤ Ch‖εn‖+ Ch2 · 1

tn
+ Ch2, (34)

h small gives that hC ≤ 1
2 , therefore for n ≥ 1

‖un+1 − un2‖ ≤ Ch‖εn‖+
Ch2

tn
+ Ch2. (35)

Using (35) in (30) and then (30) in (28) gives for n ≥ 1

‖εn+1(u)‖ ≤ Ch‖εn‖+ Ch‖εn+1‖+ Ch2‖εn‖+
Ch3

tn
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+ Ch3 + ‖Rn+1‖. (36)

For n = 0, we use (30) to obtain

‖u(t1)− u02‖ ≤ ‖ε1‖+ ‖u1 − u02‖,

with the help of (31), we get

‖u(t1)− u02‖ ≤ ‖ε1‖+ Ch‖u02 − u0‖+ Ch2. (37)

As
‖u02 − u0‖ ≤ ‖u02‖+ ‖u0‖ ≤ C, (38)

Using (38) in (37) and then (37) in (28) gives for n = 0

‖ε1(u)‖ ≤ Ch‖ε0‖+ Ch‖ε1‖+ Ch2 + Ch3 + ‖R1‖. (39)

Now we want to prove ‖Rn+1‖ is bounded. For this, we can write u(τ) and u(tn+1) by
using the same concept of (24) in the following form

u(τ) = u(tn) + (τ − tn)u′(tn) +

∫ τ

tn

(τ − s)u′′(s)ds, (40)

u(tn+1) = u(tn) + hu′(tn) +

∫ tn+1

tn

(tn+1 − s)u′′(s)ds. (41)

Substituting the expressions for u(τ) from (40) and u(tn + h) = u(tn+1) from (41) in (29)
and simplifying, we get

Rn+1 =

∫ tn+1

tn

e(tn+1−τ)AB
(∫ τ

tn

(τ − s)u′′(s)ds− τ − tn
h

∫ tn+1

tn

(tn+1− s)u′′(s)ds
)

dτ. (42)

Rn+1 = Rn+1,2 +Rn+1,3 (43)

where

Rn+1,2 =

∫ tn+1

tn

e(tn+1−τ)AB
(∫ τ

tn

(τ − s)u′′(s)ds
)

dτ, (44)

and

Rn+1,3 =

∫ tn+1

tn

e(tn+1−τ)AB
(τ − tn

h

∫ tn+1

tn

(tn+1 − s)u′′(s)ds
)

dτ. (45)

Now to solve (44), we use the identity AA−1 = I and get

Rn+1,2 =

∫ tn+1

tn

e(tn+1−τ)AB
(∫ τ

tn

(τ − s)AA−1u′′(s)ds
)

dτ. (46)

A can commute with B, i.e., AB = BA, if B is a convolution integral, therefore

Rn+1,2 = A

∫ tn+1

tn

e(tn+1−τ)AB
(∫ τ

tn

(τ − s)A−1u′′(s)ds
)

dτ. (47)
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Since

εn+1 = u(tn+1)− un+1,

= ehAεn + εn+1(g) + εn+1(u). (48)

Therefore from (6) and (14) and using (22) and (36), we get from (48) the error recursion
for n > 0

‖εn+1‖ ≤ ‖ehA‖‖εn‖+ Ch‖εn‖+ Ch‖εn+1‖+ Ch2‖εn‖

+
Ch3

tn
+ Ch3 + ‖Rn+1‖.

(49)

h small gives that hC ≤ 1
2 , therefore

‖εn+1‖ ≤ C‖ehA‖‖εn‖+ Ch‖εn‖+ Ch2‖εn‖+
Ch3

tn
+ Ch3 + ‖Rn+1‖,

...

‖εn‖ ≤ C‖enhA‖‖ε0‖+ Ch

n−1∑
j=0

‖e(n−j−1)hA‖‖εj‖+ Ch2
n−1∑
j=0

‖e(n−j−1)hA‖‖εj‖

+ Ch3
n−1∑
j=1

‖e(n−j−1)hA‖‖ 1

tj
‖+ Ch2 + Ch3

n−1∑
j=0

‖e(n−j−1)hA‖

+

n−1∑
j=0

‖e(n−j−1)hARj+1‖. (50)

Using Lemma 2 given in Gondal [5] and fact that tj = jh, we get

‖εn‖ ≤ C‖ε0‖+ Ch

n−1∑
j=0

‖εj‖+ Ch2
n−1∑
j=0

‖εj‖+ Ch2
n−1∑
j=1

‖1

j
‖+ Ch3 · n

+
n−1∑
j=0

‖e(n−j−1)hARj+1‖. (51)

Since we know that nh = T , Ch2 ≤ Ch and ‖ε0‖ = 0, and using the result (??), we get

‖εn‖ ≤ Ch
n−1∑
j=0

‖εj‖+ Ch2(C+ | log h |) + Ch2T +
n−1∑
j=0

‖e(n−j−1)hARj+1‖,

≤ Ch

n−1∑
j=0

‖εj‖+ Ch2(1+ | log h |) +

n−1∑
j=0

‖e(n−j−1)hARj+1‖. (52)
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After this, it is proved that
∑n−1

j=0 ‖e(n−j−1)hARj+1‖ is bounded. For this we can write

n−1∑
j=0

‖e(n−j−1)hARj+1‖ =
n−1∑
j=0

‖e(n−j−1)hARj+1,2‖+
n−1∑
j=0

‖e(n−j−1)hARj+1,3‖. (53)

From (47) we can write∑n−2
j=1 ‖e(n−j−1)hARj+1,2‖ (54)

=

n−2∑
j=1

‖Ae(n−j−1)hA
∫ tj+1

tj

e(tj+1−τ)AB
(∫ τ

tj

(τ − s)A−1u′′(s)ds
)

dτ‖,

≤
n−2∑
j=1

‖Ae(n−j−1)hA‖
∫ tj+1

tj

‖e(tj+1−τ)A‖‖B‖
(∫ τ

tj

(τ − s)‖A−1u′′(s)‖ds
)

dτ.

Using Lemma 2 given in Gondal [5] and Lemma 1 in above equation and then integrating,
we get

n−1∑
j=0

‖e(n−j−1)hARj+1,2‖ ≤
n−2∑
j=1

C

tn−j−1
· h3 · C

tj
+ term for j = 0 + term for j = n− 1,

= Ch3
n−2∑
j=1

1

tn−j−1tj
+ ‖e(n−1)hAR1,2‖+ ‖Rn,2‖,

= Ch3
[n/2]∑
j=1

1

tn−j−1tj
+ Ch3

n−2∑
j=[n/2]+1

1

tn−j−1tj
+ ‖e(n−1)hAR1,2‖

+ ‖Rn,2‖,

≤ Ch3

tn

[n/2]∑
j=1

1

tj
+
Ch3

tn

n−2∑
j=[n/2]+1

1

tn−j−1
+ ‖e(n−1)hAR1,2‖+ ‖Rn,2‖,

≤ 2Ch2

tn
(1+ | log h |) + ‖e(n−1)hAR1,2‖+ ‖Rn,2‖. (55)

Now for j = 0 and j = n− 1 term, we first rewrite Rn+1 by using

u(τ) = u(tn) +

∫ τ

tn

u′(s)ds, (56)

and

u(tn+1) = u(tn) +

∫ tn+1

tn

u′(s)ds, (57)

in (29) and simplifying, we get

Rn+1 =

∫ tn+1

tn

e(tn+1−τ)AB
(∫ τ

tn

u′(s)ds− τ − tn
h

∫ tn+1

tn

u′(s)ds
)

dτ. (58)
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Rn+1 = Rn+1,2 +Rn+1,3 (59)

where

Rn+1,2 =

∫ tn+1

tn

e(tn+1−τ)AB
(∫ τ

tn

u′(s)ds
)

dτ, (60)

and

Rn+1,3 =

∫ tn+1

tn

e(tn+1−τ)AB
(τ − tn

h

∫ tn+1

tn

u′(s)ds
)

dτ. (61)

By substituting n = 0 in (60) and using the identity AA−1 = I and AB = BA, we can
write the term for j = 0 as

‖e(n−1)hAR1,2‖ = ‖Ae(n−1)hA
∫ h

0

e(h−τ)AB
(∫ τ

0

A−1u′(s)ds
)

dτ‖,

≤ ‖Ae(n−1)hA‖
∫ h

0

‖e(h−τ)A‖‖B‖
(∫ τ

0

‖A−1u′(s)‖ds
)

dτ,

≤ C

tn−1
· C · h2,

≤ Ch2

tn−1
. (62)

Now by substituting n = n− 1 in (60) we can write the term for j = n− 1 as

‖Rn,2‖ = ‖
∫ tn

tn−1

e(tn−τ)AB
(∫ τ

tn−1

u′(s)ds
)

dτ‖,

≤
∫ tn

tn−1

‖e(tn−1−τ)A‖‖B‖
(∫ τ

tn−1

‖u′(s)‖ds
)

dτ,

≤ Ch2

tn−1
. (63)

Substituting (62) and (63) in (55), we get

n−1∑
j=0

‖e(n−j−1)hARj+1,2‖ ≤
Ch2

tn
(1+ | log h |) +

Ch2

tn−1
. (64)

Similarly we can prove that
∑n−1

j=0 ‖e(n−j−1)hARj+1,3‖ is bounded and we get

n−1∑
j=0

‖e(n−j−1)hARj+1,3‖ ≤
Ch2

tn
(1+ | log h |) +

Ch2

tn−1
. (65)

Now substitute (64) and (65) in (53) and then (53) in (52) and simplifying we get

‖εn‖ ≤ Ch

n−1∑
j=0

‖εj‖+
Ch2

tn
(1+ | log h |) +

Ch2

tn−1
. (66)



M. A. Gondal, I. Rehman, A. Razzaque / Eur. J. Pure Appl. Math, 12 (3) (2019), 1215-1230 1226

Note that Ch2

tn−1
= Ch2

tn
· tn−1+h

tn−1
≤ Ch2

tn
. By using the Lemma 6.2(Gronwall lemma) given in

[15], we get

‖εn‖ ≤
Ch2

tn
(| log h | +1). (67)

4. Numerical experiments

This section deals with the numerical experiments for the verification of our calcu-
lated error bounds. Lets assume the linear parabolic problem, called as partial integro-
differential equations, that arise in financial mathematics. This was studied by Tangman,
Gopaul, & Bhuruth [3]

∂u

∂τ
=

1

2
σ2
∂2u

∂x2
+ (r − 1

2
σ2 − λκ)

∂u

∂x
− (r + λ)u+ λ

∫
R
b(x− y)u(y, τ)dy. (68)

with

b(z) =
1√
2πγ

e−(z−µ)
2/(2γ2). (69)

Where we considers parameters r, σ, λ, γ, κ, µ. Equation (68) indicates the European
option pricing problem in Mertons jump-diffusion model. The initial condition associated
with the European call option price

u(x, 0) = max(Eex − E, 0) (70)

and boundary conditions suggested in [3] are

uτ (x, τ) = −ru(x, τ), x→ −∞, (71)

uxx(x, τ) = ux(x, τ), x→∞. (72)

4.1. Space discretization

The discretization for the problem (68), using finite difference schemes will be given
here. We require to truncate the infinite x-domain to finite x-domain, for instance, xmin ≤
x ≤ xmax for a finite difference discretization of the spatial derivatives. Hence

−1.5 = xmin = x0 < x1 < x2 < x3 < . . . < xM < xM+1 = xmax = 1.5,

with grid points xi = xi−1 + δxi and δxi = xi − xi−1
Here we need the first-order and second-order finite difference approximations for the
discretization of (68) on a non-equidistant grid, which are given as

∂u

∂x
(xi) ∼=

u(xi+1)− u(xi−1)

δxi + δxi+1
, (73)
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∂2u

∂x2
(xi) ∼=

2u(xi+1)

δxi+1(δxi+1 + δxi)
− 2u(xi)

δxiδxi+1
+

2u(xi−1)

δxi(δxi + δxi+1)
, (74)

The integral term in (68) is discretized in such a way that the infinite integral will split
into three parts. See [1].

∫ ∞
−∞

b(x−y)u(y, t)dy =

∫ a

−∞
b(x−y)u(y, t)dy+

∫ c

a
b(x−y)u(y, t)dy+

∫ ∞
c

b(x−y)u(y, t)dy,

(75)
in above equation [a, c] = [ymin, ymax] and ymin = xmin, ymax = xmax.
With the help of the composite trapezoidal rule, one can write

∫ c
a b(x− y)u(y, t)dy in the

form of

Bu(t) ≈ λ

∫ c

a
b(xi − y)u(y, t)dy,

≈ λ
[1

2
δx1b(xi − y1)u(y1, t) +

1

2
δxM−1b(xi − yM )u(yM , t)

+

M−1∑
j=2

δxj + δxj−1
2

b(xi − yj)u(yj , t)
]
. (76)

To compute a European call option, [1] proposed the replacement of the integrand u(x, τ)
over (−∞, a) and (c,∞) by using the following approximations

u(x, τ)→ Eex − Ee−rτ , as x→ +∞,

u(x, τ)→ 0, as x→ −∞.

Hence, the other part of integral can be written as

g(t) = λ

∫ a

−∞
b(x− y)u(y, t)dy + λ

∫ ∞
c

b(x− y)u(y, t)dy = λEex+µ+
γ2

2 φ
(xi − xmax + µ+ γ2

γ

)
− λEe−rtφ

(xi − xmax + µ

γ

)
, (77)

with

φ(y) =
1√
2π

∫ y

−∞
e

−β2γ
2 dβ.

We can write equation (68) in abstract form as

u′(t) = Au(t) +Bu(t) + g(t). (78)

Above equation (78) is a parabolic equation with

A = A4 +A3 +A2,
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Figure 1: The error of the exponential Euler method of order one and the exponential Runge–Kutta method of
order two when applied to (68) with 200 grid points. For comparison, we added lines with slope one and two.

Table 1: The Table clearly demonstrates the numerically observed temporal orders of convergence in the L2

norm with M grid points and h = 1/128. Here r = 0.05, E = 100, σ = 0.2, λ = 2, T = 1.

M Exponential Euler method Exponential Runge–Kutta method

50 1.0660 2.0159
100 1.0650 2.0149
200 1.0644 2.0141

where

A4 =
1

2
σ2
∂2u

∂x2
, A3 = (r − 1

2
σ2 − λκ)

∂u

∂x
, A2 = −(r + λ)u.

Figure 1 clearly elucidates the convergence of computed first order exponential Euler
method and second order exponential Runge-Kutta method for constant time steps with
200 grid points. The computed solution for exponential Euler converges at a first-order
and for exponential RungeKutta as second-order rate, as one can see undoubtedly from
Figure 1. The errors are measured in the L2 norm. For comparison, we added the lines
with slope one and slope two.

The numerical values are shown in Table 1 for the temporal orders of convergence
in the L2 norm with M grid points and h = 1/128, for the PIDE (68) in case of the
exponential Euler method of order one and the exponential RungeKutta method of order
two.

5. Concluding remarks

The current paper deals with the convergence analysis for the non-smooth initial data,
discussed in Sections 3. For the applications in financial mathematics, these error estimates
are very essential. Optimal convergence is proved for second order convergence for a
two stage explicit exponential Runge-Kutta method (Theorem 1). The results added
significantly to the known convergence results of exponential integrators. The error bounds
were previously experienced only for Runge-Kutta methods and Rosenbrock methods. We
developed them for their exponential counterparts for non-smooth initial data.
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