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Abstract. This study is based on the structure of hyper GR-algebras, an algebra that is par-
tially related on some class of hyper BCI-algebras. This allows us to create a new structure and
investigate how this two algebras are related to each other. A pseudo hyper GR-algebra involves
two hyper operations and a set of axioms that come in pairs or a combination of both making
it interesting like some algebras established. This paper focuses on some properties of pseudo
hyper GR-algebras and its ideals. Moreover, pseudo hyper GR-ideals were defined and classified
to determine their relationship to each other.
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1. Introduction

Algebraic hyperstructures were introduced by a French mathematician, Marty [7],
in 1934. They represent a natural extension of classical hyperstructures in which the
composition of two elements of a given set is a set, instead of an element. Afterwards, this
new idea was expanded rapidly and showed itself as a new view of sets.

The introduction of hyperstructure theory led to the study of several problems of
noncommutative algebra. Algebraic hyperstructure theory has multiple applications to
other fields such as: geometry, graphs and hypergraphs, binary relations, lattices, groups,
relation algebras, artificial intelligence, probabilities, and so on.

In 1966, Y. Imai and K. Iséki [4] initiated the notion of BCK-algebra as a generalization
of the concept of set-theoretic difference and propositional calculi. Furthermore, Y.B. Jun
et al. [6] applied hyperstructure theory to BCK-algebras and introduced the notion of
hyper BCK-algebras as a generalization of BCK-algebra.
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In order to extend BCK-algebra to a noncommutative form, G. Georgescu and A.
Iorgulescu [3] introduced the notion of pseudo BCK-algebras and studied their properties.
On the other hand, R. A. Borzooei, A. Rezazadeh and R. Ameri [1] introduced the concept
of hyper pseudo BCK-algebra which is a generalization of pseudo BCK-algebra.

R.A. Indangan and G.C. Petalcorin [5] defined a new class of algebraic hyperstructure
called hyper GR-algebra. In this algebra, they presented a helpful understanding on how
this hyper algebra differs from the rest.

In this paper we define a pseudo hyper GR-algebra analogous to that of a hyper GR-
algebra and its pseudo hyper GR-ideals and their relationships.

2. Preliminaries

Let H be a nonempty set endowed with a hyperoperation “ ∗ ”, that is, “ ∗ ” is a
function from H × H to P ∗(H) = P (H) \ {∅}. For two nonempty subsets A and B of
H, A ∗ B =

⋃
a∈A,b∈B a ∗ b. We shall use x ∗ y instead of x ∗ {y}, {x} ∗ y or {x} ∗ {y}.

When A is a nonempty subset of H and x ∈ H, we agree to write A ∗x instead of A ∗ {x}.
Similarly, we write x ∗A for {x} ∗A. In effect, A ∗x =

⋃
a∈A a ∗ x and x ∗A =

⋃
a∈A x ∗ a.

A set H endowed with a family Γ of hyperoperations is called a hyperstructure. If Γ is
singleton, that is, Γ = {f}, then the hyperstructure is called a hypergroupoid.

Definition 2.1. [2] Let x, y ∈ H and A,B ⊆ H. Then

(i) x� y if and only if 0 ∈ x~ y; and

(ii) A� B if and only if for any a ∈ A, there exists b ∈ B such that a� b.

We call � a hyperorder on H.

Remark 2.2. [2] For all A,B ⊆ H, A� B implies 0 ∈ A~B.

Definition 2.3. [5] Let H be a nonempty set with a hyperoperation“~” on H. Then
(H;~, 0) is called a hyper GR-algebra if it contains a constant 0 ∈ H and for all x, y, z ∈ H,
the following conditions are satisfied:

[HGR1] (x~ z)~ (y ~ z)� x~ y;

[HGR2] (x~ y)~ z = (x~ z)~ y;

[HGR3] x� x;

[HGR4] 0~ (0~ x)� x, for all x 6= 0; and

[HGR5] (x~ y)~ z � y ~ z.

Example 2.4. [5] Let H = {0, 1, 2}. Define the operation “~” by the Cayley table shown
below.
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~ 0 1 2

0 {0} {0} {0}
1 {0, 1, 2} {0, 1} {0, 1}
2 {0, 2} {0, 1, 2} {0, 2}

By routine calculations, (H;~, 0) is a hyper GR-algebra.

Definition 2.5. [5] A hyper GR-algebra H is faithful if for all A,B ⊆ H, 0 ∈ A ~ B
implies A� B.

Definition 2.6. [5] Let H be a hyper GR-algebra and S be a subset of H containing 0.
If S is a hyper GR-algebra with respect to the hyperoperation ~ on H, then we say that
S is a hyper subGR-algebra of H.

Theorem 2.7. [5] (Hyper SubGR-algebra Criterion)
Let H be a hyper GR-algebra and S be a nonempty subset of H. Then S is a hyper
subGR-algebra of H if and only if x~ y ⊆ S, for all x, y ∈ S.

Definition 2.8. [5] Let I be a subset of a hyper GR-algebra H such that 0 ∈ I. Then

(i) I is a hyper GR-ideal of H if for all x, y ∈ H, x~ y ⊆ I and y ∈ I imply that x ∈ I;

(ii) if H is faithful such that x~ x� I for all x ∈ H, then I is GR-reflexive in H;

(iii) I is hyper left (resp. hyper right) stable in H if x~ a� I (resp. a~ x� I) for all
x ∈ H and for all a ∈ I;

(iv) I is hyper stable in H if I is both hyper left and hyper right stable in H;

(v) I is hyper left (resp. hyper right) stable GR-ideal of H if

(a) I is hyper left (resp. hyper right) stable in H; and

(b) I is a hyper GR-ideal of H.

(vi) I is a hyper stable GR-ideal of H if I is both hyper left and hyper right stable
GR-ideal of H.

Theorem 2.9. [5] If {Ii|i ∈ Λ} is a nonempty collection of hyper GR-ideals of a hyper

GR-algebra H, then so is
⋂
i∈Λ

Ii.

Definition 2.10. [5] Let H be a hyper GR-algebra, X a nonempty proper subset of H,
and I a subset of H such that 0 ∈ I. Then

(i) I is a hyper GR-ideal of H related to X if for all x, y ∈ X, x~y ⊆ I and y ∈ I imply
that x ∈ I;

(ii) I is hyper left (resp. hyper right) stable in H related to X if x ~ a � I (resp.
a~ x� I) for all x ∈ X and for all a ∈ I;
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(iii) I is hyper stable in H related to X if I is both hyper left and hyper right stable in
H related to X;

(iv) I is hyper left (resp. hyper right) stable GR-ideal of H related to X if

(a) I is hyper left (resp. hyper right) stable in H related to X; and

(b) I is a hyper GR-ideal of H related to X.

(v) I is a hyper stable GR-ideal of H related to X if I is both hyper left and hyper right
stable GR-ideal of H related to X.

3. Pseudo Hyper GR-ideals

In this section we will define a pseudo hyper GR-algebra and the different types
of pseudo hyper GR-ideals. Also, relationship among the twelve types of these ideals are
discussed.

Definition 3.1. Let H be a nonempty set with “~” and “◦” be the two hyperoperations
on H. Then (H;~, ◦, 0) is called a pseudo hyper GR-algebra, if it contains a constant
0 ∈ H and for all x, y, z ∈ H, the following conditions are satisfied:

[PHGR1] (x ◦ z) ◦ (y ◦ z)� x ◦ y and (x~ z)~ (y ~ z)� x~ y;

[PHGR2] (x ◦ y)~ z = (x~ z) ◦ y;

[PHGR3] 0 ∈ x~ x and 0 ∈ x ◦ x;

[PHGR4] 0 ◦ (0~ x)� x, for all x 6= 0; and

[PHGR5] (x~ y)~ z � y ◦ z.

where x� y if and only if 0 ∈ x ◦ y and 0 ∈ x~ y, and for every A,B ⊆ H, A� B means
that for every a ∈ A, there exists b ∈ B such that a� b.

Throughout this chapter, we denote a pseudo hyper GR-algebra (H,~, ◦, 0) simply by
H, unless otherwise stated.

Example 3.2. Let H = {0, 1, 2, 3} and consider the following Cayley tables below.

~ 0 1 2 3

0 {0, 1} {0, 1} {0, 1} {0, 1}
1 {0, 1} {0, 1} {0, 1} {0, 1}
2 {0, 2} {0, 1, 2} {0, 2} {0, 1, 2}
3 {0, 1, 2} {0, 3} {0, 1, 3} {0, 3}
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◦ 0 1 2 3

0 {0, 1} {0, 1} {0, 1} {0, 1}
1 {1} {0, 1} {0, 1} {0, 1}
2 {0, 2} {0, 2} {0, 1, 2} {0, 1, 2}
3 {0, 3} {0, 1, 3} {0, 1, 3} {0, 1, 3}

By routine calculations, we see that (H;~, ◦, 0) is a pseudo hyper GR-algebra.

Remark 3.3. In a pseudo hyper GR-algebra H, the following are evident:

(i) x� x;

(ii) (x ◦ y)~ z � (x~ z) ◦ y;

(iii) (A ◦B)~ C = (A~ C) ◦B; and

(iv) A ⊆ B implies A� B.

Example 3.4. Let H = N ∪ {0} be the set of all nonnegative integers and let the hyper-
operations “~” and “◦” be defined on H as follows:

x~ y = {0, x} and x ◦ y = {0, x, y}.

Then H is a pseudo hyper GR-algebra.

To verify this, we need to check that the five conditions are satisfied. Note that
{0, x, z} ◦ {0, y, z} = {0, x, y, z} � {0, x, y}. This means that (x ◦ z) ◦ (y ◦ z)� x ◦ y . On
the other hand, {0, x} ~ {0, y} = {0, x} � {0, x} means that (x ~ z) ~ (y ~ z) � x ~ y.
Thus, [PHGR1] holds. Now, (x ◦ y) ~ z = {0, x, y} ~ z = {0, x, y}, also (x ~ z) ◦ y =
{0, x}◦y = {0, x, y} and so (x◦y)~z = (x~z)◦y, that is, [PHGR2] is satisfied. [PHGR3]
follows immediately from the defined operations ◦ and ~ on H, that is, x ◦x = {0, x} and
x~ x = {0, x} for all x ∈ H. Let x 6= 0, then 0 ◦ (0~ x) = 0 ◦ {0} = {0} � x, and thus,
[PHGR4] holds. Finally, {0, x}~z = {0, x} � {0, y, z} = y ◦z. Hence, (x~y)~z � y ◦z,
that is, [PHGR5] holds. Therefore, H is a pseudo hyper GR-algebra.

Remark 3.5. Note that if the two hyperoperations are equal, that is, ~ = ◦, then a
pseudo hyper-GR algebra H becomes a hyper GR-algebra.

Definition 3.6. Let H be a pseudo hyper GR-algebra and S be a subset of H containing
0. If S itself is a pseudo hyper GR-algebra with respect to the hyperoperations ~ and ◦
on H, then S is called a pseudo hyper subGR-algebra of H.

Theorem 3.7. (Pseudo Hyper SubGR-algebra Criterion)
Let S be a nonempty subset of a pseudo hyper GR-algebra H. Then S is a pseudo hyper
subGR-algebra if and only if both x~ y ⊆ S and x ◦ y ⊆ S for all x, y ∈ S.
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Proof. Suppose that S is a pseudo hyper subGR-algebra of H. By Definition 3.6, S is
closed under the hyperoperations ~ and ◦ so that x~ y ⊆ S and x ◦ y ⊆ S for all x, y ∈ S.

Conversely, suppose that S has the property x~ y ⊆ S and x ◦ y ⊆ S for all x, y ∈ S.
Since S ⊆ H, all the axioms [PHGR1] to [PHGR5] of Definition 3.1 are all satisfied. It
remains to show that S contains the element 0. From the above hypothesis, S is nonempty
and thus, must contain an element, say c. Then by Definition 3.1 [PHGR3], 0 ∈ c~ c and
0 ∈ c ◦ c. Note that c~ c ⊆ S and c ◦ c ⊆ S. Thus, 0 ∈ S. �

Example 3.8. For any pseudo hyper GR-algebra H, the set S = {0} is a pseudo hyper
subGR-algebra of H.

For any nonempty subset I of a pseudo hyper GR-algebra H and any element y of H,
we introduce the following notations and their meanings:

I�~,y = {x ∈ H |x~ y � I}.

I⊆~,y = {x ∈ H |x~ y ⊆ I}.

I�◦,y = {x ∈ H |x ◦ y � I}.

I⊆◦,y = {x ∈ H |x ◦ y ⊆ I}.

Definition 3.9. Let I be a nonempty subset of a pseudo hyper GR-algebra H such that
0 ∈ I. Then I is said to be a pseudo hyper-GR ideal of H if for any y ∈ I, I⊆~,y ⊆ I and

I⊆◦,y ⊆ I.

Example 3.10. Consider the pseudo hyper GR-algebra H in Example 3.2. Let I = {0, 2}.
Observe that

I⊆~,0 = {x ∈ H |x~ 0 ⊆ I} = {2} ⊆ I

I⊆~,2 = {x ∈ H |x~ 2 ⊆ I} = {2} ⊆ I

I⊆◦,0 = {x ∈ H |x ◦ 0 ⊆ I} = {2} ⊆ I

I⊆◦,2 = {x ∈ H |x ◦ 2 ⊆ I} = ∅ ⊆ I.

Thus, I is indeed a pseudo hyper GR-ideal.

From now on, we shall call the ideal in Definition 3.9 as pseudo hyper GR-ideal of type
1 for we will be considering some forms of pseudo hyper GR-ideals which will be defined
analogously as in Definition 3.9.
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Definition 3.11. Let I be a nonempty subset of a pseudo hyper GR-algebra H such that
0 ∈ I. Then I is said to be a pseudo hyper-GR ideal of H of :

type 2, if for any y ∈ I, I⊆~,y ⊆ I and I�◦,y ⊆ I.

type 3, if for any y ∈ I, I�~,y ⊆ I and I⊆◦,y ⊆ I.

type 4, if for any y ∈ I, I�~,y ⊆ I and I�◦,y ⊆ I.

type 5, if for any y ∈ I, I⊆~,y ⊆ I or I⊆◦,y ⊆ I.

type 6, if for any y ∈ I, I⊆~,y ⊆ I or I�◦,y ⊆ I.

type 7, if for any y ∈ I, I�~,y ⊆ I or I⊆◦,y ⊆ I.

type 8, if for any y ∈ I, I�~,y ⊆ I or I�◦,y ⊆ I.

type 9, if for any y ∈ I, I⊆~,y ∩ I⊆◦,y ⊆ I.

type 10, if for any y ∈ I, I⊆~,y ∩ I�◦,y ⊆ I.

type 11, if for any y ∈ I, I�~,y ∩ I⊆◦,y ⊆ I.

type 12, if for any y ∈ I, I�~,y ∩ I�◦,y ⊆ I.

Example 3.12. Let H = {0, 1, 2} with the hyperoperations ~ and ◦ on H given by the
Cayley table below

~ 0 1 2

0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {0, 2} {0}

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {0}
2 {0, 2} {2} {0, 2}

By routine calculations, H is a pseudo hyper GR-algebra. Let I = {0, 1}. Note that

I⊆~,y = {0, 1} ⊆ I and I�◦,y = {0, 1} ⊆ I.

Thus, I is pseudo hyper GR-ideal of type 2.
Note also that

I�~,y = {0, 1} ⊆ I and I⊆◦,y = {0, 1} ⊆ I.

Thus, I is pseudo hyper GR-ideal of type 3.
Moreover,
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I�~,y = {0, 1} ⊆ I and I�◦,y = {0, 1} ⊆ I,

I�~,y = {0, 1} ⊆ I or I�◦,y = {0, 1} ⊆ I and

I�~,y ∩ I�◦,y = {0, 1} ⊆ I.

Therefore, I is pseudo hyper GR-ideal of type 4, 8 and 12 respectively.

Example 3.13. Consider the pseudo hyper GR-algebra H in Example 3.2. Let I = {0, 3}.
Note that for any y ∈ I, I⊆~,y = {3} ⊆ I. This is enough to categorize I as a pseudo
hyper GR-ideal of type 6. Also for any y ∈ I, I�◦,y = {0, 1, 2, 3}. Even if I�◦,y 6⊆ I,

I⊆~,y ∩ I�◦,y = {3} ⊆ I. Thus, I must be a pseudo hyper GR-ideal of type 10. Hence, I is

an example of pseudo hyper GR-ideal of type 6 and 10 but not type 2 since I⊆~,y ⊆ I but
I�◦,y 6⊆ I.

Example 3.14. Consider the pseudo hyper GR-algebra H in Example 3.2. Let I = {0, 1}.
By routine calculations, I is a pseudo hyper GR-ideal of type 5.

Example 3.15. Consider the pseudo hyper GR-algebra H in Example 3.2. Let I =
{0, 1, 3}. By routine calculations, I is a pseudo hyper GR-ideal of type 6.

Example 3.16. Consider the pseudo hyper GR-algebra H in Example 3.2. Let I = {0, 2}.
By routine calculations, I is a pseudo hyper GR-ideal of type 7.

Example 3.17. Consider the pseudo hyper GR-algebra H in Example 3.4. Let H ′ =
{0, 1, 2, 3}. Then H ′ together with the hyperoperations ~ and ◦ given by the Cayley table
below is a pseudo hyper subGR-algebra of H.

~ 0 1 2 3

0 {0} {0} {0} {0}
1 {0, 1} {0, 1} {0, 1} {0, 1}
2 {0, 2} {0, 2} {0, 2} {0, 2}
3 {0, 3} {0, 3} {0, 3} {0, 3}

◦ 0 1 2 3

0 {0} {0, 1} {0, 2} {0, 3}
1 {0, 1} {0, 1} {0, 1, 2} {0, 1, 3}
2 {0, 2} {0, 1, 2} {0, 2} {0, 2, 3}
3 {0, 3} {0, 1, 3} {0, 2, 3} {0, 3}

Consider I = {0, 2, 3}. Observe that I⊆~,y = {0, 2, 3} = I⊆◦,y. This means that

I⊆~,y ∩ I⊆◦,y = {0, 2, 3} ⊆ I. Thus, I is a pseudo hyper GR-ideal of type 9.

Let I = {0, 1, 2}. O bservier that I⊆~,y = {0, 1, 2} and I�◦,y = {0, 1, 2, 3}. Thus, we have

I⊆~,y ∩ I�◦,y = {0, 1, 2} ⊆ I. Therefore, I is a pseudo hyper GR-ideal of type 10.

Let I = {0, 1, 3}. Observe that I�~,y = {0, 1, 2, 3} and I⊆◦,y = {0, 1, 3}. Thus, we have

I�~,y ∩ I⊆◦,y = {0, 1, 3} ⊆ I. Therefore, I is a pseudo hyper GR-ideal of type 11.
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Theorem 3.18. Every pseudo hyper GR-ideal in H of type 2 is a pseudo
hyper GR-ideal in H of type 1.

Proof. Let I be a pseudo hyper GR-ideal of type 2. Now, we will show that I is a
pseudo hyper GR-ideal of type 1. It is enough to show that for any y ∈ I, I⊆◦,y ⊆ I.

Let y ∈ I and x ∈ I⊆◦,y. Then, x ◦ y ⊆ I and by Remark 3.3 (iv), x ◦ y � I. Hence
x ∈ I�◦,y. Since I is a pseudo hyper GR-ideal of type 2, I�◦,y ⊆ I and so x ∈ I. Therefore,

I⊆◦,y ⊆ I. �

Theorem 3.19. Every pseudo hyper GR-ideal in H of type 4 is a pseudo hyper GR-ideal
in H of types 1, 2 and 8.

Proof. Let I be a pseudo hyper GR-ideal in H of type 4. We will show that I is a
pseudo hyper GR-ideal of type 2. It is enough to show that for any y ∈ I, I⊆~,y ⊆ I.

Let y ∈ I and x ∈ I⊆~,y. Then, x ~ y ⊆ I and by Remark 3.3 (iv), x ~ y � I. Hence,
x ∈ I�~,y. Since I is a pseudo hyper GR-ideal of type 4, I�~,y ⊆ I and so x ∈ I. Thus,

I⊆~,y ⊆ I. Hence, I is a pseudo hyper GR-ideal of type 2 and by Theorem 3.18, I is a
pseudo hyper GR-ideal of type 1.

Furthermore, we will show that I is a pseudo hyper GR-ideal of type 8. That is, to
show that for any y ∈ I, I�~,y ⊆ I or I�◦,y ⊆ I.

Let y ∈ I and x ∈ I�~,y. Since I is a pseudo hyper GR-ideal of type 4, I�~,y ⊆ I and so,
x ∈ I. Therefore, I�~,y ⊆ I. Similarly, we can show for the other case that I�◦,y ⊆ I. �

Theorem 3.20. Every pseudo hyper GR-ideal in H of type 8 is a pseudo hyper GR-ideal
in H of types 5, 6, 7 and 12.

Proof. Let I be a pseudo hyper GR-ideal of type 8. We will show that I is a pseudo
hyper GR-ideal of type 5. We will consider two cases : when I⊆◦,y ⊆ I and when I⊆◦,y 6⊆ I.

If I⊆◦,y ⊆ I, then we are done. Suppose that I⊆◦,y 6⊆ I. Let x ∈ I⊆~,y, where y ∈ I. Then,
x~ y ⊆ I, thus by Remark 3.3 (iv), x~ y � I. Hence, x ∈ I�~,y. Since I is a pseudo hyper

GR-ideal of type 8, I�◦,y ⊆ I or I�~,y ⊆ I. Suppose that I�◦,y ⊆ I. The hypothesis I⊆◦,y 6⊆ I

implies that there exists z ∈ I⊆◦,y such that z 6∈ I. Moreover, z ◦ y ⊆ I and by Remark 3.3
(iv), z ◦ y � I. Hence, z ∈ I�◦,y and so z ∈ I. A contradiction. Thus, I�◦,y 6⊆ I. Thus,

I�~,y ⊆ I and so x ∈ I. Therefore, I⊆~,y ⊆ I.
Next, we will prove that I is a pseudo hyper GR-ideal of type 6. If I�◦,y ⊆ I, then we

are done. Suppose I�◦,y 6⊆ I. Let x ∈ I⊆~,y, where y ∈ I. Then, x~ y ⊆ I, thus by Remark
3.3 (iv), x ~ y � I. Hence, x ∈ I�~,y. Since I is a pseudo hyper GR-ideal of type 8 and

I�◦,y 6⊆ I, then I�~,y ⊆ I and so x ∈ I. Therefore, I⊆~,y ⊆ I.
The proof for type 7 follows similarly as in the case of type 6.
Furthermore, we will prove that I is a pseudo hyper GR-ideal of type 12. Let y ∈ I

and x ∈ I�~,y ∩ I�◦,y. Then x ∈ I�~,y and I�◦,y. Since I is a pseudo hyper GR-ideal of type 8,
we have I�~,y ⊆ I or I�◦,y ⊆ I and so x ∈ I. Hence, I�~,y ∩ I�◦,y ⊆ I. �
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Theorem 3.21. Every pseudo hyper GR-ideal in H of type 6 is a pseudo hyper GR-ideal
in H of types 5 and 10.

Proof. Let I be a pseudo hyper GR-ideal of type 6. Now, we will show that I is a
pseudo hyper GR-ideal of type 5. If I⊆~,y ⊆ I, then we are done. Suppose I⊆~,y 6⊆ I. Let

x ∈ I⊆◦,y for any y ∈ I. Then x ◦ y ⊆ I and so by Remark 3.3 (iv), x ◦ y � I. Hence,

x ∈ I�◦,y. Since I is a pseudo hyper GR-ideal of type 6 and I⊆~,y 6⊆ I, I�◦,y ⊆ I and thus,

x ∈ I. Hence, I⊆◦,y ⊆ I.
Next, we will show that I is a pseudo hyper GR-ideal of type 10. Let y ∈ I and

x ∈ I⊆~,y ∩ I�◦,y. Then, x ∈ I⊆~,y and x ∈ I�◦,y. Since I is a pseudo hyper GR-ideal of type

6, we have I⊆~,y ⊆ I or I�◦,y ⊆ I and so x ∈ I. Hence, I⊆~,y ∩ I�◦,y ⊆ I. �

Theorem 3.22. Every pseudo hyper GR-ideal in H of type 7 is a pseudo hyper GR-ideal
in H of types 5 and 11.

Proof. Let I be a pseudo hyper GR-ideal of type 7. Now, we will show that I is a
pseudo hyper GR-ideal of type 5. If I⊆◦,y ⊆ I, then we are done. Suppose I⊆◦,y 6⊆ I. Let

x ∈ I⊆~,y for any y ∈ I. Then x ~ y ⊆ I and so by Remark 3.3 (iv), x ~ y � I. Hence,

x ∈ I�~,y. Since I is a pseudo hyper GR-ideal of type 7 and I⊆◦,y 6⊆ I, I�~,y ⊆ I and thus,

x ∈ I. Hence, I⊆~,y ⊆ I.
Next, we will show that I is a pseudo hyper GR-ideal of type 11. Let y ∈ I and

x ∈ I�~,y ∩ I⊆◦,y. Then, x ∈ I�~,y and x ∈ I⊆◦,y. Since I is a pseudo hyper GR-ideal of type

7, we have I�~,y ⊆ I or I⊆◦,y ⊆ I and so x ∈ I. Hence, I�~,y ∩ I⊆◦,y ⊆ I. �

Theorem 3.23. Every pseudo hyper GR-ideal in H of type 5 is a pseudo hyper GR-ideal
in H of type 9.

Proof. Suppose that I be a pseudo hyper GR-ideal of type 5. Now, we will show that
I is a pseudo hyper GR-ideal of type 9. Let y ∈ I and x ∈ I⊆~,y ∩ I

⊆
◦,y. Then, x ∈ I⊆~,y and

x ∈ I⊆◦,y. Since I is a pseudo hyper GR-ideal of type 5, I⊆~,y ⊆ I or I⊆◦,y ⊆ I and so x ∈ I.

Hence, I⊆~,y ∩ I⊆◦,y ⊆ I. �

Theorem 3.24. Every pseudo hyper GR-ideal in H of type 12 is a pseudo hyper GR-ideal
in H of types 9, 10 and 11.

Proof. Suppose that I be a pseudo hyper GR-ideal of type 12. Now, we will show that
I is a pseudo hyper GR-ideal of type 9. Let y ∈ I and x ∈ I⊆~,y ∩ I⊆◦,y. Then, x ∈ I⊆~,y
and x ∈ I⊆◦,y. Thus, x ~ y ⊆ I and x ◦ y ⊆ I and and by Remark 3.3 (iv), x ~ y � I
and x ◦ y � I. This means that x ∈ I�~,y and x ∈ I�◦,y or equivalently x ∈ I�~,y ∩ I�◦,y .
Since I is a pseudo hyper GR-ideal of type 12, I�~,y ∩ I�◦,y ⊆ I, and so x ∈ I. Therefore,

I⊆~,y ∩ I⊆◦,y ⊆ I.
Next, we will show that I is a pseudo hyper GR-ideal of type 10. Let y ∈ I and

x ∈ I⊆~,y ∩ I�◦,y. Then, x ∈ I⊆~,y and x ∈ I�◦,y. Thus, x ~ y ⊆ I and x ◦ y � I and and
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by Remark 3.3 (iv), x ~ y � I. This means that x ∈ I�~,y and x ∈ I�◦,y or equivalently
x ∈ I�~,y ∩ I�◦,y . Since I is a pseudo hyper GR-ideal of type 12, I�~,y ∩ I�◦,y ⊆ I, and so

x ∈ I. Therefore, I⊆~,y ∩ I�◦,y ⊆ I.
The proof for type 11 follows similarly as of type 10 with some modifications. �

Theorem 3.25. Every pseudo hyper GR-ideal in H of type 10 is a pseudo hyper GR-ideal
in H of type 9.

Proof. Suppose that I be a pseudo hyper GR-ideal of type 10. Now, we will show that
I is a pseudo hyper GR-ideal of type 9. Let y ∈ I and x ∈ I⊆~,y ∩ I⊆◦,y. Then, x ∈ I⊆~,y
and x ∈ I⊆◦,y. Thus, x ◦ y ⊆ I and and by Remark 3.3 (iv), x ◦ y � I which means that

x ∈ I�◦,y. Thus, x ∈ I⊆~,y ∩ I�◦,y. Since I is a pseudo hyper GR-ideal of type 10, we have

I⊆~,y ∩ I�◦,y ⊆ I and so x ∈ I. Hence, I⊆~,y ∩ I⊆◦,y ⊆ I. �

Theorem 3.26. Every pseudo hyper GR-ideal in H of type 11 is a pseudo hyper GR-ideal
in H of type 9.

Proof. Suppose that I be a pseudo hyper GR-ideal of type 11. Now, we will show that
I is a pseudo hyper GR-ideal of type 9. Let y ∈ I and x ∈ I⊆~,y ∩ I⊆◦,y. Then x ∈ I⊆~,y
and x ∈ I⊆◦,y. Thus, x~ y ⊆ I and and by Remark 3.3 (iv), x~ y � I which means that

x ∈ I�~,y. Thus, x ∈ I�~,y ∩ I⊆◦,y. Since I is a pseudo hyper GR-ideal of type 11, we have

I�~,y ∩ I⊆◦,y ⊆ I and so, x ∈ I. Hence, I⊆~,y ∩ I⊆◦,y ⊆ I. �

Theorem 3.27. Let {Iω|ω ∈ Ω} be a family of pseudo hyper GR-ideals of type i,

1 ≤ i ≤ 12, in H. Then
⋂
ω∈Ω

Iω is also a pseudo hyper GR-ideal of type i, 1 ≤ i ≤ 12 in H.

Proof. Assume that I =
⋂
ω∈Ω

Iω. Let Iω be a pseudo hyper GR-ideal of specific type,

say type 1, for any ω ∈ Ω. We will prove that I is a pseudo hyper GR-ideal of type 1.
Since every Iω is a pseudo hyper GR-ideal for each ω, 0 ∈ Iω, for all ω ∈ Ω and thus,

0 ∈
⋂
ω∈Ω

Iω = I.

Let y ∈ I, x ∈ I⊆~,y and z ∈ I⊆◦,y. Then x ~ y ⊆ I and z ◦ y ⊆ I. This means that for

any u ∈ x ~ y, u ∈ I. Thus, u ∈ Iω for any ω ∈ Ω and so, x ~ y ⊆ Iω. Hence, x ∈ I⊆ω,~,y
and y ∈ Iω, for any ω ∈ Ω. Since Iω is a pseudo hyper GR-ideal of type 1, I⊆ω,~,y ⊆ Iω so

that x ∈ Iω for any ω ∈ Ω. Hence, x ∈ I and thus,I⊆~,y ⊆ I. In a similar manner, we can

also prove that z ∈ I so that I⊆◦,y ⊆ I.
The proof for the remaining cases (i = 2, 3, . . . , 12) follows the same argument with

some modifications. �

Theorem 3.28. Let D be a nonempty subset of H. Let [D]i denote the intersection of
all pseudo hyper GR-ideals of type i, 1 ≤ i ≤ 4 containing D. Then

{x ∈ H|(...((x~ d1)~ d2)~ ...)~ dn = {0}, di ∈ D} ⊆ [D]i.
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Proof. We will prove only the case for i = 1, that is for the case of pseudo hyper
GR-ideals of type 1. Let x ∈ H and suppose that the condition

(...((x~ d1)~ d2)~ ...)~ dn = {0}

is satisfied for some d1, d2, ..., dn ∈ D. Note that 0 ∈ [D]1, hence

(...((x~ d1)~ d2)~ ...)~ dn = {0} ⊆ [D]1

Thus, for each d ∈ (...((x~ d1)~ d2)~ ...)~ dn−1, we have d~ dn ⊆ [D]1, or equivalently,
d ∈ ([D]1)⊆~,dn . Since [D]1 is a pseudo hyper GR-ideal of type 1, ([D]1)⊆~,dn ⊆ [D]1, and
so, d ∈ [D]1. Thus,

(...((x~ d1)~ d2)~ ...)~ dn−1 ⊆ [D]1

Continuing this process, we obtain {x} ∈ [D]1 and so, x ∈ [D]1. Therefore, {x ∈ H|(...((x~
d1)~ d2)~ ...)~ dn = {0}, di ∈ D} ⊆ [D]1.

�
The ideal [D]i in Theorem 3.28 is called the pseudo hyper GR-ideal generated by D.
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