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Abstract. In the paper, the existence and uniqueness of the solutions for the system of the non-
linear first-order ordinary differential equations with three-point and integral boundary conditions
are studied. The Green function is constructed and the considered problem is reduced to the
equivalent integral equation. The existence and uniqueness of the solutions for the given problem
are analyzed by using the Banach contraction principle. The Schaefer’s fixed point theorem is then
used to prove the existence of the solutions. Finally, the examples are given to verify the given
theorems.
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1. Introduction and Problem statement

The multipoint and integral boundary value problems for ODEs and their systems play
an important role both in theory and application. Boundary value problems with nonlocal
boundary conditions for the nonlinear differential equations arise in several branches of
physics and applied mathematics. Some examples in application to heat conduction,
thermo-elasticity, chemical engineering, plasma physics, and underground water flow can
be reduced to nonlocal problems with integral boundary conditions (see [4, 6, 12, 22]).

At present, first-order differential equations with nonlocal conditions have been little
studied [2, 4, 6, 13, 19–25, 27], and especially for the second-order differential equations
with nonlocal boundary conditions [7–11, 14–16, 18, 26] and the references therein.
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The existence and uniqueness of solutions to boundary value problems for the nonlinear
system of first-order ordinary differential equations with three-point boundary conditions
have been studied by a broad range of techniques [18, 19, 23, 25, 27].

The theory of boundary-value problems with integral boundary conditions for differ-
ential equations has become an important area of investigation in recent years. There are
many results on the existence and uniqueness of solutions for boundary value problems
with integral boundary conditions.They include two, three, and multipoint and nonlocal
boundary value problems as special cases. We refer the reader to [2, 5, 7–11, 13–17, 28]
and the references therein.

Note that numerical methods for multipoint and integral boundary problems for first-
order ordinary differential equations were developed in [1, 3].

In this paper, we concerned the existence and uniqueness of the system of nonlinear
differential equations of the type

ẋ(t) = f(t, x(t)) for t ∈ [0, T ], (1)

subject to three-point and integral boundary conditions

Ax(0) +Bx(τ) + Cx(T ) +

T∫
0

n(t)x(t)dt = d, (2)

whereA,B,C are constant square matrices of order n such that detN 6= 0, N = A+B+C+

+
T∫
0

n(t)dt; f : [0, T ]×Rn → Rn and n : [0, T ]→ Rn×n are given matrix-functions; d ∈ Rn

is a given vector; and τ satisfies the condition 0 < τ < T.
We denote by C([0, T ];Rn) the Banach space of all continuous functions x(t) from

[0, T ] to Rn with the norm

‖x‖ = max {|x(t)| : t ∈ [0, T ]}

where |·| is the norm in the space Rn.
This paper is organized as follows. In Section 2, we introduce definition and lemmas

which are the key tools for our main result. Section 3 focuses the theorems on the exis-
tence and uniqueness of the solution of problem (1)-(2) established under some sufficient
conditions on the nonlinear terms. In Section 4, the given examples are verified to show
the effectiveness of the proposed method.

2. Preliminaries

We define the solution of problem (1)-(2) as follows:

Definition 1. A function x ∈ C([0, T ], Rn) is said to be a solution of problem (1)-(2) if
ẋ(t) = f(t, x(t)) for each t ∈ [0, T ], and boundary conditions (2) are satisfied.
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For the sake of simplicity, we can consider the following problem:

ẋ = f(t), t ∈ [0, T ], (3)

Ax(0) +Bx(τ) + Cx(T ) +

T∫
0

n(t)x(t)dt = d. (4)

Lemma 1. Let f(t) ∈ C([0, T ], Rn).Then the unique solution x(t) ∈ C([0, T ], Rn) of the
boundary value problem for differential equation (3) with boundary conditions (4) is given
by

x(t) = D +

T∫
0

G(t, s)f(s)ds, (5)

for t ∈ [0, T ] where

G(t, s) =

{
G1(t, s), 0 ≤ t ≤ τ
G2(t, s), τ < t ≤ T

D = N−1d

with

G1(t, s) =



N−1
(
A+

s∫
0

n(ξ)dξ

)
, 0 ≤ s ≤ τ,

−N−1
(
B + C +

T∫
s
n(ξ)dξ

)
, t < s ≤ τ,

−N−1
(
C +

T∫
s
n(ξ)dξ

)
, τ < s ≤ T,

and

G2(t, s) =



N−1
(
A+

s∫
0

n(ξ)dξ

)
, 0 ≤ s ≤ τ,

N−1
(
A+B +

s∫
0

n(ξ)dξ

)
, τ < s ≤ t,

−N−1
(
C +

T∫
s
n(ξ)dξ

)
, t < s ≤ T,

Proof. Assume that x(t) is a solution of boundary value problem (1)-(2), then for
t ∈ [0, T ]

x(t) = x(0) +

t∫
0

f(ξ)dξ. (6)

In order the formula (6) satisfy condition (4), we getA+B + C +

T∫
0

n(t)dt

x(0) = d−B
τ∫

0

f(ξ)dξ − C
T∫
0

f(ξ)dξ −
T∫
0

n(t)

t∫
0

f(ξ)dξ (7)
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Let us denote N = A+B+C +
∫ T
0 n(t)dt and from equality (7) we determine x(0) as

follows

x(0) = D −N−1B
τ∫

0

f(ξ)dξ −N−1C
T∫
0

f(ξ)dξ −N−1
T∫
0

n(t)

t∫
0

f(ξ)dξdt.

Since equality
T∫
0

n(t)

∫ t

0
f(ξ)dξdt =

T∫
0

T∫
t

n (ξ) dξf (t) dt,

is satisfied we can rewrite the above equality as below:

x (0) = D −N−1B
τ∫

0

f(ξ)dξ −N−1C
T∫
0

f(ξ)dξ −N−1
T∫
0

T∫
t

n(ξ)dξf(t)dt. (8)

Now substituting the value x(0) determined from equality (8) into (6), we obtain

x(t) = D −N−1B
τ∫

0

f(ξ)dξ −N−1C
T∫
0

f(ξ)dξ

−N−1
T∫
0

T∫
t

n(ξ)dξf(t)dt+

t∫
0

f(ξ)dξ. (9)

Now consider that t ∈ [0, τ ]. Then we can rewrite equality (9) as follows:

x(t) = D −N−1B
t∫

0

f(ξ)dξ −N−1B
τ∫
t

f(ξ)dξ −N−1C
t∫

0

f(ξ)dξ

−N−1C
τ∫
t

f(ξ)dξ −N−1C
T∫
τ

f(ξ)dξ −N−1
t∫

0

T∫
s

n(ξ)dξf(s)ds

−N−1
τ∫
t

T∫
s

n(ξ)dξf(s)ds−N−1
T∫
τ

T∫
s

n(ξ)dξf(s)ds+

t∫
0

f(ξ)dξ.

In the above formula, grouping similar terms, and then simplifying we get

x(t) = D +

t∫
0

E −N−1B −N−1C −N−1 T∫
s

n(ξ)dξ

 f(s)ds



Y. A. Sharifov et al. / Eur. J. Pure Appl. Math, 12 (3) (2019), 756-770 760

+

τ∫
t

−N−1B −N−1C −N−1 T∫
s

n(ξ)dξ

 f(s)ds+

T∫
τ

−N−1C −N−1 T∫
s

n(ξ)dξ

 f(s)ds

= D +

t∫
0

N−1

A+

s∫
0

n(ξ)dξ

 f(s)ds−
τ∫
t

N−1

B + C +

T∫
s

n(ξ)dξ

 f(s)ds

−
T∫
τ

N−1

C +

T∫
s

n(ξ)dξ

 f(s)ds. (10)

Let us define the new function as follows:

G1(t, s) =



N−1
(
A+

s∫
0

n(ξ)dξ

)
, 0 ≤ s ≤ t,

−N−1
(
B + C +

T∫
s
n(ξ)dξ

)
, t < s ≤ τ,

−N−1
(
C +

T∫
s
n(ξ)dξ

)
, τ < s ≤ T.

Using above equality as in (10) we obtain the following result

x(t) = D +

∫ T

0
G1(t, s)f(s)ds.

For the case, t ∈ (τ, T ] we can write equality (9) as follows

x(t) = D −N−1B
τ∫

0

f(ξ)dξ −N−1C
τ∫

0

f(ξ)dξ −N−1C
∫ t

τ
f(ξ)dξ

−N−1C
T∫
t

f(ξ)dξ −N−1
τ∫

0

∫ T

t
n(ξ)dξf(s)ds−N−1

t∫
τ

∫ T

t
n(ξ)dξf(s)ds

−N−1
T∫
t

T∫
s

n(ξ)dξf(s)ds+

τ∫
0

f (ξ) dξ +

t∫
τ

f (ξ) dξ

= D +

τ∫
0

E −N−1B −N−1C −N−1 T∫
s

n(ξ)dξ)

 f(s)ds

+

t∫
τ

E −N−1C −N−1 T∫
s

n(ξ)dξ

 f(s)ds+

T∫
t

−N−1C −N−1 T∫
s

n(ξ)dξ

 f(s)ds
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= D +

τ∫
0

N−1

A+

s∫
0

n(ξ)dξ

 f(s)ds+

t∫
τ

N−1

A+B +

s∫
0

n(ξ)dξ

 f(s)ds

−
T∫
t

N−1

C +

T∫
s

n(ξ)dξ

 f(s)ds

Hence, we introduce the new function

G2(t, s) =



N−1
(
A+

s∫
0

n(ξ)dξ

)
, 0 ≤ s ≤ τ,

N−1
(
A+B +

s∫
0

n(ξ)dξ

)
, τ < s ≤ t,

−N−1
(
C +

T∫
s
n(ξ)dξ

)
, t < s ≤ T.

Thus, for each t ∈ (τ, T ] we have

x(t) = D+
T∫
0

G2(t, s)f(s)ds. As a result, we deduce that the solution of boundary-value

problem (3)-(4) is in the form

x(t) = D +

T∫
0

G(t, s)f(s)ds. (11)

The proof is completed.

The following remark follows from the proved lemma.

Remark 1. From solution (11) we get:

(i) The constant function x(t) = D is a solution to the following boundary value problem:

ẋ = 0, t ∈ [0, T ],

Ax(0) +Bx(τ) + Cx(T ) +
T∫
0

n(t)x(t)dt = d;

(ii) The function x(t) =
T∫
0

G(t, s)f(s)ds is the solution of ẋ = f (t) , t ∈ [0, T ] with the

following boundary conditions:

Ax(0) +Bx(τ) + Cx(T ) +

T∫
0

n(t)x(t)dt = 0,



Y. A. Sharifov et al. / Eur. J. Pure Appl. Math, 12 (3) (2019), 756-770 762

here G(t, s)is the Green function of the boundary value problem (3)-(4).

Lemma 2. Assume that f ∈ C([0, T ] × Rn, Rn).Then the function x(t) is a solution of
the boundary-value problem (1)-(2) if and only if x(t) is a solution of the integral equation

x(t) = D +

T∫
0

G(t, s)f(s, x(s)ds (12)

Proof. Let x(t)be a solution of the boundary-value problem (1)-(2). Then in the same
way as in Lemma 2.1, we can prove that it is also a solution of the integral equation (12).
Obviously, the solution of integral equation (12) satisfies the boundary-value problem
(1)-(2).

Lemma 2.2 is proved.

3. Main results

Let P be an operator such that, P : C([0, T ];Rn)→ C([0, T ];Rn) as

(Px)(t) = D +

T∫
0

G(t, s)f(s, x(s)ds.

It is known that the problem (1)-(2) is equivalent to the fixed point problem. Hence, the
problem (1)-(2) has a solution if and only if the operator P has a fixed point.

We now present existence and uniqueness result for nonlinear problem (1)-(2) applying
the Banach fixed point theorem.

Theorem 1. Assume that the following assumption holds
(H1) There exists a continuous function M(t) > 0 such that

|f(t, x)− f(t, y)| ≤M(t) |x− y|

for each t ∈ [0, T ] and all x, y ∈ Rn and

L = TSM < 1, (13)

where
M = max[0,T ]M(t),

S = max[0,T ]×[0,T ] ‖G(t, s)‖ .

Then boundary-value problem (1)-(2) has a unique solution on [0, T ].
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Proof. We denote max[0,T ] |f(t, 0)| = Mf and choose r ≥ |D|+MfTS
1−L . We show that

PBr ⊂ Br, where
Br = {x ∈ C([0, T ];Rn) : ‖x‖ ≤ r} .

For x ∈ Br, we have

‖(Px) (t)‖ ≤ |D|+
T∫
0

|G(t, s)| |f(s, x(s))− f(s, 0)|+ |f(s, 0)| ds

≤ |D|+ S

T∫
0

(M |x|+Mf )dt ≤ |D|+ SMrT +MfTS ≤ |D|+ Lr +MfTS ≤ r.

Thus, we obtain P : Br → Br.
For any x, y ∈ Br, it is true

|Px− Py| ≤
T∫
0

|G(t, s)(f(s, x(s))− f(s, y(s))| ds

≤
T∫
0

|G(t, s)| |f(s, x(s))− f(s, y(s))| ds

≤ S
T∫
0

M(t) |x(t)− y(t)| dt ≤ SMTmax
[0,T ]
|x(t)− y(t)| ≤ SMT ‖x− y‖

or
‖Px− Py‖ ≤ L ‖x− y‖ .

Hence, P is contraction by condition (13), and boundary-value problem (1)-(2) has a
unique solution.

We are now in a position to state and prove our existence result by using Schafer’s fixed
point theorem for the problem (1)-(2).

Theorem 2. Assume that the following assumptions are satisfied:
(H2) The function f : [0, T ]×Rn → Rn is continuous;
(H3)There exists a constant N1 > 0 such that |f(t, x)| ≤ N1 for each t ∈ [0, T ] and all
x ∈ Rn.
Then the boundary-value problem (1)-(2) has at least one solution on [0, T ].

Proof. We will show that P has a fixed point, by applying Theorem 3.2. The proof
will be given in several steps. We first will show that P is completely continuous.
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Step 1. Let {xn} be a sequence such that xn → x in C([0, T );Rn]). Then for any t ∈ [0, T ]

|P (xn)(t)− P (x)(t)| =

∣∣∣∣∣∣
T∫
0

G(t, s) (f(s, xn(s)− f(s, x(s))) ds

∣∣∣∣∣∣
≤ S

T∫
0

|f(s, xn(s)− f(s, x(s))| ds ≤ STmax
[0,T ]
|f(s, xn(s)− f(s, x(s)).|

Since F continuous, then
‖P (xn)(t)− P (x)(t)‖ → 0, as n→∝.
Step 2. Here we prove that the operator P maps bounded sets from C([0, T );Rn]).
Indeed, it is enough to show that for any η > 0 there exists a positive constant l such that
for each {x ∈ C([0, T ];Rn) : ‖x‖} ≤ η, it is true ‖P (x)‖ ≤ l. For each t ∈ [0, T ], by (H3)
we have

|P (x)(t)| ≤ |D|+
∫ T

0
|G(t, s)| |f(s, x(s))| ds

Hence,
|P (x)(t)| ≤ |D|+ SN1T.

In particular,
‖P (x)(t)‖ ≤ |D|+ SN1T = l.

Step 3. P maps bounded sets into equicontinuous sets of C([0, T );Rn]).
Let s1, s2 ∈ [0, T ], s1 < s2, βn be a bounded set in C([0, T );Rn]) as in step 2. We assume
that x ∈ Br.

Case 1:
Let s1, s2 ∈ [0, τ ]. Then

P (x)(s2)− P (x)(s1) =

s2∫
0

N−1

A+

s∫
0

n(ξ)dξ

 f(s, x(s))ds−
τ∫

s2

N−1

B + C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds

−
T∫
τ

N−1

C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds−
s1∫
0

N−1

A+

s∫
0

n(ξ)dξ

 f(s, x(s))ds

+

τ∫
s1

N−1

B + C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds+

T∫
τ

N−1

C +

T∫
s

n(ξ)dξ

 f(s.x(s))ds

=

s2∫
s1

N−1

A+

s∫
0

n(ξ)dξ

 f(s, x(s))ds+

s2∫
s1

N−1

B + C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds =

s2∫
s1

f(s, x(s))ds.
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Hence we can write

|P (x)(s2)− P (x)(s1)| =

∣∣∣∣∣∣
s2∫
s1

f(s, x(s))ds

∣∣∣∣∣∣ ≤
s2∫
s1

|f(s, x(s))| ds.

Case 2:
Let s1 ∈ [0, τ ], and s2 ∈ (τ, T ].

P (x)(s2)− P (x)(s1) =

=

τ∫
0

N−1

A+

s∫
0

n(ξ)dξ

 f(s, x(s))ds+

s2∫
τ

N−1

A+B +

s∫
0

n(ξ)dξ

 f(s, x(s))ds

−
T∫

s2

N−1

C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds−
s1∫
0

A+

s∫
0

n(ξ)dξ

 f(s, x(s))ds

+

τ∫
s1

N−1

B + C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds+

T∫
τ

N−1

C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds

=

τ∫
s1

N−1

A+

s∫
0

n(ξ)dξ

 f(s, x(s))ds+

s2∫
τ

N−1

C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds

+

s2∫
τ

N−1

A+B +

s∫
0

n(ξ)dξ

 f(s, x(s))ds+

τ∫
s1

N−1

B + C +

T∫
s

n(ξ)dξ

 f(s, x(s))ds

=

τ∫
s1

f(s, x(s))ds+

s2∫
τ

f(s, x(s))ds =

s2∫
s1

f(s, x(s))ds.

Hence we can write

|P (x)(s2)− P (x)(s1)| =

∣∣∣∣∣∣
s2∫
s1

f(s, x(s))ds

∣∣∣∣∣∣ ≤
s2∫
s1

|f(s, x(s))| ds.

Case 3:
If s1, s2 ∈ [τ, T ] and s1 < s2, then similarly to case 1, we can write

|P (x)(s2)− P (x)(s1)| ≤
s2∫
s1

|f(s, x(s))ds.|
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As s1 → s2 the right-hand side of the above inequalities for all three cases tends to zero.
As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude
that the mapping
P : C([0, T ];Rn)→ C([0, T ];Rn) is completely continuous.
Step 4. Here we prove the necessary apriory bounds. Indeed, we show that the set
Ω = {x ∈ C([0, T ];Rn) : x = λP (x), for some 0 < λ < 1} is bounded.
Then for each t ∈ [0, T ], we have

x(t) = λD + λ

T∫
0

G(t, s)f(s, x(s))ds.

Using (H3), we get for each t ∈ [0, T ],

|P (x)(t)| ≤ |D|+ SN1T.

Thus
‖x‖ ≤ |D|+ SN1T.

This shows that Ω is bounded.

As a consequence of Theorem 3.2, we deduce that P has a fixed point which is a solution
of (1)-(2).

4. Examples

Now we give some examples to illustrate the main results obtained in this paper.
Example 4.1. Let us consider the following nonlocal boundary value problem for a system
of nonlinear differential equations:

ẋ1 = 0.2 cosx2(t), t ∈ (0, 2),
ẋ2 = 0.2 sinx1(t), t ∈ (0, 2),

(14)

with 
1
2x1(0)− 1

2x2(0) + x2(1)− 1
2x2(2) +

2∫
0

1
4x1 (t) dt = 1,

−1
2x1(0) + x1(1)− 1

2x1(2) + 1
2x2(2) +

2∫
0

1
4x2 (t) dt = 1.

(15)

Evidently,
2∫
0

n(t)dt =

(
1
2 0
0 1

2

)
,

A =

(
1
2 −1

2
−1

2 0

)
, B =

(
0 1
1 0

)
, C =

(
0 −1

2
−1

2
1
2

)
, d =

(
1
1

)
,

N = A+B + C +
∫ 2
0 n (t) dt =

(
1 0
0 1

)
.
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It is clear that, the Green function for boundary value problem (14)-(15)

G(t, s) =

{
G1 (t, s) , t ∈ [0, 1]
G2 (t, s) , t ∈ (1, 2]

is as follows:

G1 (t, s) =



(
0.5 + 0.25s −0.5
−0.5 0.25s

)
, 0 ≤ s ≤ t,(

0.25 (s− 2) −0.5
−0.5 0.25 (s− 2) + 0.5

)
, t < s ≤ 1,(

0.25 (s− 2) 0.5
0.5 0.25 (s− 2)− 0.5

)
, 1 < s ≤ 2,

and

G2 (t, s) =



(
0.5 + 0.25s −0.5
−0, 5 0.25s

)
, 0 ≤ s ≤ 1,(

0.5 + 0.25s 0.5
0.5 0.25s

)
, t < s ≤ 1,(

0.25 (s− 2) 0.5
0.5 0.25 (s− 2)− 0.5

)
, 1 < s ≤ 2.

This implies that
‖G‖ < 2.

Here S < 2, M = 0.2. Thus, the conditions (H1) and (H2) hold with M = 0.2. We can
easily see that condition (13) is satisfied:

L = SMT = 0.2 · 2 · 2 = 0.8 < 1.

Example 4.2. Let us consider the following boundary value problem on [0, 2].{
ẋ1 = 1

1+x22
, t ∈ (0, 2),

ẋ2 = 1
1+x21

, t ∈ (0, 2),
(16)

with
x1(0) + x2(1)− x1(2) +

∫ 2
0 tx2(t)dt = −1,

x2(0) + x1(1)− 2x2(2)−
∫ 2
0 t

2x1(t)dt = 1.
(17)

Since

n (t) =

(
0 t
t2 0

)
,

∫ 2

0
n(t)dt =

(
0 2
3
8 0

)
,

A =

(
1 0
0 1

)
, B =

(
0 1
1 0

)
, C =

(
−1 0
0 −2

)
, d =

(
−1
1

)
,

N = A+B + C +
∫ 2
0 n (t) dt =

(
0 3
11
8 −1

)
and the function

(
f1
f2

)
=

(
1

1+x22
1

1+x21

)
is continuous and bounded, it follows that condi-

tions (H2)-(H3) hold. By Theorem 3.2, the boundary-value problem (16)-(17) has at least
one solution on [0, 2].
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5. Conclusion

The boundary conditions considered in this paper are general enough and can be
used extensively in a wide class of problems. In this work, the existence and uniqueness
of the solutions for the first-order nonlinear differential equations with three-point and
integral boundary conditions are established under sufficient conditions. Note that, given
here methods can be used in similar multi-point problems for the ordinary differential
equations as follows:

ẋ(t) = f(t, x(t))fort ∈ [0, T ],

m∑
j=0

Ljx(tj) +

T∫
0

n(t)x(t)dt = α.

Here 0 = t0 < t1... < tm−1 < tm = T ; n(t) ∈ Rn×n is a given function; Lj ∈ Rn×n are
given matrices; α ∈ Rn is a given vector

detN 6= 0, N =
m∑
j=0

Lj +

∫ T

0
n(t)dt.
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