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Abstract. In this paper we provide the asymptotic theory of the general of φ-divergences mea-
sures, which include the most common divergence measures : Rényi and Tsallis families and the
Kullback-Leibler measure. We are interested in divergence measures in the discrete case. One
sided and two-sided statistical tests are derived as well as symmetrized estimators. Almost sure
rates of convergence and asymptotic normality theorem are obtained in the general case, and next
particularized for the Rényi and Tsallis families and for the Kullback-Leibler measure as well. Our
theoretical results are validated by simulations.

2010 Mathematics Subject Classifications: 62G05, 62G07, 62F05
Key Words and Phrases: φ-divergence measure estimation, Rényi, Tsallis, Kullback-Leibler
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1. Introduction

1.1. Motivations

In this paper, we study the convergence of φ−divergence measure estimator for empirical
discrete probability distributions supported on a finite set.

Let throughout the following X = {c1, c2, · · · , cr} (r ≥ 2) be a finite countable space. The
probability distributions on X are finite dimensional vectors p in

P(X ) =

{
p = (pc)c∈X : pc ≥ 0, ∀c ∈ X and

∑
c∈X

pc = 1

}
.

A divergence measure on P(X ) is a function

D : (P(X ))2 −→ R
(p,q) 7−→ D(p,q)

(1)

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v12i3.3437

Email addresses: ba.amadou-diadie@ugb.edu.sn (A.D.Ba), gane-samb.lo@ugb.edu.sn (G.S. Lo)

http://www.ejpam.com 790 c© 2019 EJPAM All rights reserved.



Ba A.D., Lo G.S. / Eur. J. Pure Appl. Math, 12 (3) (2019), 790-820 791

such that D(p,p) = 0 for any p such that (p,p) in the domain of application of D.

The function D is not necessarily a mapping. And if it is, it is not always symmetric
and it does neither have to be a metric. In lack of symmetry, the following more general
notation is more appropriate :

D : P1(X )× P2(X ) −→ R
(p,q) 7−→ D(p,q),

(2)

where P1(X ) and P2(X ) are two families of probability distributions on X , not necessarily
the same. To better explain our concern, let us introduce some of the most celebrated
divergence measures.

Let (p,q) ∈ P(X ) × P(X ) with X = {c1, c2, · · · , cr}, and let X and Y two randoms
variables such that

P(X = cj) = pj , and P(Y = cj) = qj , j ∈ {1, · · · , r},

and set p = (p1, · · · , pr)t and q = (q1, · · · , qr)t.

The four most popular divergence measures are :

(1) The L2
2-divergence measure :

DL2(p,q) =

r∑
j=1

(pj − qj)2. (3)

(2) The family of Rényi’s divergence measures indexed by α 6= 1, α > 0, known under the
name of Rényi-α :

DR,α(p,q) =
1

α− 1
log

 r∑
j=1

pαj q
1−α
j

 . (4)

(3) The family of Tsallis divergence measures indexed by α 6= 1, α > 0, also known under
the name of Tsallis-α :

DT,α(p,q) =
1

α− 1

 r∑
j=1

pαj q
1−α
j − 1

 . (5)

(4) The Kullback-Leibler divergence measure

DKL(p,q) =

r∑
j=1

pj log(pj/qj). (6)
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The latter, the Kullback-Leibler divergence measure, may be interpreted as a limit case
of both the Rényi’s family and the Tsallis’ one by letting α → 1. As well, for α near 1,
the Tsallis family DT,α(p,q) may be seen as derived from DR,α(p,q) based on the first
order expansion of the logarithm function in the neighborhood of the unity. Here for ease
of notation we refer the notation log as the natural logarithm.

From this small sample of divergence measures, we may give the following remarks :

For both the Rényi and the Tsallis families, we may have computation problems. So
without loss of generality, suppose

pj > 0 and qj > 0, ∀j ∈ D = {1, 2, · · · , r} (BD) (7)

If Assumption (7) holds, we do not have to worry about summation problems, especially
for Tsallis, Rényi and Kulback-Leibler measures, in the computations arising in estimation
theories. This explains why Assumption (7) is systematically used in a great number of
works in that topic, for example, in [20], [10], [8], and recently in [1] to cite a few.

It is clear from the very form of these divergence measures that we do not have symmetry,
unless for the special case where α = 1/2. So we define the following symmetric version
of divergence measures

D(s)(p,q) =
D(p,q) +D(q,p)

2
,

provided that D(p,q) and D(q,p) are finite.

Both families are build on the following summation

Sα(p,q) =
∑
j∈D

pαj q
1−α
j , with α 6= 1, α > 0.

Although we are focusing on the aforementioned divergence measures in this paper, it is
worth mentioning that there exist quite a few number of them. Let us cite for example the
ones named after : Ali-Silvey or f -divergence (see [6]), Cauchy-Schwarz, Jeffrey divergence
(see [5]), Chernoff (see [5]) , Jensen-Shannon (see [5]). According to [3], there is more than
a dozen of different divergence measures in the literature.

Before coming back to our divergence measures estimation of interest, we want to high-
light some important applications of them. Indeed, divergence has proven to be useful in
applications. Let us cite a few of them :

(a) They heavily intervene in information theory and recently in machine learning.
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(b) They have been used as similarity measures in image registration or multimedia clas-
sification (see [17]).

(c) They are also used as loss functions in evaluating and optimizing the performance of
density estimation methods (see [8]).

(d) Divergence estimates can also be used to determine sample sizes required to achieve
given performance levels in hypothesis testing.

(e) There has been a growing interest in applying divergence to various fields of science
and engineering for the purpose of estimation, classification, etc. (See [2] and [13]).

(f) Divergence also plays a central role in the frame of large deviations results including
the asymptotic rate of decrease of error probability in binary hypothesis testing problems.

(g) The estimation of divergence between the samples drawn from unknown distributions
gauges the distance between those distributions. Divergence estimates can then be used
in clustering and in particular for deciding whether the samples come from the same dis-
tribution by comparing the estimate to a threshold.

(h) Divergence gauges how differently two random variables are distributed and it provides
a useful measure of discrepancy between distributions.

The reader may find more applications and descriptions in the following papers : [11], [7],
[18], [9], [17], and [15].

In the next subsection, we describe the frame in which we place the estimation problems
we deal in this paper.

1.2. Statistical Estimations

The divergence measures may be applied to two statistical problems among others.

(A) First, it may be used as a fitting problem as described here. Let X1, X2, · · · a sample
of replications of X with an unknown probability distribution p and we want to test the
hypothesis that p is equal to a known and fixed probability p0. Theoretically, we can
answer this question by estimating a divergence measure D(p,p0) by a plug-in estimator
D(p̂n,p) where, for each n ≥ 1, p is replaced by an estimator p̂n of the probability law,
which is based on sample X1, X2, ..., Xn, to be precised.
From there establishing an asymptotic theory of ∆n = D(p̂n,p0)−D(p,p0) is thought to
be necessary to conclude.
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(B) Next, it may be used as tool of comparing for two distributions. We may have two
samples and wonder whether they come from the same probability distribution. Here, we
also may two different cases.

(B1) In the first, we have two independent samples X1, X2, .... and Y1, Y2, .... respectively
from a random variable X and Y according the probability distributions p and q. Here
the estimated divergence D(p̂n, q̂m), where n and m are the sizes of the available samples,
is the natural estimator of D(p,q) on which depends the statistical test of the hypothesis
: p = q.

(B2) But the data may also be paired (X,Y ), (X1, Y1), (X2, Y2), ..., that is Xi and Yi are
measurements of the same case i = 1, 2, ... In such a situation, testing the equality of the

margins pX = pY should be based on an estimator p̂
(n)
X,Y of the joint probability law of

the couple (X,Y ) based of the paired observations (Xi, Yi), i = 1, 2, . . . , n.

We did not encounter the approach (B2) in the literature. In the (B1) approach, almost
all the papers used the same sample size, at the exception of [19], for the double-size
estimation problem. In our view, the study case should rely on the available data so that
using the same sample size may lead to a loss of information. To apply their method,
one should take the minimum of the two sizes and then loose information. We suggest
to come back to a general case and then study the asymptotic theory of D(p̂n, q̂m) based
on samples X1, X2, .., Xn. and Y1, Y2, ..., Ym. In this paper, we will systematically use
arbitrary samples sizes.

1.3. Previous work

In the context of the situation (B1), there are several papers dealing with the estimation
of the divergence measures. As we are concerned in this paper by the weak laws of the
estimators, our review on that problematic did not return significant things. Instead, the
literature presented us many kinds of results on almost-sure efficiency of the estimation,
with rates of convergences and laws of the iterated logarithm, Lp (p = 1, 2) convergences,
etc. To be precise, [4] used recent techniques based on functional empirical process to pro-
vide a series of interesting rates of convergence of the estimators in the case of one-sided
approach for the class de Rényi, Tsallis, Kullback-Leibler to cite a few. Unfortunately, the
authors did not address the problem of integrability, taking that the divergence measures
are finite. Although the results should be correct under the boundedness assumption (7)
(BD) we described earlier, a new formulation in that frame would be welcome. In the
context of the situation (B1), we may cite first the works of [20] and [10]. They both used
divergence measures based on probability density functions and concentrated of Rényi-α,
Tsallis-α and Kullback-Leibler.

Specifically, [10] defined Reyni and Tsallis estimators by correcting the plug-in estimator



Ba A.D., Lo G.S. / Eur. J. Pure Appl. Math, 12 (3) (2019), 790-820 795

and established that, as long as DR,α(p,q) ≥ c and DT,α(p,q) ≥ c, for some constant
c > 0, then

E |DR,α(p̂n, q̂n)−DR,α(p,q)| ≤ c
(
n−1/2 + n−

3s
2s+d

)
and

E |DT,α(p̂n, q̂n)−DT,α(p,q)| ≤ c
(
n−1/2 + n−

3s
2s+d

)
.

[19] used a k−nearest-neighbor approach to prove that if |α− 1| < k, (α 6= 1) then

lim
n,m→∞

E [DT,α(p̂n, q̂m)−DT,α(p,q)]2 = 0

and

lim
n,m→∞

E (DR,α(p̂n, q̂m)) = DR,α(p,q).

There has been recent interest in deriving convergence rates for divergence estimators (see
[16] and [10]). The rates are typically derived in terms of smoothness s of the densities.

Similarly, [21] showed that when s > d a k-nearest-neighbor style estimator achieves rate
n−2/d (in absolute error) ignoring logarithmic factors. In a follow up work, the authors
improved this result to O(n−1/2) using an ensemble of weak estimators, but they require
s > d orders of smoothness.

[20] provided an estimator for Rényi−α divergences as well as general density functionals
that uses a mirror image kernel density estimator. They obtained exponential inequalities
for the deviation of the estimators from the true value.

[12] studied an ε−nearest neighbor estimator for the L2−divergence that enjoys the same
rate of convergence as the projection-based estimator of [10].

1.4. Main contributions

Our main contribution may be summarized as follows : for data sampled from one or two
unknown random variables, we derive almost sure convergency and central limit theorems
for empirical φ− divergences. We will focus on divergence measures between discrete prob-
ability distribution. As well, our results applied to the approaches (A) and (B1) defined
above. As a consequence, we estimate divergence measures by their plug-in counterparts,
meaning that we replace the probability mass function (p.m.f.) in the expression of the
divergence measure by a nonparametric estimator of the p.m.f.
We also wish to get first general laws for an arbitrary functional of the form

J(p,q) =
∑
j∈D

φ(pj , qj), (8)
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where φ : (0, 1)2 → R is a twice continously differentiable function. The results on the
functional J(p,q), which is also known under the name of φ-divergence, will lead to those
on the particular cases of the Tsallis, Rényi, and Kullback-Leibler measures.

1.5. Overview of the paper

The rest of the paper is organized as follows. In Section 2, we define estimators of the
p.m.f.’s pj and qj based on two i.i.d. samples according respectively to p and to q. These
ones allow us to define the empirical φ−divergences. In Section 3, we will give our full
results for functional J(p,q) both one sided and two-sided approaches. In Section 4, we
will particularize the results for specific measures we already described. In Section 5 we
present some simulations confirming our results. Finally in Section 6, we conclude.

2. Empirical φ− divergence

2.1. Notations and main results

Before we state the main results we need a few definitions. Let X and Y two randoms
variables defined on the probability distributions (X ,A,P) with X = {c1, c2, · · · , cr} and
p = (pj)1≤j≤r and q = (qj)1≤j≤r two discrete probability distributions on X such that,
for any j ∈ D

pj = P(X = cj) and qj = P(Y = cj).

We suppose that (7) is satisfied that is ∀ j ∈ D, pj > 0 and qj > 0.
Define the empirical probability distribution generated by i.i.d. random variablesX1, · · · , Xn

from the probability distribution p as

p̂n = (p̂cn)c∈X , where p̂
cj
n =

1

n

n∑
i=1

1cj (Xi) (9)

where 1cj (Xi) =

{
1 if Xi = cj

0 otherwise
for any j ∈ D.

q̂m is defined in the same way by Y1, · · · , Ym
i.i.d.∼ q that is

q̂m = (q̂cm)c∈X , where q̂
cj
m =

1

m

m∑
i=1

1cj (Yi). (10)

For a given j ∈ D, this empirical estimator p̂
cj
n of pj is strongly consistent and asymptot-

ically normal. Precisely, when n tends to infinity,

p̂
cj
n − pj

a.s.−→ 0 (11)
√
n(p̂

cj
n − pj)

D
 Zpj , (12)
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where Zpj
d∼ N (0, pj(1− pj)).

We denote by
a.s.−→ the almost sure convergence and

D
 the convergence in distribution.

The notation
d∼ denote the equality in distribution.

These asymptotic properties derive from the law of large numbers and central limit theo-
rem.

For sake of simplicity, we introduce the two following notations :

∆
cj
pn = p̂

cj
n − pj , ∆

cj
qm = q̂

cj
m − qj , ∀ j ∈ D,

an = sup
j∈D
|∆cj

pn |, bm = sup
j∈D
|∆cj

qm |, and cn,m = max(an, bm). (13)

For any j ∈ D, set

δn(pj) =
√
n/pj∆

cj
pn and δm(qj) =

√
m/qj∆

cj
qm .

We recall that, since for a fixed j ∈ D, np̂cjn has a binomial distribution with parameters
n and success probability pj , we have

E
(
p̂
cj
n

)
= pj and V(p̂

cj
n ) =

pj(1− pj)
n

.

Furthermore, by the strong law of large numbers, we know that

∆
cj
pn

a.s.−→ 0, as n→ +∞,

for a fixed j ∈ D.

And finally, by the asymptotic Gaussian limit of the multinomial law (see for example
Chapter 1, Section 4 in [14]), we have(

δn(pj), j ∈ D
)
D
 Z(p)

L∼ N (0,Σp), as n→ +∞, (14)

and

(
δm(qj), j ∈ D)

)
D
 Z(q)

L∼ N (0,Σq), as m→ +∞, (15)

where Z(p) = (Zpj , j ∈ D)t and Z(q) = (Zqj , j ∈ D)t are two independent centered
Gaussian random vectors of dimension r having respectively the following elements :

(Σp)(i,j) = (1− pj)δij −
√
pipj(1− δij), (i, j) ∈ D2 (16)

(Σq)(i,j) = (1− qj)δij −
√
qiqj(1− δij), (i, j) ∈ D2, (17)
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where δij =

{
1 for i = j

0 for i 6= j
.

For a fixed j ∈ D, we have also

E
(
q̂
cj
m

)
= qj , V(q̂

cj
m) =

qj(1− qj)
m

, and ∆
cj
qm

a.s.−→ 0, as m→ +∞.

2.2. φ-divergence measure

Definition 1. The φ-divergence between the two probability distributions p and q is given
by

J(p, q) =
∑
j∈D

φ(pj , qj), (18)

where φ : [0, 1]2 → R is a measurable function having continuous second order partial
derivatives.

The results on the functional J(p,q) will lead to those on the particular cases of the
Tsallis, Rényi, and Kullback-Leibler measures.

Based on (9) and (10), we will use the following empirical φ-divergences :

J(p̂n,q) =
∑
j∈D

φ(p̂
cj
n , qj), J(p, q̂m) =

∑
j∈D

φ(pj , q̂
cj
m),

and J(p̂n, q̂m) =
∑
j∈D

φ(p̂
cj
n , q̂

cj
m).

Denote

φ
(1)
1 (s, t) =

∂φ

∂s
(s, t), φ

(1)
2 (s, t) =

∂φ

∂t
(s, t), φ

(2)
1 (s, t) =

∂2φ

∂s2
(s, t),

and φ
(2)
2 (s, t) =

∂2φ

∂t2
(s, t), φ

(2)
1,2(s, t) = φ

(2)
2,1(s, t) =

∂2φ

∂s∂t
(s, t).

Set

A1,p =
∑
j∈D
|φ(1)1 (pj , qj)|, A2,q =

∑
j∈D
|φ(1)2 (pj , qj)|, (19)

A3,q =
∑
j∈D
|φ(1)1 (qj , pj)|, and A4,p =

∑
j∈D
|φ(1)2 (qj , pj)|. (20)
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3. Statements of the main results

3.1. Main results

Here are our main results. The first concerns the almost sure efficiency of the estimators.

Theorem 1. Let p and q two probability distributions and p̂n and q̂m be generated by
i.i.d. samples X1, · · · , Xn and Y1, · · · , Ym according respectively to p and q and given by
(9) and (10), the assumption (7) be satisfied. Then the following asymptotic results hold.

(a) One sample

lim sup
n→+∞

|J(p̂n, q)− J(p, q)|
an

≤ A1,p, a.s., (21)

lim sup
m→+∞

|J(p, q̂m)− J(p, q)|
bm

≤ A2,q, a.s., (22)

(b) Two samples :

lim sup
(n,m)→(+∞,+∞)

|J(p̂n, q̂m)− J(p, q)|
cn,m

≤ A1,p +A2,q a.s., (23)

where an, bm and cn,m are as in (13) and A1,p and A2,q as in (19).

Proof. In the proof, we will systematically use the mean values theorem. In the mul-
tivariate handling, we prefer to use the Taylor-Lagrange-Cauchy as stated in [22], page 230.

For a fixed j ∈ D, we have

φ(p̂
cj
n , qj) = φ(pj + ∆

cj
pn , qj) (24)

= φ(pj , qj) + ∆
cj
pnφ

(1)
1 (pj + θ1,j∆

cj
pn , qj),

by applying the mean value theorem to the function (.) 7→ φ((.), qj) and where θ1,j is some
number lying between 0 and 1. In the sequel, any θi,j , i = 1, 2, · · · satisfies |θi,j | < 1.

By applying again the mean values theorem to the function (.) 7→ φ
(1)
1 ((.), qj), we have

φ
(1)
1 (pj + θ1,j∆

cj
pn , qj) = φ

(1)
1 (pj , qj) + θ1,j∆

cj
pnφ

(2)
1 (pj + θ2,j∆

cj
pn , qj).

We can write (24) as

φ(p̂
cj
n , qj) = φ(pj , qj) + ∆

cj
pnφ

(1)
1 (pj , qj) + θ1,j(∆

cj
pn)2φ

(2)
1 (pj + θ2,j∆

cj
pn , qj).

Now we have, by summation over j ∈ D,

J(p̂n,q)− J(p,q) =
∑
j∈D

∆
cj
pnφ

(1)
1 (pj , qj)
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+
∑
j∈D

θ1,j(∆
cj
pn)2φ

(2)
1 (pj + θ2,j∆

cj
pn , qj), (25)

hence

|J(p̂n,q)− J(p,q)| ≤ an
∑
j∈D
|φ(1)1 (pj , qj)| + a2n

∑
j∈D
|φ(2)1 (pj + θ2,j∆

cj
pn , qj)|.

Therefore
|J(p̂n,q)− J(p,q)

an
≤ A1,p + an

∑
j∈D
|φ(2)1 (pj + θ2,j∆

cj
pn , qj)|,

and then

lim sup
n→∞

|J(p̂n,q)− J(p,q)

an
≤ A1,p,

since A1,p <∞, an
a.s.−→ 0, and∑

j∈D
|φ(2)1 (pj + θ2,j∆

cj
pn , qj)| →

∑
j∈D
|φ(2)1 (pj , qj)| <∞ as n→∞.

This proves (21).

Formula (22) is obtained in a similar way. We only need to adapt the result concerning
the first coordinate to the second.

The proof of (23) comes by splitting
∑

j∈D
(
φ(p̂

cj
n , q̂

cj
m)− φ(pj , qj)

)
, into the following two

terms

∑
j∈D

(
φ(p̂

cj
n , q̂

cj
m)− φ(pj , qj)

)
=

∑
j∈D

(
φ(p̂

cj
n , q̂

cj
m)− φ(pj , q̂

cj
m)
)

+
∑
j∈D

(
φ(pj , q̂

cj
m)− φ(pj , qj)

)
≡ In,1 + In,2.

We already know how to handle In,2. As to In,1, we may still use the Taylor-Lagrange-
Cauchy formula since we have, for a fixed j ∈ D,∥∥(p̂

cj
n , q̂

cj
m)− (pj , q̂

cj
m)
∥∥
∞ =

∥∥(p̂
cj
n − pj), 0)

∥∥
∞ = an → 0.

By the Taylor-Lagrange-Cauchy (see [22], page 230), we have
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In,1 =
∑
j∈D

∆
cj
pnφ(p̂

cj
n + θj∆

cj
pn , q̂

cj
m)

≤ an
∑
j∈D
|φ(p̂

cj
n + θj∆

cj
pn , q̂

cj
m)|

= an(A1 + o(1)).

From there, the combination of these remarks directs to the result.

The second main result concerns the asymptotic normality of the estimators.

Let

V1(p,q) =
∑
j∈D

pj(1− pj)(φ(1)1 (pj , qj))
2 − 2

∑
(i,j)∈D2, i 6=j

pipjφ
(1)
1 (pi, qi)φ

(1)
1 (pj , qj)(26)

and

V2(p,q) =
∑
j∈D

qj(1− qj)(φ(1)2 (pj , qj))
2 − 2

∑
(i,j)∈D2, i 6=j

qiqjφ
(1)
2 (pi, qi)φ

(1)
2 (pj , qj).(27)

Theorem 2. Under the same assumptions as in Theorem 1, the following central limit
theorems hold.

(a) One sample : as n→ +∞,

√
n(J(p̂n, q)− J(p, q))

D
 N (0, V1(p, q)) , (28)

√
m(J(p, q̂m)− J(p, q))

D
 N (0, V2(p, q)) . (29)

(b) Two samples : for (n,m)→ (+∞,+∞) and nm/(n+m)→ γ ∈ (0, 1),(
nm

mV1(p, q) + nV2(p, q)

)1/2

(J(p̂n, q̂m)− J(p, q))
D
 N (0, 1) . (30)

Proof. Let us prove (28). By going back to (25), we have

√
n(J(p̂n,q)− J(p,q)) =

∑
j∈D

√
pjδn(pj)φ

(1)
1 (pj , qj) +

√
nR1,n

where
R1,n =

∑
j∈D

θ1,j(∆
cj
pn)2φ

(2)
1 (pj + θ2,j∆

cj
pn , qj).
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Now using Formula (14) above, we get,∑
j∈D

√
pjδn(pj)φ

(1)
1 (pj , qj)

D
 
∑
j∈D

φ
(1)
1 (pj , qj)

√
pjZpj , as n→ +∞

which follows a centered normal law of variance V1(p,q) :

V1(p,q) =
∑
j∈D

(1− pj)(φ(1)1 (pj , qj))
2 − 2

∑
(i,j)∈D2, i 6=j

√
pipjφ

(1)
1 (pi, qi)φ

(1)
1 (pj , qj)

since

V

∑
j∈D

φ
(1)
1 (pj , qj)

√
pjZpj

 =
∑
j∈D

V(φ
(1)
1 (pj , qj)

√
pjZpj )

+ 2
∑

(i,j)∈D2, i 6=j

Cov(φ
(1)
1 (pi, qi)

√
piZpi , φ

(1)
1 (pj , qj)

√
pjZpj )

=
∑
j∈D

pj(φ
(1)
1 (pj , qj))

2V(Zpj )

+ 2
∑

(i,j)∈D2, i 6=j

√
pipjφ

(1)
1 (pi, qi)φ

(1)
1 (pj , qj)Cov(Zpi , Zpj )

=
∑
j∈D

pj(1− pj)(φ(1)1 (pj , qj))
2

− 2
∑

(i,j)∈D2, i 6=j

pipjφ
(1)
1 (pi, qi)φ

(1)
1 (pj , qj).

Finally, the proof will be complete if we show that
√
nR1,n converges, in probability, to

zero, as n tends to infinity. We have∣∣√nR1,n

∣∣ ≤ √na2n∑
j∈D
|φ(2)1 (pj + θ2,j∆

cj
pn , qj)|. (31)

Let show that √
na2n = oP(1).

By the Bienaymé-Tchebychev inequality, we have, for any ε > 0 and for j ∈ D,

P(
√
n(p̂

cj
n − pj)2 ≥ ε) = P

(
|p̂cjn − pj | ≥

√
ε

n1/4

)
≤ pj(1− pj)

εn1/2
,

which implies that
√
na2n converges in probability to 0 as n→ +∞.
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Finally from (31) we have
√
nR1,n

P→ 0 as n→ +∞ which implies

√
n(J(p̂n,q)− J(p,q))

D
 N (0, V1(p,q)) , as n→ +∞.

This ends the proof of (28).

The result (29) is obtained by a symmetry argument by swapping the roles of p and q.

Now, it remains to prove Formula (30) of the theorem. Let us use bi-variate Taylor-
Lagrange-Cauchy formula to get,

J(p̂n, q̂m)− J(p,q) =
∑
j∈D

∆
cj
pnφ

(1)
1 (pj , qj) +

∑
j∈D

∆
cj
qmφ

(1)
2 (pj , qj)

1

2

∑
j∈D

(
(∆

cj
pn)2φ

(2)
1 + ∆

cj
pn∆

cj
qmφ

(2)
1,2 + (∆

cj
qm)2φ

(2)
2

)(
u
cj
n , v

cj
m

)
,

where
(u
cj
n , v

cj
n ) = (pj + θ∆

cj
pn , qj + θj∆

cj
qm).

Thus we get

J(p̂n, q̂m)− J(p,q) =
1√
n
Nn(p) +

1√
m
Nm(q) +Rn,m,

where

Nn(p) =
∑
j∈D

√
pjδn(pj)φ

(1)
1 (pj , qj)

D
 
∑
j∈D

φ
(1)
1 (pj , qj)Zpj , as n→ +∞,

Nm(q) =
∑
j∈D

√
qjδm(qj)φ

(1)
2 (pj , qj)

D
 
∑
j∈D

φ
(1)
2 (pj , qj)Zqj , as m→ +∞,

and Rn,m is given by

1

2

∑
j∈D

(
(∆

cj
pn)2φ

(2)
1 + ∆

cj
pn∆

cj
qmφ

(2)
1,2 + (∆

cj
qm)2φ

(2)
2

)(
u
cj
n , v

cj
m

)
.

First, we have that Nn(p) and Nm(p) are independents and hence

Nn(p)
L∼ N (0, V1(p,q)) and Nm(q)

L∼ N (0, V2(p,q)) .

Therefore

1√
n

∑
j∈D

√
pjδn(pj)φ

(1)
1 (pj , qj) +

1√
m

∑
j∈D

√
qjδm(qj)φ

(1)
2 (pj , qj) = N

(
0,
V1(p,q)

n
+
V2(p,q)

m

)
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+ oP

(
1√
n

)
+ oP

(
1√
m

)
.

Thus

J(p̂n, q̂m)− J(p,q) = N
(

0,
V1(p,q)

n
+
V2(p,q)

m

)
+ oP

(
1√
n

)
+ oP

(
1√
m

)
+Rn,m.

Next, we have

1√
V1(p,q)

n + V2(p,q)
m

(J(p̂n, q̂m)− J(p,q)) = N (0, 1) + oP

 1√
n

1√
V1(p,q)

n + V2(p,q)
m


+ oP

 1√
m

1√
V1(p,q)

n + V2(p,q)
m


+

1√
V1(p,q)

n + V2(p,q)
m

Rn,m.

That leads to√
nm

mV1(p,q) + nV2(p,q)
(J(p̂n, q̂m)− J(p,q)) = N (0, 1) + oP(1) +

√
nm

mV1(p,q) + nV2(p,q)
Rn,m,

since m/(mV1(p,q) + nV2(p,q)) and m/(nV1(p,q) + nV2(p,q)) are bounded, and then

oP

 1√
n

1√
V1(p,q)

n + V2(p,q)
m

 = oP

(√
m

mV1(p,q) + nV2(p,q)

)
= oP(1),

and

oP

 1√
m

1√
V1(p,q)

n + V2(p,q)
m

 = oP

(√
n

mV1(p,q) + nV2(p,q)

)
= oP(1).

It remains to prove that

∣∣∣∣√ nm
mV1(p,q)+nV2(p,q)

Rn,m

∣∣∣∣ = oP(1). But we have, by the continuity

assumptions on φ and on its partial derivatives and by the uniform converges of ∆
cj
pn and

∆
cj
qm to zero, that

∣∣∣∣√ nm

mV1(p,q) + nV2(p,q)
Rn,m

∣∣∣∣ ≤
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1

2

√na2n(
∑
j∈D

φ
(2)
1 (pj , qj) + o(1))

(√ m

mV1(p,q) + nV2(p,q)

)

+
1

2

√mb2m(
∑
j∈D

φ
(2)
2 (pj , qj) + o(1))

(√ n

mV1(p,q) + nV2(p,q)

)

+
1

2

√nambm(
∑
j∈D

φ
(2)
2 (pj , qj) + o(1))

(√ n

mV1(p,q) + nV2(p,q)

)
.

As previously, we have
√
na2n = oP(1),

√
mb2m = oP(1) and

√
nambm = oP(1).

From there, the conclusion is immediate.

3.2. Direct extensions

Quite a few number of divergence measures are not symmetric. Among these non-
symmetric measures are some of the most interesting ones. For such measures, estimators
of the form J(p̂n,q), J(p, q̂m) and J(p̂n, q̂m) are not equal to J(q, p̂n), J(q̂m,p) and
J(q̂m, p̂n) respectively.

In one-sided tests, we have to decide whether the hypothesis p = q, for q known and fixed,
is true based on data from p. In such a case, we may use one of the statistics J(p̂n,q)
or J(q, p̂n) to perform the tests. We may have information that allows us to prefer one
of them. If not, it is better to use both of them, upon the finiteness of both J(p,q) and
J(q,p), in a symmetrized form as

J (s)(p,q) =
J(p,q) + J(q,p)

2
. (32)

The same situation applies when we face double-side tests, i.e., testing p = q from data
generated by p et q.

Asymptotic a.e. efficiency.

Theorem 3. Under the same assumptions as in Theorem 1, the following hold.

(a) One sample :

lim sup
n→+∞

∣∣J (s)(p̂n, q)− J (s)(p, q)
∣∣

an
≤ 1

2
(A1,p +A4,p) a.e., (33)

lim sup
n→+∞

∣∣J (s)(p, q̂m)− J (s)(p, q)
∣∣

bn
≤ 1

2
(A2,q +A3,q) a.e., (34)
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(b) Two samples :

lim sup
(n,m)→(+∞,+∞)

∣∣J (s)(p̂n, q̂m)− J (s)(p, q)
∣∣

cn,m
≤ 1

2
(A1,p +A2,q +A3,q +A4,p) , a.e.

(35)

Proof. The proof is established by considering the following equalities and by using
Theorem 1

J (s)(p̂n,q)− J (s)(p,q) =
1

2
(J(p̂n,q)− J(p,q)) +

1

2
(J(q, p̂n)− J(q,p)) , (36)

J (s)(p, q̂m)− J (s)(p,q)) =
1

2
(J(p, q̂m)− J(p,q)) +

1

2
(J(q̂m,p)− J(q,p)) , (37)

J (s)(p̂n, q̂m)− J (s)(p,q)) =
1

2
(J(p̂n, q̂m)− J(p,q)) +

1

2
(J(q̂m, p̂n)− J(q,p)) .(38)

Asymptotic Normality.

In addition to V1(p,q) and V2(p,q) defined in (26) and (27), denote

V3(p,q) =
∑
j∈D

qj(1− qj)(φ(1)1 (qj , pj))
2 − 2

∑
(i,j)∈D2, i 6=j

qiqjφ
(1)
1 (qi, pi)φ

(1)
1 (qj , pj),(39)

V4(p,q) =
∑
j∈D

pj(1− pj)(φ(1)2 (qj , pj))
2 − 2

∑
(i,j)∈D2, i 6=j

pipjφ
(1)
2 (qi, pi)φ

(1)
2 (qj , pj),(40)

and finally

V1:4(p,q) =
1

4
(V1(p,q) + V4(p,q)) and V2:3(p,q) =

1

4
(V2(p,q) + V3(p,q)).

We have

Theorem 4. Under the same assumptions as in Theorem 1, the following hold.

(a) One sample : as n→ +∞,

√
n

(
J (s)(p̂n, q)− J (s)(p, q)

)
D
 N (0, V1:4(p, q)), (41)

√
n

(
J (s)(p, q̂n)− J (s)(p, q)

)
D
 N (0, V2:3(p, q)). (42)

(b) Two samples : for (n,m)→ (+∞,+∞) and nm/(n+m)→ γ ∈ (0, 1),

(
nm

mV1:4(p, q) + nV2:3(p, q)

)1/2(
J (s)(p̂n, q̂m)− J (s)(p, q)

)
D
 N (0, 1). (43)
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Proof. The proof follows directly by using equalities (36), (37), and (38) above and
Theorem 2.

Remark : We have just seen that Theorems 3 and 4 are direct consequences of the main
Theorems 1 and 2. The same will be true for the following Corollaries concerning the
particular cases which proofs will be omitted.

4. Particular Cases

4.1. Rényi and Tsallis families

These two families are expressed through the summation

Sα(p,q) =
∑
j∈D

pαj q
1−α
j , α > 0, α 6= 1, (44)

which is of the form of φ−divergence measure with

φ(x, y) = xαy1−α, (x, y) ∈ {(pj , qj), j ∈ D}.

A-(a)- The asymptotic behavior of the Tsallis divergence measure.

Denote

AT,α,1 =
α

|α− 1|
∑
j∈D

(pj/qj)
α−1 and AT,α,2 =

∑
j∈D

(pj/qj)
α .

We have

Corollary 1. Under the same assumptions as in Theorem 1, and for any α > 0, α 6= 1,
the following hold.

(a) One sample :

lim sup
n→+∞

|DT,α(p̂n, q)−DT,α(p, q)|
an

≤ AT,α,1 a.s.,

lim sup
n→+∞

|DT,α(p, q̂n)−DT,α(p, q)|
bn

≤ AT,α,2 a.s.

(b) Two samples :

lim sup
(n,m)→(+∞,+∞)

|DT,α(p̂n, q̂m)−DT,α(p, q)|
cn,m

≤ AT,α,1 +AT,α,2 a.s.
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Denote

VT,α,1(p,q) =

(
α

α− 1

)2(∑
j∈D

pj(1− pj)(pj/qj)2α−2

− 2
∑

(i,j)∈D2, i 6=j

(pipj)
α(qiqj)

α−1
)

and VT,α,2(p,q) =
∑
j∈D

qj(1− qj)(pj/qj)2α − 2
∑

(i,j)∈D2, i 6=j

(pipj)
α(qiqj)

1−α.

We have

Corollary 2. Under the same assumptions as in Theorem 1, and for any α > 0, α 6= 1,
the following hold.

(a) One sample : as n→ +∞,

√
n (DT,α(p̂n, q)−DT,α(p, q))

D
 N (0, VT,α,1(p, q)),

√
n (DT,α(p, q̂n)−DT,α(p, q))

D
 N (0, VT,α,2(p, q)).

(b) Two samples : for (n,m)→ (+∞,+∞) and nm/(n+m)→ γ ∈ (0, 1),(
nm

nVT,α,2(p, q) +mVT,α,1(p, q)

)1/2

(DT,α(p̂n, q̂m)−DT,α(p, q))
D
 N (0, 1).

As to the symmetrized form

D(s)
T,α(p,q) =

DT,α(p,q) +DT,α(q,p)

2
,

we need the supplementaries notations :

AT,α,3 =
α

|α− 1|
∑
j∈D

(qj/pj)
α−1 , AT,α,4 =

∑
j∈D

(qj/pj)
α ,

VT,α,3(p,q) =

(
α

α− 1

)2
∑
j∈D

qj(1− qj)(qj/pj)2−2α − 2
∑

(i,j)∈D2, i 6=j

(qiqj)
2−α(pipj)

α−1

 ,

and VT,α,4(p,q) =
∑
j∈D

pj(1− pj)(qj/pj)2α − 2
∑

(i,j)∈D2, i 6=j

(pipj)
1−α(qiqj)

α.

We have
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Corollary 3. Under the same assumptions as in Theorem 1, and for any α > 0, α 6= 1,
the following hold.

(a) One sample :

lim sup
n→+∞

|D(s)
T,α(p̂n, q)−D(s)

T,α(p, q)|
an

≤ (AT,α,1 +AT,α,4) /2 =: A
(s)
T,α,1 a.s,

lim sup
n→+∞

|D(s)
T,α(p, q̂n)−D(s)

T,α(p, q)|
bn

≤ (AT,α,2 +AT,α,3) /2 =: A
(s)
T,α,2 a.s.

(b) Two samples :

lim sup
(n,m)→(+∞,+∞)

|D(s)
T,α(p̂n, q̂m)−D(s)

T,α(p, q)|
cn,m

≤ A(s)
T,α,1 +A

(s)
T,α,2 a.s.

Denote

VT,α,1:4(p,q) = VT,α,1(p,q) + VT,α,4(p,q)

and VT,α,2:3(p,q) = VT,α,2(p,q) + VT,α,3(p,q).

We have

Corollary 4. Under the same assumptions as in Theorem 1, and for any α > 0, α 6= 1,
the following hold.

(a) One sample : as n→ +∞,
√
n

(
D(s)
T,α(p̂n, q)−D(s)

T,α(p, q)

)
D
 N (0, VT,α,1:4(p, q)),

√
n

(
D(s)
T,α(p, q̂n)−D(s)

T,α(p, q)

)
D
 N (0, VT,α,2:3(p, q)).

(b) Two samples : for (n,m)→ (+∞,+∞) and nm/(n+m)→ γ ∈ (0, 1),(
nm

mVT,α,1:4(p, q) + nVT,α,2:3(p, q)

)1/2(
D(s)
T,α(p̂n, q̂m)−D(s)

T,α(p, q)

)
D
 N (0, 1).

A-(b)- The asymptotic behavior of the Rényi-α divergence measure.

The treatment of the asymptotic behavior of the Rényi-α, α > 0, α 6= 1 is obtained from
Part (A)-(a) by expansions and by the application of the delta method.

We first remark that

DR,α(p,q) =
1

α− 1
log (Sα(p,q)) .
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Corollary 5. Under the same assumptions as in Theorem 1, and for any α > 0, α 6= 1,
the following hold.

(a) One sample :

lim sup
n→+∞

|DR,α(p̂n, q)−DR,α(p, q)|
an

≤
AT,α,1
Sα(p, q)

=: AR,α,1 a.s.,

lim sup
n→+∞

|DR,α(p, q̂n)−DR,α(p, q)|
bn

≤
AT,α,2
Sα(p, q)

=: AR,α,2 a.s.

(b) Two samples :

lim sup
(n,m)→(+∞,+∞)

|DR,α(p̂n, q̂m)−DR,α(p, q)|
cn,m

≤ AR,α,1 +AR,α,2 a.s.

Denote

VR,α,1(p,q) =
VT,α,1(p,q)

S2α(p,q)
and VR,α,2(p,q) =

VT,α,2(p,q)

S2α(p,q)
.

We have

Corollary 6. Under the same assumptions as in Theorem 1, and for any α > 0, α 6= 1,
the following hold

(a) One sample : as n→ +∞,
√
n

(
DR,α(p̂n, q)−DR,α(p, q)

)
D
 N (0, VR,α,1(p, q)),

√
n

(
DR,α(p, q̂n)−DR,α(p, q)

)
D
 N (0, VR,α,2(p, q)).

(b) Two samples : for (n,m)→ (+∞,+∞) and nm/(n+m)→ γ ∈ (0, 1),(
nm

nVR,α,2(p, q) +mVR,α,1(p, q)

)1/2(
DR,α(p̂n, q̂m)−DR,α(p, q)

)
D
 N (0, 1).

As to the symmetrized form

D(s)
R,α(p,q) =

DR,α(p,q)−DR,α(q,p)

2
,

we need the supplementary notations :

AR,α,3 =
AT,α,3
Sα(p,q)

, AR,α,4 =
AT,α,4
Sα(p,q)

VR,α,3(p,q) =
VT,α,3(p,q)

S2α(p,q)
, and VR,α,4(p,q) =

VT,α,4(p,q)

S2α(p,q)
.
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Corollary 7. Under the same assumptions as in Theorem 1, and for any α > 0, α 6= 1,
the following hold.

(a) One sample :

lim sup
n→+∞

|D(s)
R,α(p̂n, q)−D(s)

R,α(p, q)|
an

≤ (AR,α,1 +AR,α,4)/2 =: A
(s)
R,α,1, a.s.,

lim sup
n→+∞

|D(s)
R,α(p, q̂n)−D(s)

R,α(p, q)|
an

≤ (AR,α,2 +AR,α,3)/2 =: A
(s)
R,α,2, a.s.

(b) Two samples :

lim sup
(n,m)→(+∞,+∞)

|D(s)
R,α(p̂n, q̂m)−D(s)

R,α(p, q)|
cn,m

≤ A(s)
R,α,1 +A

(s)
R,α,2, a.s.

Denote

VR,α,1:4(p,q) = VR,α,1(p,q) + VR,α,4(p,q)

and VR,α,2:3(p,q) = VR,α,2(p,q) + VR,α,3(p,q).

We have

Corollary 8. Under the same assumptions as in Theorem 1, and for any α > 0, α 6= 1,
the following hold.

(a) One sample : as n→ +∞,

√
n

(
D(s)
R,α(p̂n, q)−D(s)

R,α(p, q)

)
D
 N (0, VR,α,1:4(p, q)),

√
n

(
D(s)
R,α(p, q̂n)−D(s)

R,α(p, q)

)
D
 N (0, VR,α,2:3(p, q)).

(b) Two samples : as (n,m)→ (+∞,+∞) and nm/(n+m)→ γ ∈ (0, 1),(
nm

nVR,α,2:3(p, q) +mVR,α,1:4(p, q)

)1/2(
D(s)
R,α(p̂n, q̂m)−D(s)

R,α(p, q)

)
D
 N (0, 1).

B - Kulback-Leibler Measure

Here we have
DKL(p,q) =

∑
j∈D

φ(pj , qj),

where
φ(x, y) = x log(x/y), (x, y) ∈ {(pj , qj), j ∈ D}.

We have
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Corollary 9. Under the same assumptions as in Theorem 1, the following hold.

(a) One sample :

lim sup
n→+∞

|DKL(p̂n, q)−DKL(p, q)|
an

≤
∑
j∈D
|1 + log(pj/qj)| =: AKL,1(p, q), a.s.,

lim sup
n→+∞

|DKL(p, q̂n)−DKL(p, q)|
bn

≤
∑
j∈D

(pj/qj) =: AKL,2(p, q), a.s.

(b) Two samples :

lim sup
(n,m)→(+∞,+∞)

|DKL(p̂n, q̂m)−DKL(p, q)|
cn,m

≤ AKL,1(p, q) +AKL,2(p, q), a.s.

Denote

VKL,1(p,q) =
∑
j∈D

pj(1− pj) (1 + log(pj/qj))
2

− 2
∑

(i,j)∈D2, i 6=j

pipj(1 + log(pi/qi))(1 + log(pj/qj))

and VKL,2(p,q) =
∑
j∈D

qj(1− qj)(pj/qj)2 − 2
∑

(i,j)∈D2, i 6=j

pipj .

We have

Corollary 10. Under the same assumptions as in Theorem 1, the following hold.

(a) One sample : as n→ +∞

√
n (DKL(p̂n, q)−DKL(p, q))

D
 N (0, VKL,1(p, q)),

√
n (DKL(p, q̂n)−DKL(p, q))

D
 N (0, VKL,2(p, q)).

(b) Two samples : as (n,m)→ (+∞,+∞) and nm/(n+m)→ γ ∈ (0, 1),(
nm

nVKL,2(p, q) +mVKL,1(p, q)

)1/2

(DKL(p̂n, q̂m)−DKL(p, q))
D
 N (0, 1).

As to the symmetrized form

D(s)
KL(p,q) =

DKL(p,q) +DKL(q,p)

2
,
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we need the supplementary notations :

AKL,3(p,q) =
∑
j∈D
|1 + log(qj/pj)| , AKL,4(p,q) =

∑
j∈D

qj/pj

VKL,3(p,q) =
∑
j∈D

qj(1− qj)(1 + log(qj/pj))
2

−2
∑

(i,j)∈D2, i 6=j

qiqj(1 + log(qi/pi))(1 + log(qj/pj)),

and VKL,4(p,q) =
∑
j∈D

pj(1− pj)(qj/pj)2 − 2
∑

(i,j)∈D2, i 6=j

qiqj .

We have

Corollary 11. Under the same assumptions as in Theorem 1, the following hold.

(a) One sample :

lim sup
n→+∞

|D(s)
KL(p̂n, q)−D(s)

KL(p, q)|
an

≤ (AKL,1(p, q) +AKL,4(p, q))/2 =: A
(s)
KL,1(p, q), a.s.,

lim sup
n→+∞

|D(s)
KL(p, q̂n)−D(s)

KL(p, q)|
bn

≤ (AKL,2(p, q) +AKL,3(p, q))/2 =: A
(s)
KL,2(p, q), a.s.

(b) Two samples :

lim sup
(n,m)→(+∞,+∞)

|D(s)
KL(p̂n, q̂m)−D(s)

KL(p, q)|
cn,m

≤ A(s)
KL,1(p, q) +A

(s)
KL,2(p, q), a.s.

Denote

VKL,1:4(p,q) = VKL,1(p,q) + VKL,4(p,q),

VKL,2:3(p,q) = VKL,2(p,q) + VKL,3(p,q).

We have

Corollary 12. Under the same assumptions as in Theorem 1, the following hold.

(a) One sample : as n→ +∞,

√
n

(
D(s)
KL(p̂n, q)−D(s)

KL(p, q)

)
D
 N (0, VKL,1:4(p, q)),

√
n

(
D(s)
KL(p, q̂n)−D(s)

KL(p, q)

)
D
 N (0, VKL,2:3(p, q)).
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(b) Two samples : for (n,m)→ (+∞,+∞) and nm/(n+m)→ γ ∈ (0, 1),

(
nm

mVKL,1:4(p, q) + nVKL,2:3(p, q)

)1/2(
D(s)
KL(p̂n, q̂m)−D(s)

KL(p, q)

)
D
 N (0, 1).

5. Simulations

To assess the performance of ours estimators, we present a simulation study on a finite
sample. For simplicity, in our experiments we consider tree outcomes for the randoms
variables X and Y , c1, c2, c3 with respectives p.m.f.’s p1, p2, p3 and q1, q2, q3.
Our aim is to compare the performance of the divergences measures estimators as well as
their symmetrized forms with one or two samples when sample sizes increase.
Suppose that p1 = 0.4, p2 = 0.25, p3 = 0.35 and q1 = 0.27, q2 = 0.32, q3 = 0.41.
We set first α = 0.99 since

lim
α→1
DT,α(p,q) = lim

α→1
DR,α(p,q) = DKL(p,q)

and second α = 0.5 since

DT,0.5(p,q) = DT,0.5(q,p) and DR,0.5(p,q) = DR,0.5(q,p).

True and the symmetrized form of our interest divergence measures are then

DT,0.99(p,q) ≈ 0.03969, D(s)
T,0.99(p,q) ≈ 0.03854, DR,0.99(p,q) ≈ 0.03970,

D(s)
R,0.99(p,q) ≈ 0.03854, DKL(p,q) ≈ 0.04012, and D(s)

KL(p,q) ≈ 0.03893.

and
DR,0.5(p,q) ≈ 0.01951452.

In each figures 1, 2, 3, 4, 5, 6, 7, and 8, left panels represent the plots of divergence mea-
sure estimator, built from sample sizes of n = 100, 200, · · · , 30000, and the true divergence
measure (represented by horizontal black line). The middle panels show the histograms of
the data and where the red line represents the plots of the theoretical normal distribution
calculated from the same mean and the same standard deviation of the data. The right
panels concern the Q-Q plot of the data which display the observed values against normally
distributed data (represented by the red line). We see that the underlying distribution of
the data is normal since the points fall along a straight line.

6. Conclusion

This paper joins a growing body of literature on estimating divergence measures in the
discrete case and on finite sets. We adopted the plug-in method and we derived almost sure
rates of convergence and asymptotic normality of the most common divergence measures
in one sample, two samples as well as symmetrical form of divergence measures, all this,
by means of the functional φ−divergence measure.
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Figure 1 displays the performances of the Stallis divergence estimators of order α = 0.99,
DT,α(p̂n,q), DT,α(p, q̂m), and DT,α(p̂n, q̂m).

Figure 1: Plots when samples sizes increase, histograms and normal Q-Q plots of DT,α(pn, q), DT,α(p, qm),
and DT,α(pn, qm) (α = 0.99) versus N (0, 1).

Figure 2 concerns the performances of the symmetrized form of Stallis divergence estima-

tors D(s)
T,α(p̂n,q), D(s)

T,α(p, q̂m) and D(s)
T,α(p̂n, q̂m).

Figure 2: Plots when samples sizes increase, histograms and normal Q-Q plots of D(s)
T,α(pn, q), D

(s)
T,α(p, qm),

and D(s)
T,α(pn, qm) (α = 0.99) versus N (0, 1).
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Figure 3 displays the performances of the Rényi divergence estimators of order α = 0.99,
DR,α(p̂n,q), DR,α(p, q̂m), and DR,α(p̂n, q̂m).

Figure 3: Plots when samples sizes increase, histograms and normal Q-Q plots of DR,α(pn, q), DR,α(p, qm),
and DR,α(pn, qm) (α = 0.99) versus N (0, 1).

Figure 4 concerns the performances of the symmetrized form of Rényi divergence estimators

D(s)
R,α(p̂n,q), D(s)

R,α(p, q̂m), and D(s)
R,α(p̂n, q̂m).

Figure 4: Plots when samples sizes increase, histograms and normal Q-Q plots of D(s)
R,α(pn, q), D

(s)
R,α(p, qm),

and D(s)
R,α(pn, qm) (α = 0.99) versus N (0, 1).



Ba A.D., Lo G.S. / Eur. J. Pure Appl. Math, 12 (3) (2019), 790-820 817

Figure 5 displays the performances of the Rényi divergence estimators of order α = 0.5,
DR,α(p̂n,q), DR,α(p, q̂m), and DR,α(p̂n, q̂m).

Figure 5: Plots when samples sizes increase, histogram and normal Q-Q plots of DR,α(pn, q), DR,α(p, qm), and
DR,α(pn, qm) (α = 0.5) versus N (0, 1).

Figure 6 concerns the performances of the symmetrized form of Rényi divergence estimators

D(s)
R,α(p̂n,q), D(s)

R,α(p, q̂m), and D(s)
R,α(p̂n, q̂m).

Figure 6: Plots when samples sizes increase, histograms and normal Q-Q plots of D(s)
R,α(pn, q), D

(s)
R,α(p, qm),

and D(s)
R,α(pn, qm) (α = 0.5) versus N (0, 1).



Ba A.D., Lo G.S. / Eur. J. Pure Appl. Math, 12 (3) (2019), 790-820 818

Figure 7 displays the performances of the Kullback-Leibler estimators, DKL(p̂n,q), DKL(p, q̂m),
and DKL(p̂n, q̂m).

Figure 7: Plots when samples sizes increase, histograms and normal Q-Q plots of DKL(pn, q), DKL(p, qm),
and DKL(pn, qm) versus N (0, 1).

Figure 8 concerns the performances of the symmetrized form of Kullback-Leibler estima-

tors, D(s)
KL(p̂n,q), D(s)

KL(p, q̂m), and D(s)
KL(p̂n, q̂m).

Figure 8: Plots when samples sizes increase, histograms and normal Q-Q plots of D(s)
KL(pn, q), D

(s)
KL(p, qm),

and D(s)
KL(pn, qm) versus N (0, 1).
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