EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 3, 2019, 870-892

ISSN  1307-5543 — www.ejpam.com
Published by New York Business Global
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Abstract. This paper deals with the simultaneous null controllability for some nonlinear two
stroke systems. We shall solve this problem by transforming the simultaneous null controllability
of uncoupled initial systems into a null controllability of a coupled system via a change of vari-
ables. This last problem is solved thanks to a global Carleman inequality, appropriates estimates
adapted to the system and via some fixed point theorems. The obtained results are used to build
a simultaneous sentinel of detection in a population dynamics model with incomplete data.
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1. Introduction

Let Q be a bounded open subset of RN, N ¢ {1,2,3} with boundary T' of class
C?. Let w C € be an open nonempty subset. For a time 7" > 0 and the common life
expectancy A > 0 of species, we set U = (0,7) x (0,A), Q@ =U x Q,Qu, =U X w, Qp =
(0,T) xQ, Qa = (0,A) x QX =U xT', Xp = (0,7) x I and we consider the following
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nonlinear two stroke systems :

o Oq B A
ot da Aq +pmq = B F (fo 51(1161@) q(t,0,z)
+h+wx, in  Q,
Jdq2  O0qo A
_Y2 Y992 A =
% oa q2 + 12G2 BaG (fo 52Q2da) q2(t,0,7) (1)
+ h 4+ wyw in @,
q1<T7a7‘r) = qQ(Tv a, .%') =0 in QA7
pn=q¢ =20 on 3,

for some functions F, G defined on R. We assume that
(Hp) the functions F, G belong to L>*(R) and F(0) = G(0) = 0.

The simultaneous null controllability problem can be stated as follows : Given h €
L*(Q) find w € L*(Qy) such that the solution of (1) satisfies

q1(0,a,z) = ¢2(0,a,2) =0 a.e (a,z) in Q4. (2)

The null controllability problem for one two stroke system with one and only one control
is well understood: it has been studied by several authors using different methods. We
refer to B. Ainseba and M. Langlais [2], B. Ainseba and S. Anita [3]. We also refer to S.
Sawadogo [9], O. Traoré [12], Y. Simporé and O. Traoré [10] and their bibliography for
other related controllability problems. As far as we know, there is no results on simulta-
neous null controllability for nonlinear two stroke systems. In this paper we focus on the
previous problem in order to applicate it to build a simultaneous sentinel of detection in
population dynamics problem with incomplete data.

The remainder of this paper is organized as follows : In order to well pose our problem,
in section 2 we make some assumptions, transform the system (1) into an equivalent
cascade problem and we state the main result of this paper. In section 3, we state first
some Carleman’s inequalities that we had established in [11]. Afterwards, we study the
controllability for a linear intermediate problem and for another nonlinear. The section 4
is devoted to the proof of the main result and in the last section we use the result obtained
in section 4 to build a simultaneous sentinel.

2. Assumptions and main result

For the sequel, the following assumptions hold:
(i, Vi) € (L2Q)NF! forall i€ {1;2}, N €{1,2,3},
(Hp) w;, >0 inQ for all i€ {1;2},
H1 7& p2 in Qw-
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I Bi € C?*(Q) forall i€ {1;2},
(H>) Bi >0 in@ forall ic{1;2}.

(H3) There exists positive constants non null ag and a; with ap < a3 < A such that
for each i € {1; 2}, Bi(t,a,x) =0 a.e (t,a,2z) € (0,T) x (]0,a0] U [a1, A]) x €.

Under the assumptions (Hy) — (Hs), for all h € L?(Q),w € L*(Q.) the system (1) ad-
mits an unique solution (qi,¢2) in L*(U, H}(2))? such that %qti + % € LA(U; H-Y(Q))
where H~1(Q2) is the dual of the Hilbert space Hg(Q2). Moreover (qi,q2) belong to
C((0,T); L*(QA)) N C((0, A); L3(Q7)) N L*(U, H}(2))? (see Lemma 0 in [5]).

Remark 1. Assume that (Hi) holds and set

Pi=q+q ; DP2=q —q. (3)

Thus, the condition (2) is equivalent to p1(0,a,z) = p2(0,a,2) =0 a.e (a,z) in Q4. The
following changes are required :

/ll :%(M1+M2)7/~12:%(/~L1_M2)7 f:2hvk:2wv
Bi(p1,p2) = i {&F (% fOA B1(p1 +p2)da) + B2G <% fOA Ba(p1 —pz)da)} ;

Bo(p1,p2) = % [ﬁlF (% fOA Bi(p1 +P2)da) — G <% fOA Ba(p1 —p2)da)} :

Then, the null controllability problem (1)-(2) is equivalent to the problem : for any
fi1, fro € L®(Q) and for f € L*(Q) find a control

ke L*(Qu) (4)

such that the pair p = (p1,p2) solution of the system

Op1 Op1 A A 5
S — A p—
%~ oa p1 + [1p1 + flap2 51(?)p1(t7 0,z)
+ ﬁQ(p)pQ (t7 01 33')
+ f+kxo in Q,
0 0 . . -
—% - % — Apy + fupe + fisp1 = Ba(p)p1(t,0,x) (5)
+/81(p)p2(t707$) in Q )
p=p2 =0 on >,
pl(T7 a7x) IPQ(T,Q7$) =0 in QA7
satisfies
p1(0,a,x) = p2(0,a,2) =0 in Q4. (6)

Notice that system (5) admits an unique solution (p1, p2) in (C((0,T); L*(Q4))NC((0, A); L*(Qr))N

L*(U, H} (Q)))2 for each control k verifying (4). The main goal of this paper is to prove
the following result :
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Theorem 1. Let Q be an open subset of RN with boundary T' of class C?* and w be
a non empty subset of Q. Assume that the hypothesis (Hp) — (Hs3) hold. There exists
a positive real function 0 (0 is defined by (13)) such that for any function f € L?(Q)
with 0f € L?(Q), there exists an unique control k, of minimal norm in L*(Q,,) such that

(l?:,p],p}) is solution of the simultaneous null controllability problem (5)-(6). Moreover,

the control k is given by

k= M Xw (7)
and verifies }
&l 2wy < C (10F1l22(q) + I fllL2(@) (8)
where i = (N1,72) satisfies
oy O [ .
(;tl + gnal — A+ fu + figz = 0 n o Q,
TR LR Ayt + iy = O in Q,
ot Ja S -
nemET A )
m(t0,z) = /0 (51 (p)i + [32(]7)772) da in  Qr,
A A~ A
n2(t,0,2) = (»32(10)771 + Bi(p) ~2) da in  Qr.

0
with p = (p1, p2)-
3. Null controllability result for some coupled models
Before tackling the controllability problem, we will state the following results.
3.1. Global Carleman’s inequality and observability inequality result
For any positive parameters A\ and 7, we define the positive functions:

e3P loe _ oXb(a) | ()
t =
at (T —1) and - o(t,a,z) = Ty

alt,a,x) =71 , V(t,a,z) € Q.

Remark 2. As a reminder (see [4]) the function ¢ € C?(Q) is such that :
Vee Q;p(z) >0; Yeel,¢(x)=0 and Yz e Q\wy, V() #0
where wg is an open set such that wyg C w C ). In the sequel :
o (' represent different positive constants,

e we will use the following notations :

V:{pGC"o(Q) such that pgzO} ; W=VxV,
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Lp :—@—@—Ap ;o L'p=—+7——-A
ot a

a
M(p1,p2) = L*p1 + fupr + fizp2 5 N(p1,p2) = L*pa + fi1p2 + fi2p1-
I s iz 2=l 120 + Wl a2 2, and  dQ = dtdada

Theorem 2. [11] There exists Ao >0, 70 > 0 and a positive constant C such that for
all X > X, T > 19 and forall s> —3, the inequality

o  op* 1 R
/Q (A %, Of + 3 180" + 27%0% [Vpl” + Nt Ip\z) P> le7dQ
—+ = Ap

ot ' da
2 T A
< C / 30286_2adQ+)\47_4/ / / |p|2 S025—‘,—36—20ch (10)
ot Oa o Jo Ju

holds for any function p € V such that the member on the right hand side of the inequality
(10) is finite.

Lemma 1. [11] Let C be the constant given by the theorem 2. Assume that for X >
X, T>1 and s> —3, there exists a constant bg > 0 and a set wy such that

W, Cw and |fiz] > by in (0; T) x(0; A) X wp. (11)

Then, for all r € [0 2[, there ezists a constant C = C(A, T, || i1 , 12 ||oo,bo, ) such that
for all p = (p1,p2) € W, we have :

[ Lo i) i o L M)+ N ] e 2eaq

+ /Qw Ip1|? e‘”"dQ) (12)

op Op

with w' C @y
Setting
§=cand § =031, (13)
we have the following result

Lemma 2. [11] Under the hypothesis of the lemma 1, for all p = (p1,p2) € W, there
ezists a positive constant C = C(A,T,|| au ,by ||oc, co, ) such that

/leg (11 + lp2?) aQ < © (/Q(yM(p)yQHN(p)E) aQ +/Qw 52|p1]2dQ). (14)

At last, we deduct the following result.

Proposition 1. [11] Under the hypothesis of the lemma 2 , there exists a positive constant
C such that for all p = (p1,p2) € W, we have

/OT/Q ('pl(t’0’$)’2 + ’pQ(t’O’x)P) dxdt + /OA/Q (\01(0,(1737)’2 + ’P2(O,a,a:)|2> dxda
< ([ (MR +W0F)aQ + [ 2k aq) (15
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3.2. Study of the linear case :

In this paragraph, we study the following problem : For given functions fi1, iz, b1,b2 €
L*(Qr), B1, P2 € C?(Q) and f € L*(Q) find v € L?(Q.,) such that the solution (z1,z2) of

0 0 _ N
—% - % — Azi + [uz1 + finze = Gi(t,a,2)21(t,0,2) + f 4+ vxo
+ Ga(t, a,x)2(t, 0, z) in Q
822 322 ~ ~
= _ A = Golt t,0
e R T o(t, a,x)21(t,0,z) (16)
+ G1(t,a,x)22(t,0,x) in Q
zz =0 on X, i=1,2
zi(Tya,x) =0 in Qn, i=1,2
| zi(t,A;z) =0 in Qp, i=1,2
verifies
zi(0,a,z) =0in Qga, i=1,2. (17)
where,

Gi(t,a,z) = Bl(t, a,x)by (t,x) + Bg(t, a, x)by(t, x)
Gao(t,a,z) = Bu(t,a,x)bi(t, z) — Ba(t, a, z)ba(t, )

and for all i € {1,2}, fi; verifies (H}), §; satisfies (Ho) — (H3).
We can state the following result:

Theorem 3. Suppose that assumptions (H1) — (H3) hold and by,by € L?>(Qr). For any
function f € L*(Q) such that 0f € L*(Q), there exists a control ¥ in L*(Q,) such that
(0,21, 22) is solution of simultaneous null controllability problem (16)-(17). Moreover,
(0, 21, Z2) verifies

b= X (18)
1zillzme < C(10fl2) + I1f]2@) (19)
122llizme < C(10fln2@) + I1fr2@) (20)
where . = (U1, Ug) satisfies
(O ot
%—F%—Aﬂl—i—ﬂlﬂl—f—ﬂgﬂg =0 m  Q,
. |
E‘F%—Auz‘huﬂw‘{‘l@ul =0 in  Q,
i1 (0, a,z) = @in(0,a,2) =0 in  Qa, (21)
’111 = ﬁQ =0 on Z,
w (t,0,z) = Yi(a) in Qr,
\ ﬂg(t,o,l') = T2(a) in QT-
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where
A A
Tl(ﬂ) = bl/ Bl(al + fLQ)da + b2/ ﬁg(ﬂl — ag)da
0 0

A A
To() = bl/ Br(t1 + ag)da + bz/ Ba(tip — @1)da
0 0
Proof. We will do it in two steps as follows :

Step 1: There exists a control v, that leads to extinction each distribution z;_, z9_. For
any € > 0, we consider the functional defined on L?(Q,,) by

1 1
Je(v) = §||1)H%2(Qw) + 26/@ (21(0,a,2) + 23(0,a,2)) dQa, (22)
A

where z = (21, 2z2) is solution of (16). It is clear that J. is continuous, convex and coer-
cive on L?(Q,). Hence, the minimization problem of J. admits at least one solution v.
associated to (z1_, z2,) solution of (16). From the maximum principle (see [10]), we get

Ve = T’]-sXUJ ln Q (23)

where 1. = (1., 72, ) verifies the system

1%} 0 - . .
Ne | The _ Am, + pam, + fiame. =0 in @,
88t aﬁa
e ¢ TP Amp, + furm, + fizm, = 0 in Q,
ot Oa 0 5
Me =MN2. = on Z,
M. (O,CL, li) = _%Zle (O,CL,I) in QAv (24)
12, (O,CL, $) = _%225 (O,G,IE) in QAa
nla(t70ax) = Tl(ns) in Qr
L n2.(t,0,2) = Ta(ne) in Qr,

herein z. = (21, 22, ) is the solution of (16) associated to v..

Let us multiply the first (with v = v, and z; = z;_) and the second (with zo = z3.)
equalities of (16) by 71, and 7y, respectively, and integrate each equality by parts over Q.
Using (24) we deduct that

L Dma = Il + Ha 0 g+ Han 0 gy (29
S ) R

Elsewhere, Young’s inequality gives: [fm.|dQ < 2C|0f|72) + 57 [ 75m.dQ  for
0 20 02"

any C' > 0. Thus,

1 [ 1
(ni. +m3.) dQ.

2
/Q(_f)ms < 2C(10f72(q) + 2C Jg 62
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The lemma 2 allows, choosing C, the constant defined therein, to deduct that

1
/Q (~Fm.dQ < 20105 gy + 5 el (26)

From (25) and (26) one obtains :

vellr2ey < 2VC|0f L2 (27)
21,00, z2@) < V2eC|0f 12 (28)
22,00, )2y < V2eC|0f 12 (29)

We can extract subsequences denoted again (v.). and (zc). such that v. — ¥ weakly in
L*(Qy) and z;, — % ,i = 1,2 weakly in L?(U, H}(2)). Note that (21, Z3) is the unique
couple solution of (16)-(17) associated to 0. In the same ways, it follows that (ni_,n2.)
converge weakly to (71,72) and that (771, 772) satisfies (21). From (23) and (27) we obtain
that o = Mixw in Q.

Step 2 : Now we prove the inequalities (19)and (20).
Let set 2. = e™ !z, i = 1,2 where (2., z9.) verifies (16)-(17) and )¢ is a positive real
constant. Then Zi., 2o, verify the system

_832;6 _ 882;5 — AZic + 121 + [loZe. = C:h(t, a,x)z1e(t,0,x) + f+ Hoxw
A . + GQ(t, a,ZL‘)ZQE(t,O,:L') in Q
_aazig B 8528 — AZoe + fi122: + fizk1e = G:(Q(t, a,r)z1(t,0, ) (30)
+ G (t, (I,I)Zzg(t,o,x) in
Z2e = 0 on X, i=1,2
éig(T,a,x) = 0 in Qa 1=12
. 2i€(ta A,l’) = 0 in Qp, i=12

where :
Gi=e MG, f=e M 5. = e M, and 1 = 1 + Ao

Multiplying the first and the second equations of (30) by 2. and 2. respectively, and
integrating by parts over Q, we have thanks to Young’s inequality :

/|Vz15\ dQ+F1/ 51 PdQ — ’”2”"°/| 2 PdQ + (1—)/ 22 (1,0, 2)dQr

+/QA 22 (0,0, 2)dQa Qg/Q 82.(1,0,2)dQr < 204/ flaa+ g [ a0 @

and

/yvz«Qa\?deg/ 20:]2dQ — ”“2”°°/| LPdo+ (1- A4 / 52.(4,0,2)dOr
Q Q 2K;3




C. K. Somé, S. Sawadogo / Eur. J. Pure Appl. Math, 12 (3) (2019), 870-892 878

[ B0anien- 1002 [ 20.ma0r <0 (32)
Qa 2K Qr
where : o
Iy =Xo = 2C1[|fiz]loc — 4A (C2 + Cs3) [|B1, B2 101, b2, — [l [loe — 2G5,

Ty = Ao — 2K [|jinloc — 44 (K2 + K3) |51, B2l % b1, b2, — llfnllee  and the Cj, K; are
Young’s constants for i = 1,2, 3, 5.
Summing (31) and (32), one obtains :

/ Vi dQ + 11, / 210[2dQ + / V20, dQ + I / 2 [2dO+
Q Q Q Q

A A A A
<1_202_2K3>/ Zla(tox)dQT‘i‘(—QCg—m)/ z28(t0x)dQT

T T
+/ éfE(O,a,:v)dQA+/ 3.(0,0,2)dQa < 5= )f‘dQ+ . / 2dQ  (33)
Qa Qa
with Il 17l
_ 1, _ lI#2llec _ 1. _ lIK2llo
H1 = Fl 2K1 and H2 FQ 201 .

Choosing A and the Young’s constants such that: )
Ao > max {2C1 |fialloo + 44 (Ca + Cs) |81, BallZ 101, ball?y, + it [loo + 2C5 + 13l 11

2K ||fit]|oo + 4A (K2 + K3) 1|81, B2l 2 llb, ball?, + i + ”*;“g“;” +1}
and min {1 - m 2?}3 1-— ﬁ - m} > 1, One deducts from (27) and (33) that

/Q Veie2dQ + /Q 2?dQ < O (11 + 10712 (34)
[ty [era < ¢ (1 + 1) (35)
[ #womier < ¢ (e + 19ilime) (36)
| Awonior < (1l +107la) (37)

Consequently, the sequences (21_)e, (22.)e, (21.(+,0,+))e and (22.(-,0,+))s are bounded re-
spectively in L?(U, H}(Q)) and L?*(Qr). That ends this proof, thanks to limit’s results
obtained in the step 1. [ ]
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3.3. Study of the nonlinear case

Let b;i(t,x) = T; (fOAﬁi(t,a,x)zi(t, a,:c)da) ;i = 1;2 where T; € L*(R) ,5; i = 1,2
verify (Hy) — (Hs). we study here, the null controllability of the following system :

0 0 _ -
—% — % — Azy 4z + fioze = S1Th(&1)21(¢,0,2) + f 4+ vxw
+,32T2(§2)22(t,0,$) in Q
02 0% N st e = AiTa(E)x(t0,2)
ot 9a 2 T H122 T H221 = P1rd2(c2)21(t, Y, (38)

+/82T1(§1)Z2(t>0>$) in Q
zi =0 on X, =12
zi(T,a,z) =0 in Qa, 1=1,2
zi(t,A;z) =0 in Qr, i=1,2

The system (38) is nonlinear. Let
A= {9 € L*Qu) : (21, %) solves (38), verifies (17) and ¥ satifies (27)},
N = L*(Qr) x L*(Qr),
and define the multivalued mapping :

AZN—> 2N7 (61,52) — A(£1a£2) by

A A
A(&1,6) = {(/0 Blélda,/() ﬁg%gd@) : (21, Z2) is associated to v € A} .

The null controllability problem of (38) is reduced to find a fixed point of A. In order to
use the generalization of the Leray-Schauder’s fixed point theorem, we set

NP = {(517§2> € N : E|p € (Oa 1)7 (§1a§2) € pA(£1>§2)}'

The following proposition is a direct consequence of the Leray-Schauder’s fixed point
theorem (see [1]).

Proposition 2. Under the assumptions (Hy) — (Hs), the multivalued mapping A admits
at least one fized point.

Proof. We proceed in four steps :

Step 1: N, is bounded in N.
Let (&1,&2) € Np. Then, there exists p € (0,1), Z1, Z2 such that & = pfOA £121da and

&= PfoA BaZada. Then, [, |&*dQr < |61, Boll3 [, 27dQ , i = 1;2. So,

€11l z2(@p) + €2l 2(0r) < 181, Balloo (121l 22(0) + 11221l 12(0)) (39)

From the theorem 3, one deducts that there exists a positive constant C such that

I6llz2 @) + 1€2llny2(@r) < 2C1B1, Balloo (10£1122(Q) + Ifllz2(@) (40)
Hence, N, is bounded in A since L*(U; HY(Q)) C L*(Q).
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Step 2 : For all (§1,&) € NV, A(&1,&2) is closed and convex subset of AV.

Let (&1,&) € A(&1,&). Under the assumptions (H;) — (Hs), the system (38) admits a
solution and the corresponding control verifies (27). So, the set A(£1,&2) is non empty.
Elsewhere, like the mapping (£1,&2) — (21, Z2) is affine, then, the set A(£1,&2) is convex.
There rest to prove that this set is closed.

Let (1,72, )n C A(&1,&) which converges strongly towards (n1,72) in N. Then, for
each n € N, there exists a control o, € A and a corresponding solution (Z,,Z2,) of
(38) such that n;, = fOA BiZi,, i = 1,2. From the inequalities (27), (34) and (35) one
deduces that (Z1, , %, ) and ©,, are bounded respectively in (L?(Q))? and L?(Q,). Thus,
(m1,,,m2,,) is bounded in /. Hence, we can extract subsequences denoted still (z1,,, 22,,), On,
and (ny,, 192, ) respectively such that (Z1,, 22 ), U and (11,172, ) converge weakly towards
(%1, Z2), © and (n1,m2) respectively in (L?(Q))?, L*(Q.) and N with 7; = fOA Bizida, i =
1;2. Notice that (Z1, Z2) is solution of (38) and o verifies (27). So, (Z1, Z2) satisfies (17).
As consequence, (n1,12) € A(&1, &2).

Step 3 : A is a compact multivalued mapping.

Let B be a bounded subset of N, (§1,&) € B. Let (p1,,p2,) € A(&1,&2). Then, for all
n € N, there exists (Z1,, 22, ), solution of (38), and o, in (LQ(Q))2 and L?(Q,,) respec-
tively such that p;, = fOA BiZi,da, i = 1;2 and ¥, satisfies (27). So, (0p)n is bounded
in L2(Q,). Proceeding in the similar ways that the step 2 of the proof of the theo-
rem 3, one deducts from (27), (34)-(37) and the fact that H(Q) C L?(Q) that (Z1,, %2, )n
is bounded in (LQ(Q))z, and then, (p1,,p2,) is bounded in N. Thus, there exists subse-
quences of (Z1,, 22, ) and 7y, also denoted by (Z1,,, 22, ) which converges weakly in (LQ(Q))2
and L?(Q,). Moreover, the subsequences p;, = fOA BiZi,da, i = 1;2 of (p;,)n verify the
following system :

( a ‘
_ gin — Apy, —l—fOA /)1,3151nda+f0’4 Bipgia, da = Ki(&) in Qr
8 ( z. = .
B gin — A2, F fOA fn P2z, da + foA BapzZr,da = Kz(§,) in Qr (41)
Pl, = P2, = 0 on X
p1,(0,2) = p, (0,2) = 0 in Q
p1, (T, x) = pa, (T,z) = 0 in Q

where X7 = (0,7) x I', i1 = u1 + Ao and for all n € N,
A ) A
Ky, (6) = —/ (% + 95 L AB+ M252> Z1,da +/ B1(f + Tnxw)da
0 0
A A
+ / BET1(1,)Z1n(L, 0, 2)da + / B1B2To(82,)%2,(t, 0, x)da
0 0

n A
0By 0Z1,
i=1"0
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Ko, (&) = —/ (852 + 3 852 + ABy + ,LL2/81> Za, da +/ Bng &1,,)%2,(t,0,2)da
0

A
+/ 5152T2(52n)51n(ta0a$)da—22/ gﬁf agng da
0 =170

Under the assumptions (H;) — (Hs) the boundedness of B and of sequences (Z;, ) ¢ = 1;2,
from (27), (34)-(37), one deducts that there exists positive constants C; which depend on
IV Billss: 181; B2ll%, IT1, Talloo for i = 1;2 such that

(&) Baiqn < Cs (1051320, + 120y (42)

Now, multiplying the first and the second equations of (41) by p1, and po, respectively
and proceeding by integrations by parts over 7, one has

A
/ Vo1, PdQr + Ao/ pi,dQr = / (Kl(én) - / Bi(finz1, + ﬂ252n)da> 1, dQr
Qr Qr T 0

Since Z1,,, 22, verify (35)-(36), one deducts that K1(&,) — fo B1(fi121,, + fioZa, )da verifies
(42). So, using Young inequality, one has

A
/Q Vo PdQr+ o= 30 [ s,d0r < G (100132 + I Ra) (43
T

Qr

By analogy we show that
A2
| 19, Pa@r+ o) /Q 03,0Qr < & (10£132g.) + 17 132@))  (49)
T T

Taking A\g—1 > max(%, %), one deducts that (p1,,), and (p2, ), are bounded in L2((0,T); H*(Q)).
Let remark that the system (41) is equivalent to the system

0 .
- g;n = Ap1, +Aop1, = Ki(§) in Qr
8p2 .
_ Fén A )\ — K/ "
5t P2, + Aop2,, 5(6n) in Qr (45)
p1, =p2, = 0 on X
p1,(0,2) = p2,(0,z) = 0 in Q

with K| = Ki(&,) fo Bi(piz1, + poze,)da , K = Ky(&,) — fo Ba(p122, + poz1,)da
and (45) is a system of retrograde heat equations which the source terms are bounded in
L?(Qr) and the distributions are bounded in L?((0,T); H'(£2)). So, the sequences (pal—?)n
and (%), are bounded in L*((0,T); H(2)). Thus, we deduct from Aubin-Lions lemma
that there exists subsequences (pin,, )i and (pan, )k of (p1,,)n and (p,n)n respectively that

converge strongly towards p; and py respectively in L?(Qr). Hence, (p1,)n and (p2,)n
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converge weakly towards p; and py respectively in L?(Qr). Elsewhere, there exists sub-
sequences (Zin, )k of Z;,, i = 1,2 associated to (pin, )k, ¢ = 1,2 respectively that converge
weakly towards Z;, i = 1,2 respectively in L?(U; H'(£2)), say us more precisely in L?(Q),
since, L2(U; H*(Q)) € L*(Q). Thus, we have firsly

Pin, — pi weakly in L2(Qr) i=1;2 (46)

and secondly

A
Ping, — / BiZida weakly in L*(Qr) i = 1;2, (47)
0

then, from the uniqueness of the limit, for all i € {1,2}, one deducts that

A

Similarly, we can prove that (@), converges towards @ € L?(Q.,). Moreover, (Z1,22)
verifies (38) and o satisfies (27). From the theorem 3, one deducts that Z;, i = 1; 2 satisfies
(17).

Step 4 : A is upper semi-continuous on N

Let K be a closed subset of N'. Let (k1, , ko, )n C A~'(K) that converges strongly towards
(k1,ke) in N. Then, (ki,,k2,)n is bounded in N. Since A~1(K) = {(k1,k9) € K :
A(k1,ke) N K # 0}, there exists, a sequence (p1,, p2, )n € K that belongs to A(k1,,, ks, ).
Now, proceeding as in the previous step with K instead of B and with A=1(ky, , ko, ) instead
of A=1(£1,&2), one deduces that there exists subsequences still denoted by (p1,, p2, ) and
(D) which converge weakly to (p1,p2) and @ respectively in N and L?(Q,,), and for all
i € {1,2}, there exists %; € L?(U, H?(f2)) such that p;, verifies (47). So, for all i € {1,2},
pi verifies (48). Let mention that (Z1,Z2) solves (38), © verifies (27) and 2; i = 1,2
satisfies (17). Consequently,

(p1,p2) € A(k1, k2) (49)

From (43), (44) and Lions-Aubin lemma one deduces that the subsequence (p1,,, p2, ) of
the closed set K, converges strongly towards (p1, p2) in A/. Then,

(p1,p2) € K. (50)
(49) and (50) say that (ki,ks) € A~H(K). |

4. Proof of the main result

In this section, we study the controllability of the (8)-(9). In view of the above, let’s
set for any & = (&1, &) € L*(Qr) x L*(Qr)

7€) =F&+8&) ;3 Tl = G& — &),
Gl(g) = Bl(taavx)Tl(g) +62(tva’ $)T2(§)7 (51)
GQ(E) = Bl(ta G,.’E)Tl(f) - B2(t7aa x)T2<f)
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Now, we consider the system that follows

_Opi. Opi,

Y el AD1. + D1, + paPae = G1(6)P1.(t,0,2) 4+ f + Dexe

+G2(§)ﬁ28(t7 07 .’If) in Q7
— Apae + fup2e + p2p1. = G2(§)p1.(t,0,2)
+Gl(€)ﬁ28(taoax) in Qv
ﬁls :]/9\25 =0 on E,
i)\lg (T,a,a:) :i)\Q&‘(Tv a, $) 0 in QA7
ﬁlg(t’ A,I’) :ﬁQE(taAa IE) =0 in QT7

_ aﬁ% 61/7\25

ot oa

(52)

where : p;. = e Mtp; i = 1;2, f: e Mt f fi1 = fiy + Ao and U, = e oy, for any A9 > 0
with (p1.,pe.) a solution of (8) associated to v..

The controllability of the system (8) -(9) is summarized in the study of the null control-
lability of system (52). We consider the operator A from A" = L2(Qr) x L(Qr) into 2V
defined by

(€1, 62) — A(61, &) = Ag,(€1) X Ag, (&2) (53)

such that
Ag,(61) = {/ B1 (p1.(§1) + p2.(€2)) d }
Ag, (&) = {/ B2 (p1.(61) — P2.(&2)) d }

where (D1, (£1), P2. (€2)) solves (52), verifies (28)-(29) and the associated control v satisfies
(27).

The controllability of (52) is summarized to the study of the existence of a fixed point of
the mapping A [8]. We are going to show that A admits a fixed point. To do that, we
have to demonstrate that for each (£1,&2) € N, Ag,(&1) and Ag, (&2) are bounbed closed

convex sets in L?(Qr) and /AX(&, &) is upper semicontinuous. Let set
A A
V(@) = [ Ap)da+ [ ppan()da (54)
0 0

A A
Ya(€)(t, x) = /0 Bapr. (€1)da — /0 Bap (€2)da (55)

Proceeding as in the step 2 of the proof of the Proposition 3, one deducts from (41)-(42)
that Y;(§), i = 1;2 verify for any positive real A\ the following system :

L ovi(©)
ot

—AY;(§)+ X Y; = Ri(§) in Qr
Vi) = 0 on Ny (56)
Yi(€)(0,2) = 0 in Q
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where
A
Ri(§) = —/O (% + 9+ AR+ (1 + Mz)ﬂl) (1. (&1) + D2:(&2))da

A o~

+ [ AGHOR()(00.0) + ColPe(€)(1.0,2) + F+ B
A

+/0 B2 (G2(§)P1.(§1)(t,0,2) + G1(€)P2:(§2)(t,0,2)) da
noaA

851 a/\ls 8A25
_2;/0 8$i.(ap—ﬂ+ap—:w)da

A
Ry(§) = /O (% + 922 4+ ABy + o — Mz)) (P1.(€1) — P2=(§2))da

A

+ /0 Ba(Cr(E)Pr. (1,0,2) + GalE)pe(1,0,) + F + Te)da
A

- /0 By (Ga(€)B. (£,0,2) + G1(€)ac (1,0, ) da
n A N R

23 [ (B )

Under the hypothesis (H;) — (Ha4), taking Ao as in the proof of the theorem 1, one
deducts from (27), (34)-(37) that there exists a positive reals C7, Cy which depend on
181, B2llos, [1F, Glloo and [[u1, paloc such that

IR 1% < Cr (107122, + I1713) (57)
IR2() 1% < C (165152 + I113) (58)

Multiplying respectively the first equation of (56) by Y;(§), i = 1;2 and by integrating
by parts over Qr, we show (using Young’s inequality as in the step 2 of the proof of the
Proposition 3) that Y;, i = 1;2 are bounded in L?(0,7; H}(2)). Thus, for each i € {1;2},
the system (56) is a retrograde heat equation with the source term and the initial condition
are bounded respectively in L?(Q7) and L%(Q). Moreover, Y, a}ggg) i =1,2 are bounded
respectively in L2(0,T; H}(2)) and L?(0,T; H~1(£2)). Consequently, we conclude, thanks
to Lions-Aubin Lemma, that A¢, i = 1,2 are bounded and compact in L?(Qr) . Thus, A
is bounded and compact in N.

Now, let K a closed subset of N. Let (£1,,,&2,)n C K‘l(K) that converges strongly
towards (&1,&2) in N. Then, ((£1,,,&2,))n is bounded in N. Let remember that
AYK) = {(6,6) € K : A&,&)NK + 0}. So, there exists a sequence (Y1,,,Y2,)n €
K that belongs to Ag({ln) X Agll(fgn) = A1(&,,&,) such that Yy, and Ya, verifies
respectively (54) and (55) with respectively &1, and &, instead of {; and {3, and moreover,
the pair (p1,(&1,,), D2c(&2,)) satisfies (52) and the associated control v verifies (27). Using
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(56) and the estimations (34)-(37), we show (as the step 4 in the section 4) that the sequel
(Yi, )n , @ = 1,2 converge strongly to Y; ¢ = 1,2. Since p;_(&,,) , ¢ = 1,2 and n;_(&1,,) are
bounded independently to (§;,),7 = 1;2, then, for all n, R;(&,) ¢ = 1,2 are bounded in
L?*(Qr). Consequently, one can extract a subsequence still denoted by Y;, , R;(&,) i = 1,2
such that

Y, — Y in L*(Qr) i=1,2;
Ri(&) — Ri(§) i=1,2;

A A
/ i (6) — / i Bii, (&) da weakly in L*(Qr) i = 1,2
0 0
A A
/ fu1 f1p2. (&2, )da —>/ fi181Pa. (€2)da weakly in L*(Qr);
0 0

A A
/ 1o B (€1, )da —> / 3apr. (€1)da weakly in L2(Qr)
0 0

So, for each i € {1;2},Y;(§) is solution of (56), (P1.(&1),p2:(§2)) solves (52) and the
associated control v, = n;(&;) verifies (29). Hence, (Y1,Y2) € Ag(ﬁl) X Agll (&2) and so,

(&1,&) € K_I(K). Endly, since & —— p1. and & —— P are affine, then Ag,(§1) and
A¢, (&) are nonempty convex sets in L?(Qr) . Thus, the gragh G; = {{(&1, &), A&, &)}
of A is closed. Then, A(&p, &) = Ag,(&1) x Ag, (&2) is upper semicontinuous, and from
the Kakutani’s fixed point theorem [8], we conclude that A admits a fixed point. More
precisely, there exists £ = (£1,&2) € N such that

- A A
A(§)=€=</O B (6 + Pulen)do [ ﬁa(ﬁls(fl)—ﬁ%(&))da)

where (p1_, D2e) is solution of the system (52) with

(/ ﬁpsda> = fi(t,a,x) </ B1(p1. +p25)da> + B2(t, a, ) </ B2(P1, — P2 )d )
G- </0 Bzﬁsda> = pi(t,a,x)F (/o B1(p1. +ﬁ2s)da> — Ba(t,a,x) </ B2(P1. — D2e)d >

instead of G1(§) and G3(§) respectively.
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5. Application to the sentinel of detection

We consider for given positive functions G; = 1;2 the following systems :

oy; Oy )
6% + 8?21 — Ay +py; = 0 in Q,
yl(o) a, ﬂj) = 3/20 + Ti@\? in QA)
. (59)
yi(t,0,2) = G (/ Bz‘yz’da> in Qr,
0
_ gt NG on %,
Yi 0 on X\

where ¥; = (0,7) x (0,A) x I'; i = 1;2, the I';,i = 1;2 are such that I'; UTy = I" and
I' = 99 is the smooth boundary of €2, the functions u;, 8; and the reals T, A are defined
respectively as in section 1. y(t,a,z) is the distribution of individuals of age a at time
t and location z € ). The expressions fOA Biyida, i = 1;2 denote the distribution of
newborn individuals at time ¢ and location x. In an ovipare species it represents the total

eggs hatch at time ¢t and the position z and G; ( fOA Bz-yida) denote the distribution of

eggs that at time ¢ and the position 2. The functions G; i = 1;2 are of class C!, globally
lipschitz and their derivate functions verify G5(0) = 0 and moreover G, € L>®(R) are
globally lipschitz. The system (59) describes the evolution of the populations under the
inhospitable boundary conditions when the flux of population takes the form —Vy(¢,a,x).
As for the initial and boundary conditions of (59), y) and g; are given respectively in
LZ(QA)T@?, Aigi © = 1;2 are unknown where 7;, \; i = 1;2 are reals. As a matter of fact
the terms y? + 7',@? and g; + \;g; are qualified as incomplete data. Suppose that :

(i) for i=1;2 g; € L*(%;) and [[Gill p2(s) < 1,
(i) for i=1;2 7? € L*(Qa) and ||3]|12(g,) < 1,
(iii) for ¢ =1;2 the reals 7; and \; are unknown and small enough.

It is now assumed that measures y;ops , @ = 1;2 are available on Qo = U x O where O C 2
is the observation set and O Nw # (). Assume moreover that

Yi = Yiobs = Moi , 1 = 1;2 on Qo. (60)

where mq;, i = 1;2 are known functions belonging to L?(Qo). The aim is to calculate the
pollution terms A1g; and A2g> independently from the missing terms 7137? and myg with
one and only one sentinel. One of the methods to solve this problem is the least squares
method. The sentinel concept was introduced by J.L. Lions [7] to study the systems with
incomplete data. This concept relies on the following elements : the state y described by
a equation or a partial differential equations system, an observation function y.,s defined
on U x O where O is the observation set and a control function v to be determined.
Many papers use the definition of Lions in the theoretical aspect. As to applications,
we quote S. Sawadogo in [9] who studied the detection of incomplete parameters for a
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linear population dynamic model. In [10] the author made the same study for a nonlinear
population dynamic model. For the sentinel concept we refer to [9, 10] and the references
therein. In this paragraph we study the simultaneous sentinel concept for a coupled
nonlinear population dynamic model. We begin by the following proposition

Proposition 3. For each i = 1;2, the functions A\j — y;(Xi, 1) and 7, — y;(N\i, 74) are
differentiable at the point 0.

Proof. Let ;(t,a,z) = e (y;(\i, 5) — voi) i = 1;2 with yo; = y;(\;, 0) and for each
i =1;2, y;(\i, %) and yo; solve (59). Then y; i = 1;2 verify

( Oyi . Oy . . .
OZ + 8%1 — Ay + (i +Xo)yi = 0 in  Q,
5:(0,a,2) =77 in  Qa,
A
i(t,0,z) = e M <Gi </ Bz’yz‘da> (61)
Lo
-G, </ ﬁiymda> > in  Qr,
0
yi =0 on X.

System (61) is this one obtained in the proof of the Proposition 9 in [10] with here §;(¢, a, x),
G; respectively in the place of 5(a), F and 7, = 7, \; = A i = 1;2. Let multiply (61) by
y; and integrate by parts over Q. Since G;, i = 1;2 is globally lipschitz, proceeding as in
[10], we have

15+ 0, M z2(@r) < CH/BngoH/y\i”L?(QT)- (62)

One deducts from (62) that
IVUillz2(Qr) + il 2(0p) < O (63)
According to the expression of 7; and the relation (61), we get y; converges uniformly to

A
yo; on Q and / Biyi(Ai, Ti)da converges uniformly to / Biyoida on Qr. Set now z, = £
0 K2

0
and p;, = 25, — z; for ¢ = 1;2, where z; verifies

( . )
%+?—Azi+mzi =0 in Q,
a
zi(0,a,2) = A? in  Qa,
( ) Y A A 4 (64)
z(t,0,z) = G </ 5iymda)/ Bizida in  Qr,
0 0
yi =0 on X.

we show as in [10] that :
pr, — 0,2r, — 2z; i = 1;2 respectively in L? (U; Hj(2)) as 7, — 0.
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Likewise let u;(t,a,z) = e (y;(\;, i) — yi0) 4 = 1;2 with y;0 = (0, 7;) and for each
i =1;2, y;(\;, %) and y;o solve (59). Then u;, i = 1;2 verify

ou; 0Ou;
ot " da

— AU + (i + Xo)u; = 0 in  Q,
u;(0,a, x) in Qua,

Ui(t,0,x) = —*0t< < Bzy@-da> (65)

(/ /BZyOZda> ) in  Qr,

il,\‘ o on Ez
¢ on b \ Zl

Multiplying (65) by u; and by integrating by parts over Q, we have

1 1
/ (T, a,2)dQ 4 + / ﬁ?(t,A,a:)dQT+/ |V, |2dQ
2.JQa 2 Jor Q
+ [ (i +2)udQ =7 | —gidSi+ 5 [ 4 (t,0,2)dQr (66)
Q 5 00 2 Jor
From (62), taking Ao = 1+ C||8;||%, one has
[l + IV gy <X [ VEGE: (67)

Using Young inequality and according to hypothesis (i), there exists a positive constant
Cy such that

~ ~ 22
1l + IV 22y < ot (68)

Then 7, yZ converges uniformly to y;0 on Q and from the regularity of G;, ¢ = 1;2 we proove
A

that / Biyi(Ni, Ti)da converges uniformly to / Biyioda on Q.

One deducts from the proposition 9 in [10], that the functions A; — y(A;, 73) i = 1;2 are

differentiable. Set now z), = K—Z and py, = zy, — #; for i = 1,2, where z; verifies

( &zi 821 .
E—i— 9 —Azi+ iz =0 in Q,

zi(0,a,z) =0 in Qa,
A A 69)

%(t,0,z) = G (/ @‘ymda)/ Pizida in Qr, (
0 0

S /g\, on Zz’
LA on ¥\
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Then p), solves

0 0
&J’_&_Ap)\ +sz)\

ot Oa
px(0,a,)

DX, <t705$) = _>\0t |: (/ Bzyszf)
- Gl / B,ymda :|
0
A A
-G / Biyoida / Bizida
0 0

py, =20

in

in

on

Q,

Qa,

QT7

3.

889

We obtain the equality (66) when we multiply (70) by py, and integrate by parts over Q.
From the fact that the functions G; i = 1; 2 are globally lipschitz and A\; — y;(\;, 7) con-
verge uniformly, one deduces that the functions \; — y;(\;, 7;) i = 1;2 are differentiable

(see Proposition 9 in [10]).

In the sequel, we consider for h € L?(Qo) and w € L*(Q,,), the following functionals :

Si()\z'a'ri) = / hyi()\i,Ti)dQ +/ wyi()\i,n)d@ 7= 1;2.
QO Qw

We obtain from the Proposition 3 the following result.

Corollary 1. The functionals S; i = 1;2 are differentiable at the point (0,0) and

aTi Q(’)

0S;
O\

Qu

—(0,0) = / hy&dQ—l—/ wyy,dQ i=1;2
QO Qw

where for each i = 1;2, y,, solves the system :

yr, Oy,

+ - Ayn + WiYr, = 0 m Q,
ot da i .
yTi(07a7 .CC) =Y (CL,.T) in  Qa,
A A
Y (t, 0, :E) = G;' </ Biym'da) / Bizida in  Qr,
0 0
Yr, =0 on %,
and y,, solves the system
dyx, | Oyx, B ,
ot " oa Ayx, +piyn, =0 in  Q,
Ai (Oa a, l‘) = m  Qa,
Yx, (t’ 07 ZL’) = (/ 5zy01da> / 57,2/)\ da n QT;
_ /g\z on
Yoo = 0 on Z \ Y.

(71)

(74)
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Moreover
Yrir Yri € C((0,T); L3 (Q4)) N C((0, A); L*(Qr)) N L*(U, Hy () i =1;2. (76

Proof. We know that for each pair (\;,7;) € R2, (59) admits an unique solution
y(\i,7i) in C((0,T); L2(Qa)) N C((0,A); L2(Qr)) N L*(U, H}(2))? (see [5]). We have

Si(Ai =0,73) = / hy(Ai = 0,7;)dQ +/ wy(A; = 0,7;)dQ. So

Q(D Qw
Si()\i:O,Ti)—SZ'(O,O) _ hy()\z ZO,Ti) —yi(O,O)dQ
Ti Qo Ti
+ / wy(Ai - O7Ti) — yi(()?O) dQ
Ti

Passing to the limit as 7, — 0 one obtain (72). Likewise, since y(\; = 0,7;) — v;(0,0)
verifies (61) with A\g = 0, then from the regularities of the functions G; 1;2 and from the
y()‘i =0, Ti) — yi(07 0)

Proposition 3, one shows that y,, = lim solves (74) and verifies

7;—0 T
Ai, 7i = 0) — (0,0
(76) for i = 1;2. In the same ways setting y, = )\limo vy )\) il ), we proof
i i

that y, satisfies (73), (75) and (76). ]
Remark 3. S; i = 1;2 is say to be a simultaneous sentinel if there exists a control
w € L*(Q,,) such that

0S;

— =0i=1;2 7

0.0 =0 i =1 ()
and

||w”L2(Qw = min{||k||L2(Qw ke LQ(QW) and k wverifies (77) } (78)

Following [9, 10], we show that the simultaneous sentinel problem is equivalent to the
following null controllability problem : find w € L?*(Q,) with minimal norm such that
(q1,q2) satisfies

( O0¢; Oq A
o~ o — A+ e = BiG] ida | gi(t, 0,
% 9 qi + 11iq B z</Oﬁ1yo a>q( )
+ hxo + wxw in  Q,
qi(T7a7x) =0 in QA7 (79)
QZ(thux) =0 in QT7
k G =0 on 3,
and
Q1(0,a,l’) = QQ<O,G,(I)) =0in QA (80)
lwllz2(q.) = Tlgeig{llk!\} (81)

where £ = {k € L*(Q.,) such that (k,S;) satisfies (71) and (77)}.
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Remark 4. Setting G} = F and G, = G the problem (79)-(80) is exactly the problem
(1) that we have solved. Since & is closed and convex subset of L*(Q.), we can obtain w
to be of minimal norm in L?(Qy,) by minimizing the norm of k, when k € &.

6. Detection of the pollution term \;g; i = 1;2.

We know from the Corollary 1 that for each ¢ = 1;2 the function
y(Xi; 0) — :(0,0)

=l T e
solve (75). Using the Taylor formula at the neighbourhood of (0;0) we have :
0S; 0S; N
Si()\i,Ti) ~ SZ(O, 0) + )\187)\1(0,0) + 7—2877'1'(070) , 1= 1, 2. (83)

According to (77), one deducts from (71), (73) and from the expression of S;(0,0) that
(83) is equivalent to

/ (hxo + wxw)yi(Ai, 7:)dQ = / (hxo + wxw)yi(0,0)dQ + )\i/ (hxo +wxw)yr,dQ  (84)
Q Q Q
Thanks to (60), the equality (84) becomes

A /Q (hxo + wxw)ya,d@ = /Q (hxo + wyw) (moi — 1(0,0)dQ , i = 1,2, (85)

Elsewhere, multiplying the first equation of (79) by y,,, ¢ = 1;2 and by integratings by
parts over QQ, we have thanks to (75) and (80)

_. g ,
/ Gl dy = / (hxo + wxw)yxdQ i = 1;2. (86)
s, 0o Q
where o is the external unitary normal vector of I'. Then (73) becames
- 0gi ,
/ /\igi—qu R~ / (hxo + wxw)(mo; — ¥i(0,0))dQ , i = 1;2. (87)
5 do Q

Since g;, h, w, and y;(0,0) ¢ = 1;2 are known, (87) is a integral equation in \;g; that supply
some informations on the terms \;g; 7 = 1;2.
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