EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 12, No. 3, 2019, 1248-1259 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

On Companion *B*-algebras

Lynnel D. Naingue^{1,*}, Jocelyn P. Vilela¹

¹ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University- Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. This study introduces the concept of companion *B*-algebra and establishes some of its properties. Also, this paper introduces the notions of \odot -subalgebra and \odot -ideal of a companion *B*-algebra and investigates their relationship. Furthermore, this study establishes some homomorphic properties of \odot -subalgebra and \odot -ideal.

2010 Mathematics Subject Classifications: 08C99, 08A05, 08A30

Key Words and Phrases: Companion *B*-algebra, \odot -subalgebra, \odot -ideal, companion *B*-homomorphism

1. Introduction

Y. Imai and K. Iséki [7] first initiated the study of BCK-algebras in 1966. In the same year, K. Iséki [6] introduced another class of algebras, called BCI-algebras, which are generalizations of BCK-algebras.

In 1999, J. Neggers and H. S. Kim [9], introduced the notion of d-algebra which is another generalization of BCK-algebra. In 2007, P. J. Allen, H. S. Kim and J. Neggers [3] developed the concept of companion d-algebra to demonstrate considerable parallelism with the theory of BCK-algebras.

In 2002, J. Neggers and H. S. Kim [11] introduced and investigated another class of algebras called *B*-algebras and described it to have nice properties without being complicated. P. J. Allen, J. Neggers and H. S. Kim [2] proved that every group, under some conditions, determines a *B*-algebra. Also, M. Kondo and Y. B. Jun [8] proved the converse.

This paper extends the study of B-algebras by defining the concept of companion operation and companion B-algebras and establishing some of its properties. This study also introduces the concepts of subalgebra and ideal of a companion B-algebra and determines some of its homomorphic properties.

http://www.ejpam.com

© 2019 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v12i3.3495

Email addresses: lynneldnaingue13@gmail.com (L.D. Naingue), jocelyn.vilela@g.msuiit.edu.ph (J.P. Vilela)

2. Preliminaries

Definition 2.1. [11] A *B*-algebra (X, *, 0) is a nonempty set X with a constant 0 and a binary operation "*" satisfying the following axioms: for all x, y, z in X,

(I) x * x = 0, (III) (x * y) * z = x * (z * (0 * y)).

(II) x * 0 = x,

Example 2.2. The set of integers together with the usual subtraction and the constant 0 is a B-algebra.

Theorem 2.3. [11] If (X, *, 0) is a B-algebra, then the following hold: for any $x, y, z \in X$,

(a) (x * y) * (0 * y) = x(b) y * z = y * (0 * (0 * z))(c) x * (y * z) = (x * (0 * z)) * y(d) x * y = 0 implies x = y(e) 0 * x = 0 * y implies x = y(f) 0 * (0 * x) = x.

Theorem 2.4. [13] If (X, *, 0) is a B-algebra, then the following hold: for any $x, y, z \in X$, 0 * (x * y) = y * x.

Definition 2.5. [11] A *B*-algebra (X, *, 0) is *commutative* if for any $x, y \in X$, x * (0 * y) = y * (0 * x).

Theorem 2.6. [2] Let (X, *, 0) be a B-algebra. If $x \circ y = x * (0 * y)$ for all $x, y \in X$, then (X, \circ) is a group.

Theorem 2.7. [11] Let (G, \circ) be a group with identity e. If we define $x * y = x \circ y^{-1}$, then (G, *, e) is a B-algebra.

Definition 2.8. [12] Let (X, *, 0) be a *B*-algebra. A nonempty subset *H* of *X* is called a *B*-subalgebra of *X* if $x * y \in H$ for any $x, y \in H$.

Definition 2.9. [5] Let (X, *, 0) be a *B*-algebra. A nonempty subset *I* of *X* is called a *B*-ideal of *X* if $0 \in I$ and $x * y \in I$ and $y \in I$ imply $x \in I$.

Theorem 2.10. [1] Every subalgebra of a B-algebra X is an ideal.

Definition 2.11. [10] Let $(A, *_A, 0_A)$ and $(B, *_B, 0_B)$ be *B*-algebras. The mapping ϕ : $A \to B$ is called a *B*-homomorphism if $\phi(x *_A y) = \phi(x) *_B \phi(y)$ for any $x, y \in A$. The kernel of f is defined as $Kerf = \{x \in A : \phi(x) = 0_B\}$.

3. Basic Properties of Companion B-algebra

Definition 3.1. Let (X, *, 0) be a *B*-algebra. A binary operation \odot on X is called a subcompanion operation of X if it satisfies for any $x, y \in X$,

$$((x \odot y) * x) * y = 0 \tag{SC}$$

A subcompanion operation \odot is a *companion operation* of X if for any $x, y, z \in X$, (z * x) * y = 0 implies $z * (x \odot y) = 0$. (C) A *companion B-algebra* $(X, *, \odot, 0)$ is a B-algebra (X, *, 0) with companion operation \odot .

Example 3.2. Consider the *B*-algebra (X, *, 0) with * defined below [11]. Define an operation \odot on X as follows:

*	0	1	2	3	4	5			\odot	0	1	2	3	4	5
0	0	2	1	3	4	5	-	-	0	0	1	2	3	4	5
1	1	0	2	4	5	3			1	1	2	0	5	3	4
2	2	1	0	5	3	4			2	2	0	1	4	5	3
3	3	4	5	0	2	1			3	3	4	5	0	1	2
4	4	5	3	1	0	2			4	4	5	3	2	0	1
5	5	3	4	2	1	0			5	5	3	4	1	2	0

By routine calculations, $(X, *, \odot, 0)$ is a companion *B*-algebra.

Example 3.3. Consider the *B*-algebra $X = (\mathbb{Z}, -, 0)$. Then for all $x, y, z \in \mathbb{Z}$, ((x + y) - x) - y = 0 and if (z - x) - y = 0, then z - (x + y) = (z - x) - y = 0. Hence, the binary operation "+" is a companion operation of \mathbb{Z} . Therefore, $(\mathbb{Z}, -, +, 0)$ is a companion *B*-algebra.

Theorem 3.4. Let (X, *, 0) be a B-algebra. If X has a companion operation \odot , then it is unique.

Proof: Assume that the binary operations \odot_1 and \odot_2 are companion operations on X. Then by (SC) applied on \odot_1 , for any $x, y \in X$, $((x \odot_1 y) * x) * y = 0$. By (C) applied on \odot_2 , $(x \odot_1 y) * (x \odot_2 y) = 0$. Then by Theorem 2.3(d), $x \odot_1 y = x \odot_2 y$. Thus, $\odot_1 = \odot_2$ and the companion operation is unique.

Theorem 3.5. Let $(X, *, \odot, 0)$ be a companion B-algebra. Let \star be a binary operation on X such that for all $x, y, z \in X$, $(x * y) * z = x * (y \star z)$. Then $(X, *, \star, 0)$ is a companion B-algebra and \star is exactly the operation \odot .

Proof: Suppose $x, y, z \in X$. By hypothesis and Definition 2.1(I), $((x \star y) \star x) \star y = (x \star y) \star (x \star y) = 0$. Hence, \star is a subcompanion operation. Now, let $(z \star x) \star y = 0$. Then by hypothesis, $z \star (x \star y) = (z \star x) \star y = 0$. Thus, \star is a companion operation, which is unique by Theorem 3.4. Therefore, $(X, \star, \star, 0)$ is a companion B-algebra.

Example 3.6. Let $X = \{0, 1, 2, 3\}$ be a set with the following table of operations:

1250

L.D. Naingue, J.P. Vilela / Eur. J. Pure Appl. Math, 12 (3) (2019), 1248-1259

*	0	1	2	3	\odot	0	1	2	3
0	0	3	2	1	0	0	1	2	3
1	1	0	3	2	1	1	2	3	0
2	2	1	0	3	2	2	3	0	1
3	3	2	1	0	3	3	0	1	2

Then (X, *, 0) is a *B*-algebra [2] and by routine calculations, $(X, *, \odot, 0)$ is a companion B-algebra. If x = 1 and y = 3, then $((1*3)*1)*3 = 2 \neq 0$. Hence, * is not a subcompanion operation and so not a companion operation.

Remark 3.7. If (X, *, 0) is a B-algebra, then (X, *, *, 0) is not always a companion Balgebra.

In Example 3.6, the condition x * y = y * (0 * x) does not hold.

Example 3.8. Consider the Klein *B*-algebra $K_4 = \{0, 1, 2, 3\}$ with the following table of operation [4]:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	2	3	0	1
3	3	$ \begin{array}{c} 1 \\ 0 \\ 3 \\ 2 \end{array} $	1	0

Then x * y = y * (0 * x) for any $x, y \in K_4$ and $(K_4, *, *, 0)$ is a companion B-algebra.

The observation in Example 3.8 is generalized in the next theorem.

Theorem 3.9. Let (X, *, 0) be a B-algebra. X satisfies x * y = y * (0 * x) for any $x, y \in X$ if and only if (X, *, *, 0) is a companion B-algebra.

Proof: Suppose x * y = y * (0 * x). By Definition 2.1(III), assumption and Definition 2.1(I), ((x * y) * x) * y = (x * y) * (y * (0 * x)) = (x * y) * (x * y) = 0. Suppose (z * x) * y = 0.By Definition 2.1(III), z * (y * (0 * x)) = 0 and by assumption, z * (x * y) = 0. Therefore, (X, *, *, 0) is a companion B-algebra.

Conversely, suppose (X, *, *, 0) is a companion B-algebra. By Definition 3.1, (X, *, 0)is a *B*-algebra. Let $x, y \in X$. Then by (SC), ((x * y) * x) * y = 0. By Definition 2.1(III), (x * y) * (y * (0 * x)) = 0. So, x * y = y * (0 * x) by Theorem 2.3(d).

Lemma 3.10. Let $(X, *, \odot, 0)$ be a companion B-algebra. Then for any $x, y, z \in X$, the following hold:

- (a) $0 \odot y = y$ and $y \odot 0 = y$; (d) \odot is associative in X;
- (b) $x \odot y = y * (0 * x);$

- (e) $x = (x \odot y) \odot (0 * y);$
- (c) if x * z = y, then $x = z \odot y$;
- (f) if (X, *, 0) is commutative, then $x \odot y = x * (0 * y)$.

Proof: Let $(X, *, \odot, 0)$ be a companion *B*-algebra and $x, y, z \in X$.

- (a) In (SC), take x = 0, that is, $0 = ((0 \odot y) * 0) * y = (0 \odot y) * y$. By Theorem 2.3(d), $0 \odot y = y$. Now, take x = y and y = 0 in (SC). Then, $0 = ((y \odot 0) * y) * 0 = (y \odot 0) * y$. Hence, by Theorem 2.3(d), $y \odot 0 = y$.
- (b) By (SC), $((x \odot y) * x) * y = 0$. So, by Definition 2.1(III), $(x \odot y) * (y * (0 * x)) = 0$. Thus, by Theorem 2.3(d), $x \odot y = y * (0 * x)$.
- (c) If x * z = y, then (x * z) * y = y * y = 0. By (C), $x * (z \odot y) = 0$. Hence, by Theorem 2.3(d), $x = z \odot y$.
- (d) By Lemma 3.10(b), Definition 2.1(III) and Theorem 2.3(c), we have

$$\begin{aligned} (x \odot y) \odot z &= z * (0 * (x \odot y)) \\ &= z * (0 * (y * (0 * x))) \\ &= z * ((0 * x) * y) \\ &= (z * (0 * y)) * (0 * x) \\ &= (y \odot z) * (0 * x) \\ &= x \odot (y \odot z). \end{aligned}$$

Thus, the companion operation \odot is associative.

(e) Note that by Theorem 2.3(f), Definitions 2.1(I), 2.1(III), Theorems 2.3(b) and 2.4, and Lemma 3.10(b),

$$\begin{aligned} x &= 0 * (0 * x) \\ &= ((0 * y) * (0 * y)) * (0 * x) \\ &= (0 * y) * ((0 * x) * (0 * (0 * y))) \\ &= (0 * y) * ((0 * x) * y) \\ &= (0 * y) * (0 * (y * (0 * x))) \\ &= (0 * y) * (0 * (x \odot y)) \\ &= (x \odot y) \odot (0 * y). \end{aligned}$$

(f) Suppose (X, *, 0) is commutative. By Lemma 3.10(b) and Definition 2.5, $x \odot y = y * (0 * x) = x * (0 * y)$.

Notice that in Example 3.6, X is commutative and $1 \odot 1 = 2 \neq 0$. Hence, we have found $x = 1 \in X$ such that $x \odot x \neq 0$. Also, $1 \neq 3 = 0 * 1$. Thus, we have the following remark.

Remark 3.11. If $(X, *, \odot, 0)$ is a companion B-algebra, then $(X, \odot, 0)$ is not necessarily a B-algebra.

Proposition 3.12. Suppose $(X, *, \odot, 0)$ is a companion B-algebra. If (X, *, 0) is a commutative B-algebra and x = 0 * x for any $x \in X$, then $(X, \odot, 0)$ is a B-algebra.

Proof: Suppose (X, *, 0) is a commutative *B*-algebra and $x, y \in X$. By Lemma 3.10(b), Definition 2.5 and by assumption, $x \odot y = y * (0 * x) = x * (0 * y) = x * y$. Hence, $(X, \odot, 0) = (X, *, 0)$ is a *B*-algebra.

Example 3.13. Consider the companion *B*-algebra in Example 3.2 and consider the following table of operation:

\otimes	0	1	2	3	4	5	
0	0	1	2	3	4	5	
1	1	2	0	4	5	3	
2	2	0	1	5	3	4	
3	3	4	4	0	2	1	
4	4	3	5	1	0	2	
5	5	4	3	2	4 5 3 2 0 1	0	

Applying Theorem 2.6, we conclude that $(X, \otimes, 0)$ is the group where $x \otimes y = x * (0 * y)$. Note that $\odot \neq \otimes$ since $1 \odot 5 = 4 \neq 3 = 1 \otimes 5$. Thus, by definition of \otimes , $x \odot y \neq x \otimes y = x * (0 * y)$. Hence, we cannot apply Theorem 2.6 to immediately conclude that $(X, \odot, 0)$ is a group. However, the following theorem says so.

Theorem 3.14. Let $(X, *, \odot, 0)$ be a companion B-algebra. Then $(X, \odot, 0)$ is a group.

Proof: Note that $X \neq \emptyset$ since $0 \in X$. By Lemma 3.10(d) the companion operation \odot is associative. Note that by Lemma 3.10(a), 0 acts as the \odot -identity element in $(X, \odot, 0)$. Find y such that $x \odot y = 0$ and $y \odot x = 0$. Suppose $x \odot y = 0$. Then by Lemma 3.10(b), y * (0 * x) = 0. So, by Theorem 2.3(d), y = 0 * x. Also, suppose $y \odot x = 0$. By Lemma 3.10(b), x * (0 * y) = 0. Then by Theorem 2.3(f), (0 * (0 * x)) * (0 * y) = 0 and by Theorem 2.3(d), 0 * (0 * x) = 0 * y. Hence, by Theorem 2.3(e), y = 0 * x. Thus, we have found $x^{-1} = y = 0 * x$ in $(X, \odot, 0)$. Therefore, $(X, \odot, 0)$ is a group. ■

Remark 3.15. For any $x \in X$, $x^{-1} = 0 * x$ is called the inverse of x in the group $(X, \odot, 0)$.

Theorem 3.16. Let (G, \circ) be a group with identity e. Then G determines a companion B-algebra $(G, *, \otimes, e)$ where $x * y = x \circ y^{-1}$ and $x \otimes y = y * x^{-1}$.

Proof: Let (G, \circ) be a group with identity e and $x, y \in G$. Define two binary operations * and \otimes by $x * y = x \circ y^{-1}$ and $x \otimes y = y * x^{-1}$. By Theorem 2.7, (G, *, e) is a *B*-algebra. Observe that

$$((x \otimes y) * x) * y = ((x \otimes y) \circ x^{-1}) * y$$
$$= ((x \otimes y) \circ x^{-1}) \circ y^{-1}$$
$$= (x \otimes y) \circ (x^{-1} \circ y^{-1})$$
$$= (x \otimes y) \circ (y \circ x)^{-1}$$

$$= (y * x^{-1}) \circ (y \circ x)^{-1}$$

= $(y \circ (x^{-1})^{-1}) \circ (y \circ x)^{-1}$
= $(y \circ x) \circ (y \circ x)^{-1} = e.$

Hence, \otimes is a subcompanion operation on G. Suppose (z * x) * y = e. Then $z \circ (y \circ x)^{-1} = z \circ (x^{-1} \circ y^{-1}) = (z \circ x^{-1}) \circ y^{-1} = (z * x) \circ y^{-1} = (z * x) * y = e$. Observe that $z * (x \otimes y) = z * (y * x^{-1}) = z * (y \circ (x^{-1})^{-1}) = z * (y \circ x) = z \circ (y \circ x)^{-1} = e$. Hence, \otimes is a companion operation on G. Thus, $(G, *, \otimes, e)$ is a companion B-algebra.

Consider the *B*-algebra given in Example 3.2. Note that X is not commutative since there exist x = 3 and y = 4 such that $3*(0*4) = 2 \neq 1 = 4*(0*3)$. Define $x \circ y = x*(0*y)$. If x = 3 and y = 2, then $((x \circ y)*x)*y = 2 \neq 0$. Hence, \circ is not a subcompanion operation.

Remark 3.17. If (X, *, 0) is a B-algebra, then $(X, *, \circ, 0)$ is not necessarily a companion B-algebra where the operation \circ is defined by $x \circ y = x * (0 * y)$.

Example 3.18. Let $X = \{0, 1, 2\}$ be a set with the following table of operations, where $x \circ y = x * (0 * y)$:

	0					1	
0	0	2	1	 0	0	1	2
1	1	0	2	$1 \mid$	1	2	0
2	2	1	0	2	2	0	1

By routine calculations, (X, *, 0) is a commutative *B*-algebra and (X, *, 0, 0) is a companion *B*-algebra.

Theorem 3.19. If (X, *, 0) is a commutative B-algebra, then (X, *, 0, 0) is a companion B-algebra where $x \circ y = x * (0 * y)$.

Proof: Let (X, *, 0) be a commutative *B*-algebra and $x, y, z \in X$. Define the operation \circ by $x \circ y = x * (0 * y)$. Note that by Definition 2.1(III), the definition of \circ , Definitions 2.5 and 2.1(I), we have

$$\begin{aligned} ((x \circ y) * x) * y &= (x \circ y) * (y * (0 * x)) \\ &= (x * (0 * y)) * (y * (0 * x)) \\ &= (y * (0 * x)) * (y * (0 * x)) = 0. \end{aligned}$$

Now, suppose (z * x) * y = 0. Then by the definition of \circ , Definition 2.5 and Definition 2.1(III), $z * (x \circ y) = z * (x * (0 * y)) = z * (y * (0 * x)) = (z * x) * y = 0$. Hence, \circ is a companion operation. Therefore, $(X, *, \circ, 0)$ is a companion *B*-algebra.

4. On ⊙-subalgebras

Definition 4.1. Let $(X, *, \odot, 0)$ be a companion *B*-algebra and *I* be a nonempty subset of *X*. Then *I* is called a \odot -subalgebra if $x \odot y \in I$ for any $x, y, \in I$.

Example 4.2. In Example 3.2, the set $I_1 = \{0, 1, 2\}$ is a \odot -subalgebra of X, while $I_2 = \{3, 4, 5\}$ is not a \odot -subalgebra since $3 \odot 4 = 1 \notin I_2$.

Theorem 4.3. Let $(X, *, \odot, 0)$ be a companion B-algebra. If I is a B-ideal of X, then I is a \odot -subalgebra of X.

Proof: Let $(X, *, \odot, 0)$ be a companion *B*-algebra and *I* be a *B*-ideal of *X*. Then $I \neq \emptyset$. Let $x, y \in I$. By (SC), $((x \odot y) * x) * y = 0 \in I$. Since *I* is a *B*-ideal of *X* and $y \in I$, $(x \odot y) * x \in I$ by Definition 2.9. Furthermore, since $x \in I$, $x \odot y \in I$. Therefore, *I* is a \odot -subalgebra of *X*.

The converse of Theorem 4.3 need not be true in general. In the companion *B*-algebra $(\mathbb{Z}, -, +, 0)$ in Example 3.3, $I = \mathbb{Z}^+$ is a \odot -subalgebra since for all $x, y \in I$, $x + y \in I$. However, $0 \notin I$, thus, I is not a *B*-ideal. Hence, we have the following remark.

Remark 4.4. If I is a \odot -subalgebra of a companion B-algebra $(X, *, \odot, 0)$, then I is not necessarily a B-ideal.

Let $(\mathbb{Z}, -, +, 0)$ be the companion *B*-algebra given in Example 3.3. Then $I = \mathbb{Z}^+$ is a +-subalgebra. Note that $I_1 = \mathbb{Z}^+ \cup \{0\}$ is a *B*-ideal since $0 \in I_1$. Now, let $x - y \in I_1$ and $y \in I_1$. Then $x - y \ge 0$ and $y \ge 0$. So $x \ge 0$ and $x \in I_1$.

Theorem 4.5. Let $(X, *, \odot, 0)$ be a companion B-algebra. Suppose I is a \odot -subalgebra and $0 \in I$. Then I is a B-ideal.

Proof: Suppose I is a \odot -subalgebra of X and $0 \in I$. Let $u * v \in I$ and $v \in I$. Then by Theorem 2.3(a) and Lemma 3.10(b), $u = (u * v) * (0 * v) = v \odot (u * v) \in I$. Therefore, I is a B-ideal.

The following result follows from Theorem 4.3 and Theorem 2.10.

Corollary 4.6. Let $(X, *, \odot, 0)$ be a companion B-algebra. If S is a B-subalgebra of X, then S is a \odot -subalgebra of X.

Consider again the companion *B*-algebra $(\mathbb{Z}, -, +, 0)$ and +-subalgebra $I = \mathbb{Z}^+$. Notice that $3-5 = -2 \notin I$. Hence, *I* is not a *B*-subalgebra. Thus, we have the following remark.

Remark 4.7. A \odot -subalgebra of X is not necessarily a B-subalgebra.

Example 4.8. Consider Example 3.2 and \odot -subalgebra $I = \{0, 1, 2\}$. It is easy to see that I is a B-subalgebra and $0 * a \in I$, for any $a \in I$.

Theorem 4.9. Let $(X, *, \odot, 0)$ be a companion B-algebra. Suppose I is a \odot -subalgebra and $0 * a \in I$, for any $a \in I$. Then I is a B-subalgebra.

Proof: Suppose I is a \odot -subalgebra and $0 * a \in I$, for any $a \in I$. Let $x, y \in I$. Then $0 * y \in I$. By Theorem 2.3(b) and Lemma 3.10(b), $x * y = x * (0 * (0 * y)) = (0 * y) \odot x \in I$. Thus, I is a B-subalgebra.

Consider again the companion *B*-algebra $(\mathbb{Z}, -, +, 0)$ and +-subalgebra $I = \mathbb{Z}^+$. Take a = 2 and $b = 3 \in I$. Then $b^{-1} = 0 - b = -3$ and $a + b^{-1} = -1 \notin I$. Hence, *I* is not a subgroup of the group $(\mathbb{Z}, +, 0)$. So, we have the following remark.

Remark 4.10. If I is a \odot -subalgebra, then I is not necessarily a subgroup.

Consider the companion *B*-algebra $(\mathbb{Z}, -, +, 0)$, $H_1 = \mathbb{Z}^+$ and $H_2 = \mathbb{Z}^-$. Then H_1 and H_2 are +-subalgebras. However, $H_1 \cap H_2 = \emptyset$ and hence, not a +-subalgebra. Thus, we have the following remark.

Remark 4.11. The intersection of \odot -subalgebras need not be a \odot -subalgebra.

The proof of the following theorem is straightforward.

Theorem 4.12. Let $\{I_k : k \in K\}$ be a nonempty collection of \odot -subalgebras of a companion B-algebra. If $I = \bigcap_{k \in K} I_k \neq \emptyset$, then I is a \odot -subalgebra.

Consider Example 3.2. Take $A = \{0,3\}$ and $B = \{0,4\}$. Then A and B are \odot -subalgebras. However, $A \cup B = \{0,3,4\}$ is not a \odot -subalgebra since $3 \odot 4 = 1 \notin A \cup B$. Hence, we have the following remark.

Remark 4.13. The union of \odot -subalgebras need not be a \odot -subalgebra.

5. On \odot -ideals

Definition 5.1. Let $(X, *, \odot, 0)$ be a companion *B*-algebra. A nonempty subset *I* of *X* is called a \odot -*ideal* if it satisfies: for any $x, y \in X$,

(i) $0 \in I$ and (ii) $x \odot y \in I$ and $y \in I$ imply $x \in I$.

Example 5.2. In Example 3.2, $\{0,3\}$ is a \odot -ideal of X. But, $I = \{0,1\}$ is not a \odot -ideal since $2 \odot 1 = 0 \in I$ and $1 \in I$ but $2 \notin I$.

Lemma 5.3. Let $(X, *, \odot, 0)$ be a companion B-algebra and let I be a \odot -ideal. If $x \in I$, then $x^{-1} = 0 * x \in I$.

Proof: By Remark 3.15, $x^{-1} = 0 * x$ is the inverse of x. Thus, $(0 * x) \odot x = 0 \in I$. Since $x \in I$ and I is a \odot -ideal, then $0 * x \in I$.

Theorem 5.4. Let $(X, *, \odot, 0)$ be a companion B-algebra. If I is a \odot -ideal of X, then I is a \odot -subalgebra.

Proof: Let $x, y \in I$. Note that by Lemma 5.3, $0 * y \in I$. Observe that by Lemma 3.10(b), Theorems 2.4, 2.3(c), Definition 2.1(I) and Theorem 2.3(f),

$$(x \odot y) \odot (0 * y) = (y * (0 * x)) \odot (0 * y)$$

= (0 * y) * (0 * (y * (0 * x)))
= (0 * y) * ((0 * x) * y)
= ((0 * y) * (0 * y)) * (0 * x)
= 0 * (0 * x) = x.

Since $x \in I$, $0 * y \in I$ and I is a \odot -ideal, $x \odot y \in I$. Therefore, I is a \odot -subalgebra.

The converse of Theorem 5.4 need not be true in general. Note that $I = \mathbb{Z}^+$ is a \odot -subalgebra of $(\mathbb{Z}, -, +, 0)$ since for all $x, y \in I, x + y \in I$. However, $0 \notin I$. Hence, I is not a \odot -ideal. Thus, we have the following remark.

Remark 5.5. If I is a \odot -subalgebra, then I is not necessarily a \odot -ideal.

Example 5.6. Consider Example 3.6 and \odot -subalgebra $I = \{0, 2\}$. Observe that $0 * 0 = 0 \in I$ and $0 * 2 = 2 \in I$, so, $0 * a \in I$, for any $a \in I$. It is clear that I is also a \odot -ideal.

Theorem 5.7. Let $(X, *, \odot, 0)$ be a companion B-algebra. Suppose I is a \odot -subalgebra of X and $0 * a \in I$ for any $a \in I$. Then I is a \odot -ideal.

Proof: Suppose *I* is a \odot -subalgebra and $0 * a \in I$ for any $a \in I$. Let $x \in I$. Then $0 * x \in I$. Since *I* is \odot -subalgebra, $0 = x \odot (0 * x) \in I$. Now, suppose $u \odot v \in I$ and $v \in I$. Then $0 * v \in I$. By Lemma 3.10(e), $u = (u \odot v) \odot (0 * v)$. Since *I* is a \odot -subalgebra, $u \in I$. Therefore, *I* is a \odot -ideal.

Theorem 5.8. Let $(G, *, \odot, 0)$ be a companion B-algebra. A nonempty subset I of G is a \odot -ideal of G if and only if I is a subgroup of the group $(G, \odot, 0)$.

Proof: Let I be a \odot -ideal and $a, b \in I$. By Lemma 5.3, $b^{-1} = 0 * b \in I$. Because I is also a \odot -subalgebra by Theorem 5.4, $a \odot b^{-1} \in I$. Hence, I is a subgroup.

Conversely, suppose I is a subgroup of the group $(G, \odot, 0)$ and $a, b \in I$. Then $a \odot b^{-1} \in I$. Note that $a \odot a^{-1} = 0$. So, $0 \in I$. Suppose $x \odot y \in I$ and $y \in I$. Then by Lemma 3.10(e), $x = (x \odot y) \odot (0 * y) = (x \odot y) \odot y^{-1} \in I$. Thus, I is a \odot -ideal.

The following corollary follows from Theorem 5.8 and 5.4.

Corollary 5.9. Let $(G, *, \odot, 0)$ be a companion *B*-algebra. If *I* is a subgroup of the group $(G, \odot, 0)$, then *I* is a \odot -subalgebra.

The following corollary follows from Theorem 5.8.

Corollary 5.10. Let $\{I_k : k \in K\}$ be a nonempty collection of \odot -ideals of a companion *B*-algebra. If $I = \bigcap_{k \in K} I_k \neq \emptyset$, then *I* is a \odot -ideal.

Observe that in Example 3.2, $I_1 = \{0, 3\}$ and $I_2 = \{0, 4\}$ are \odot -ideals. But their union, $I = I_1 \cup I_2 = \{0, 3, 4\}$ is not a \odot -ideal because $1 \odot 4 = 3 \in I$ and $4 \in I$ but $1 \notin I$. Thus, we have the following remark.

Remark 5.11. The union of \odot -ideals need not be a \odot -ideal.

6. On Companion-B-homomorphisms

Definition 6.1. Let $(X, *_X, \odot_X, 0_X)$ and $(Y, *_Y, \odot_Y, 0_Y)$ be companion *B*-algebras. A map $f: X \to Y$ is called a *companion-B-homomorphism* if for any $a, b \in X$, $f(a *_X b) = f(a) *_Y f(b)$ and $f(a \odot_X b) = f(a) \odot_Y f(b)$.

Example 6.2. Let $m \in \mathbb{Z}$ be fixed. The function $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = mx, x \in \mathbb{Z}$, is a companion-*B*-homomorphism.

Remark 6.3. A companion B-homomorphism is a B-homomorphism and a group homomorphism.

Example 6.4. Consider the companion *B*-algebra $(X, *_1, \odot_1, 0)$ in Example 3.6 and $(Y, *_2, \odot_2, 0)$ in Example 3.8 where $\odot_2 = *_2$. Let $f: X \to Y$ and $f(x) = \begin{cases} 0, \text{ if } x = 0, 2, \\ 3, \text{ if } x = 1, 3. \end{cases}$

Then f is a companion-B-homomorphism.

Theorem 6.5. Suppose $f : X \to Y$ is a companion B-homomorphism. Then Kerf is a \odot -subalgebra of X.

Proof: Note that by Remark 6.3, *Kerf* is a subgroup of X. Thus, by Corollary 5.9, *Kerf* is also a \odot -subalgebra.

The proof of the following theorem is straightforward.

Theorem 6.6. Suppose $f : X \to Y$ is a companion B-homomorphism. If I is a \odot -subalgebra of X, then f(I) is a \odot -subalgebra of Y.

Theorem 6.7. Suppose $f : X \to Y$ is a companion B-epimorphism and B is a \odot -subalgebra of Y. Then $f^{-1}(B)$ is a \odot -subalgebra of X.

Proof: Let $B \subseteq Y$ be a ⊙-subalgebra of Y. Since $B \neq \emptyset$ and f is onto, there exist $a \in B$ and $x \in X$ such that f(x) = a. Hence, $x \in f^{-1}(B)$. So, $f^{-1}(B) \neq \emptyset$. Note that $f^{-1}(B) = \{a \in X : f(a) \in B\} \subseteq X$. Now, let $x, y \in f^{-1}(B)$. Then $f(x), f(y) \in B$. Because B is a ⊙-subalgebra, $f(x \odot y) = f(x) \odot f(y) \in B$. Hence, $x \odot y \in f^{-1}(B)$. Therefore, $f^{-1}(B)$ is a ⊙-subalgebra of X.

By Theorem 5.8, a \odot -ideal is equivalent to a subgroup of (X, \odot) . Thus, the following corollary holds:

Corollary 6.8. Suppose $f: X \to Y$ is a companion B-homomorphism.

- (i) If I is a \odot -ideal of X, then f(I) is a \odot -ideal of Y.
- (i) If $B \subseteq Y$ is a \odot -ideal of Y, then $f^{-1}(B)$ is a \odot -ideal of X.
- (iii) Kerf is a \odot -ideal of X.

References

- H.K. Abdullah and A.A. Atshan. Complete ideal and n-ideal of B-algebra. Applied Mathematical Sciences, 11(35):1705–1713, 2017.
- [2] P.J. Allen, H.S. Kim, and J. Neggers. B-algebras and groups. Scientiae Mathematicae Japonicae Online, 9:159–165, 2003.
- [3] P.J. Allen, H.S. Kim, and J. Neggers. Companion d-algebras. Mathematica Slovaca, 57(2):93–106, 2007.
- [4] J.C. Endam and R.C. Teves. Some properties of cyclic B-algebras. International Mathematical Forum, 11(8):387–394, 2016.
- [5] E. Fitria, S. Gemawati, and Kartini. Prime ideals in B-algebras. International Journal of Algebra, 11(7):301–309, 2017.
- [6] K. Iséki. On BCI-algebras. Math. Seminar Notes, 8:125–130, 1980.
- [7] K. Iséki and Tanaka. An introduction to theory of BCK-algebras. Math. Japonica, 23:1–26, 1978.
- [8] M. Kondo and Y.B. Jun. The class of B-algebras coincides with the class of groups. Scientiae Mathematicae Japonicae Online, 2:175–177, 2002.
- [9] J. Neggers and H.S. Kim. On *d*-algebras. *Mathematica Slovaca*, 49(1):19–26, 1999.
- [10] J. Neggers and H.S. Kim. A fundalmental theorem of B-homomorphism for Balgebras. Int. Math. J., 2(3):207–214, 2002.
- [11] J. Neggers and H.S. Kim. On B-algebras. Math. Vesnik, 54:21–29, 2002.
- [12] A. Walendziak. A note on normal subalgebras in B-algebras. Scientiae Mathematicae Japonicae Online, pages 49–53, 2005.
- [13] A. Walendziak. Some axiomizations of B-algebras. Mathematica Slovaca, 56(3):301– 306, 2006.