EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 3, 2019, 1248-1259
ISSN 1307-5543 - www.ejpam.com
Published by New York Business Global

On Companion B-algebras

Lynnel D. Naingue ${ }^{1, *}$, Jocelyn P. Vilela ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University- Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

This study introduces the concept of companion B-algebra and establishes some of its properties. Also, this paper introduces the notions of \odot-subalgebra and \odot-ideal of a companion B algebra and investigates their relationship. Furthermore, this study establishes some homomorphic properties of \odot-subalgebra and \odot-ideal.

2010 Mathematics Subject Classifications: 08C99, 08A05, 08A30
Key Words and Phrases: Companion B-algebra, \odot-subalgebra, \odot-ideal, companion B homomorphism

1. Introduction

Y. Imai and K. Iséki [7] first initiated the study of $B C K$-algebras in 1966. In the same year, K. Iséki [6] introduced another class of algebras, called $B C I$-algebras, which are generalizations of $B C K$-algebras.

In 1999, J. Neggers and H. S. Kim [9], introduced the notion of d-algebra which is another generalization of $B C K$-algebra. In 2007, P. J. Allen, H. S. Kim and J. Neggers [3] developed the concept of companion d-algebra to demonstrate considerable parallelism with the theory of $B C K$-algebras.

In 2002, J. Neggers and H. S. Kim [11] introduced and investigated another class of algebras called B-algebras and described it to have nice properties without being complicated. P. J. Allen, J. Neggers and H. S. Kim [2] proved that every group, under some conditions, determines a B-algebra. Also, M. Kondo and Y. B. Jun $[8]$ proved the converse.

This paper extends the study of B-algebras by defining the concept of companion operation and companion B-algebras and establishing some of its properties. This study also introduces the concepts of subalgebra and ideal of a companion B-algebra and determines some of its homomorphic properties.

[^0]
2. Preliminaries

Definition 2.1. [11] A B-algebra $(X, *, 0)$ is a nonempty set X with a constant 0 and a binary operation "*" satisfying the following axioms: for all x, y, z in X,
(I) $x * x=0$,
(III) $(x * y) * z=x *(z *(0 * y))$.
(II) $x * 0=x$,

Example 2.2. The set of integers together with the usual subtraction and the constant 0 is a B-algebra.

Theorem 2.3. [11] If $(X, *, 0)$ is a B-algebra, then the following hold: for any $x, y, z \in X$,
(a) $(x * y) *(0 * y)=x$
(d) $x * y=0$ implies $x=y$
(b) $y * z=y *(0 *(0 * z))$
(e) $0 * x=0 * y$ implies $x=y$
(c) $x *(y * z)=(x *(0 * z)) * y$
(f) $0 *(0 * x)=x$.

Theorem 2.4. [13] If $(X, *, 0)$ is a B-algebra, then the following hold: for any $x, y, z \in X$, $0 *(x * y)=y * x$.

Definition 2.5. [11] A B-algebra $(X, *, 0)$ is commutative if for any $x, y \in X, x *(0 * y)=$ $y *(0 * x)$.

Theorem 2.6. [2] Let $(X, *, 0)$ be a B-algebra. If $x \circ y=x *(0 * y)$ for all $x, y \in X$, then (X, \circ) is a group.

Theorem 2.7. [11] Let (G, \circ) be a group with identity e. If we define $x * y=x \circ y^{-1}$, then $(G, *, e)$ is a B-algebra.

Definition 2.8. [12] Let $(X, *, 0)$ be a B-algebra. A nonempty subset H of X is called a B-subalgebra of X if $x * y \in H$ for any $x, y \in H$.

Definition 2.9. [5] Let $(X, *, 0)$ be a B-algebra. A nonempty subset I of X is called a B-ideal of X if $0 \in I$ and $x * y \in I$ and $y \in I$ imply $x \in I$.

Theorem 2.10. [1] Every subalgebra of a B-algebra X is an ideal.
Definition 2.11. [10] Let $\left(A, *_{A}, 0_{A}\right)$ and $\left(B, *_{B}, 0_{B}\right)$ be B-algebras. The mapping ϕ : $A \rightarrow B$ is called a B-homomorphism if $\phi\left(x *_{A} y\right)=\phi(x) *_{B} \phi(y)$ for any $x, y \in A$. The kernel of f is defined as $\operatorname{Ker} f=\left\{x \in A: \phi(x)=0_{B}\right\}$.

3. Basic Properties of Companion B-algebra

Definition 3.1. Let $(X, *, 0)$ be a B-algebra. A binary operation \odot on X is called a subcompanion operation of X if it satisfies for any $x, y \in X$,

$$
\begin{equation*}
((x \odot y) * x) * y=0 \tag{SC}
\end{equation*}
$$

A subcompanion operation \odot is a companion operation of X if for any x, y, $z \in X, \quad(z * x) * y=0$ implies $z *(x \odot y)=0$. (C)
A companion B-algebra $(X, *, \odot, 0)$ is a B-algebra $(X, *, 0)$ with companion operation \odot.
Example 3.2. Consider the B-algebra ($X, *, 0$) with $*$ defined below [11]. Define an operation \odot on X as follows:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

\odot	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	0	5	3	4
2	2	0	1	4	5	3
3	3	4	5	0	1	2
4	4	5	3	2	0	1
5	5	3	4	1	2	0

By routine calculations, $(X, *, \odot, 0)$ is a companion B-algebra.
Example 3.3. Consider the B-algebra $X=(\mathbb{Z},-, 0)$. Then for all $x, y, z \in \mathbb{Z},((x+y)-$ $x)-y=0$ and if $(z-x)-y=0$, then $z-(x+y)=(z-x)-y=0$. Hence, the binary operation " + " is a companion operation of \mathbb{Z}. Therefore, $(\mathbb{Z},-,+, 0)$ is a companion B-algebra.

Theorem 3.4. Let $(X, *, 0)$ be a B-algebra. If X has a companion operation \odot, then it is unique.

Proof: Assume that the binary operations \odot_{1} and \odot_{2} are companion operations on X. Then by (SC) applied on \odot_{1}, for any $x, y \in X,\left(\left(x \odot_{1} y\right) * x\right) * y=0$. By (C) applied on $\odot_{2},\left(x \odot_{1} y\right) *\left(x \odot_{2} y\right)=0$. Then by Theorem 2.3(d), $x \odot_{1} y=x \odot_{2} y$. Thus, $\odot_{1}=\odot_{2}$ and the companion operation is unique.

Theorem 3.5. Let $(X, *, \odot, 0)$ be a companion B-algebra. Let \star be a binary operation on X such that for all $x, y, z \in X,(x * y) * z=x *(y \star z)$. Then $(X, *, \star, 0)$ is a companion B-algebra and \star is exactly the operation \odot.

Proof: Suppose $x, y, z \in X$. By hypothesis and Definition 2.1(I), $((x \star y) * x) * y=$ $(x \star y) *(x \star y)=0$. Hence, \star is a subcompanion operation. Now, let $(z * x) * y=0$. Then by hypothesis, $z *(x \star y)=(z * x) * y=0$. Thus, \star is a companion operation, which is unique by Theorem 3.4. Therefore, $(X, *, \star, 0)$ is a companion B-algebra.

Example 3.6. Let $X=\{0,1,2,3\}$ be a set with the following table of operations:

$*$	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

\odot	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Then $(X, *, 0)$ is a B-algebra [2] and by routine calculations, $(X, *, \odot, 0)$ is a companion B-algebra. If $x=1$ and $y=3$, then $((1 * 3) * 1) * 3=2 \neq 0$. Hence, $*$ is not a subcompanion operation and so not a companion operation.

Remark 3.7. If $(X, *, 0)$ is a B -algebra, then $(X, *, *, 0)$ is not always a companion B algebra.

In Example 3.6, the condition $x * y=y *(0 * x)$ does not hold.
Example 3.8. Consider the Klein B-algebra $K_{4}=\{0,1,2,3\}$ with the following table of operation [4]:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then $x * y=y *(0 * x)$ for any $x, y \in K_{4}$ and $\left(K_{4}, *, *, 0\right)$ is a companion B-algebra.
The observation in Example 3.8 is generalized in the next theorem.
Theorem 3.9. Let $(X, *, 0)$ be a B-algebra. X satisfies $x * y=y *(0 * x)$ for any $x, y \in X$ if and only if $(X, *, *, 0)$ is a companion B-algebra.

Proof: Suppose $x * y=y *(0 * x)$. By Definition 2.1(III), assumption and Definition 2.1(I), $((x * y) * x) * y=(x * y) *(y *(0 * x))=(x * y) *(x * y)=0$. Suppose $(z * x) * y=0$. By Definition 2.1(III), $z *(y *(0 * x))=0$ and by assumption, $z *(x * y)=0$. Therefore, $(X, *, *, 0)$ is a companion B-algebra.

Conversely, suppose $(X, *, *, 0)$ is a companion B-algebra. By Definition 3.1, $(X, *, 0)$ is a B-algebra. Let $x, y \in X$. Then by $(\mathrm{SC}),((x * y) * x) * y=0$. By Definition 2.1(III), $(x * y) *(y *(0 * x))=0$. So, $x * y=y *(0 * x)$ by Theorem 2.3(d).

Lemma 3.10. Let $(X, *, \odot, 0)$ be a companion B-algebra. Then for any $x, y, z \in X$, the following hold:
(a) $0 \odot y=y$ and $y \odot 0=y$;
(d) \odot is associative in X;
(b) $x \odot y=y *(0 * x)$;
(e) $x=(x \odot y) \odot(0 * y)$;
(c) if $x * z=y$, then $x=z \odot y$;
(f) if $(X, *, 0)$ is commutative, then $x \odot y=x *(0 * y)$.

Proof: Let $(X, *, \odot, 0)$ be a companion B-algebra and $x, y, z \in X$.
(a) In (SC), take $x=0$, that is, $0=((0 \odot y) * 0) * y=(0 \odot y) * y$. By Theorem 2.3(d), $0 \odot y=y$. Now, take $x=y$ and $y=0$ in (SC). Then, $0=((y \odot 0) * y) * 0=(y \odot 0) * y$. Hence, by Theorem 2.3(d), $y \odot 0=y$.
(b) By (SC), $((x \odot y) * x) * y=0$. So, by Definition 2.1(III), $(x \odot y) *(y *(0 * x))=0$. Thus, by Theorem 2.3(d), $x \odot y=y *(0 * x)$.
(c) If $x * z=y$, then $(x * z) * y=y * y=0$. By (C), $x *(z \odot y)=0$. Hence, by Theorem $2.3(\mathrm{~d}), x=z \odot y$.
(d) By Lemma 3.10(b), Definition 2.1(III) and Theorem 2.3(c), we have

$$
\begin{aligned}
(x \odot y) \odot z & =z *(0 *(x \odot y)) \\
& =z *(0 *(y *(0 * x))) \\
& =z *((0 * x) * y) \\
& =(z *(0 * y)) *(0 * x) \\
& =(y \odot z) *(0 * x) \\
& =x \odot(y \odot z) .
\end{aligned}
$$

Thus, the companion operation \odot is associative.
(e) Note that by Theorem 2.3(f), Definitions 2.1(I), 2.1(III), Theorems 2.3(b) and 2.4, and Lemma 3.10(b),

$$
\begin{aligned}
x & =0 *(0 * x) \\
& =((0 * y) *(0 * y)) *(0 * x) \\
& =(0 * y) *((0 * x) *(0 *(0 * y))) \\
& =(0 * y) *((0 * x) * y) \\
& =(0 * y) *(0 *(y *(0 * x))) \\
& =(0 * y) *(0 *(x \odot y)) \\
& =(x \odot y) \odot(0 * y) .
\end{aligned}
$$

(f) Suppose $(X, *, 0)$ is commutative. By Lemma 3.10(b) and Definition 2.5, $x \odot y=$ $y *(0 * x)=x *(0 * y)$.

Notice that in Example 3.6, X is commutative and $1 \odot 1=2 \neq 0$. Hence, we have found $x=1 \in X$ such that $x \odot x \neq 0$. Also, $1 \neq 3=0 * 1$. Thus, we have the following remark.

Remark 3.11. If $(X, *, \odot, 0)$ is a companion B -algebra, then $(X, \odot, 0)$ is not necessarily a B-algebra.

Proposition 3.12. Suppose $(X, *, \odot, 0)$ is a companion B-algebra. If $(X, *, 0)$ is a commutative B-algebra and $x=0 * x$ for any $x \in X$, then $(X, \odot, 0)$ is a B-algebra.

Proof: Suppose $(X, *, 0)$ is a commutative B-algebra and $x, y \in X$. By Lemma 3.10(b), Definition 2.5 and by assumption, $x \odot y=y *(0 * x)=x *(0 * y)=x * y$. Hence, $(X, \odot, 0)=(X, *, 0)$ is a B-algebra.

Example 3.13. Consider the companion B-algebra in Example 3.2 and consider the following table of operation:

\otimes	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	0	4	5	3
2	2	0	1	5	3	4
3	3	4	4	0	2	1
4	4	3	5	1	0	2
5	5	4	3	2	1	0

Applying Theorem 2.6, we conclude that $(X, \otimes, 0)$ is the group where $x \otimes y=x *(0 * y)$. Note that $\odot \neq \otimes$ since $1 \odot 5=4 \neq 3=1 \otimes 5$. Thus, by definition of $\otimes, x \odot y \neq x \otimes y=$ $x *(0 * y)$. Hence, we cannot apply Theorem 2.6 to immediately conclude that $(X, \odot, 0)$ is a group. However, the following theorem says so.

Theorem 3.14. Let $(X, *, \odot, 0)$ be a companion B-algebra. Then $(X, \odot, 0)$ is a group.
Proof: Note that $X \neq \varnothing$ since $0 \in X$. By Lemma 3.10(d) the companion operation \odot is associative. Note that by Lemma 3.10(a), 0 acts as the \odot-identity element in $(X, \odot, 0)$. Find y such that $x \odot y=0$ and $y \odot x=0$. Suppose $x \odot y=0$. Then by Lemma 3.10(b), $y *(0 * x)=0$. So, by Theorem 2.3(d), $y=0 * x$. Also, suppose $y \odot x=0$. By Lemma $3.10(\mathrm{~b}), x *(0 * y)=0$. Then by Theorem $2.3(\mathrm{f}),(0 *(0 * x)) *(0 * y)=0$ and by Theorem $2.3(\mathrm{~d}), 0 *(0 * x)=0 * y$. Hence, by Theorem 2.3(e), $y=0 * x$. Thus, we have found $x^{-1}=y=0 * x$ in $(X, \odot, 0)$. Therefore, $(X, \odot, 0)$ is a group.

Remark 3.15. For any $x \in X, x^{-1}=0 * x$ is called the inverse of x in the group $(X, \odot, 0)$.
Theorem 3.16. Let (G, \circ) be a group with identity e. Then G determines a companion B-algebra $(G, *, \otimes, e)$ where $x * y=x \circ y^{-1}$ and $x \otimes y=y * x^{-1}$.

Proof: Let (G, \circ) be a group with identity e and $x, y \in G$. Define two binary operations * and \otimes by $x * y=x \circ y^{-1}$ and $x \otimes y=y * x^{-1}$. By Theorem 2.7, $(G, *, e)$ is a B-algebra. Observe that

$$
\begin{aligned}
((x \otimes y) * x) * y & =\left((x \otimes y) \circ x^{-1}\right) * y \\
& =\left((x \otimes y) \circ x^{-1}\right) \circ y^{-1} \\
& =(x \otimes y) \circ\left(x^{-1} \circ y^{-1}\right) \\
& =(x \otimes y) \circ(y \circ x)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(y * x^{-1}\right) \circ(y \circ x)^{-1} \\
& =\left(y \circ\left(x^{-1}\right)^{-1}\right) \circ(y \circ x)^{-1} \\
& =(y \circ x) \circ(y \circ x)^{-1}=e .
\end{aligned}
$$

Hence, \otimes is a subcompanion operation on G. Suppose $(z * x) * y=e$. Then $z \circ$ $(y \circ x)^{-1}=z \circ\left(x^{-1} \circ y^{-1}\right)=\left(z \circ x^{-1}\right) \circ y^{-1}=(z * x) \circ y^{-1}=(z * x) * y=e$. Observe that $z *(x \otimes y)=z *\left(y * x^{-1}\right)=z *\left(y \circ\left(x^{-1}\right)^{-1}\right)=z *(y \circ x)=z \circ(y \circ x)^{-1}=e$. Hence, \otimes is a companion operation on G. Thus, $(G, *, \otimes, e)$ is a companion B-algebra.

Consider the B-algebra given in Example 3.2. Note that X is not commutative since there exist $x=3$ and $y=4$ such that $3 *(0 * 4)=2 \neq 1=4 *(0 * 3)$. Define $x \circ y=x *(0 * y)$. If $x=3$ and $y=2$, then $((x \circ y) * x) * y=2 \neq 0$. Hence, o is not a subcompanion operation.

Remark 3.17. If $(X, *, 0)$ is a B-algebra, then $(X, *, \circ, 0)$ is not necessarily a companion B -algebra where the operation \circ is defined by $x \circ y=x *(0 * y)$.

Example 3.18. Let $X=\{0,1,2\}$ be a set with the following table of operations, where $x \circ y=x *(0 * y)$:

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

\circ	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

By routine calculations, $(X, *, 0)$ is a commutative B-algebra and $(X, *, \circ, 0)$ is a companion B-algebra.

Theorem 3.19. If $(X, *, 0)$ is a commutative B-algebra, then $(X, *, \circ, 0)$ is a companion B-algebra where $x \circ y=x *(0 * y)$.

Proof: Let $(X, *, 0)$ be a commutative B-algebra and $x, y, z \in X$. Define the operation o by $x \circ y=x *(0 * y)$. Note that by Definition 2.1(III), the definition of \circ, Definitions 2.5 and 2.1(I), we have

$$
\begin{aligned}
((x \circ y) * x) * y & =(x \circ y) *(y *(0 * x)) \\
& =(x *(0 * y)) *(y *(0 * x)) \\
& =(y *(0 * x)) *(y *(0 * x))=0
\end{aligned}
$$

Now, suppose $(z * x) * y=0$. Then by the definition of \circ, Definition 2.5 and Definition 2.1(III), $z *(x \circ y)=z *(x *(0 * y))=z *(y *(0 * x))=(z * x) * y=0$. Hence, \circ is a companion operation. Therefore, $(X, *, \circ, 0)$ is a companion B-algebra.

4. On \odot-subalgebras

Definition 4.1. Let $(X, *, \odot, 0)$ be a companion B-algebra and I be a nonempty subset of X. Then I is called a \odot-subalgebra if $x \odot y \in I$ for any $x, y, \in I$.

Example 4.2. In Example 3.2, the set $I_{1}=\{0,1,2\}$ is a \odot-subalgebra of X, while $I_{2}=\{3,4,5\}$ is not a \odot-subalgebra since $3 \odot 4=1 \notin I_{2}$.
Theorem 4.3. Let $(X, *, \odot, 0)$ be a companion B-algebra. If I is a B-ideal of X, then I is $a \odot$-subalgebra of X.
Proof: Let $(X, *, \odot, 0)$ be a companion B-algebra and I be a B-ideal of X. Then $I \neq \varnothing$. Let $x, y \in I$. By $(\mathrm{SC}),((x \odot y) * x) * y=0 \in I$. Since I is a B-ideal of X and $y \in I$, $(x \odot y) * x \in I$ by Definition 2.9. Furthermore, since $x \in I, x \odot y \in I$. Therefore, I is a \odot-subalgebra of X.

The converse of Theorem 4.3 need not be true in general. In the companion B-algebra $(\mathbb{Z},-,+, 0)$ in Example 3.3, $I=\mathbb{Z}^{+}$is a \odot-subalgebra since for all $x, y \in I, x+y \in I$. However, $0 \notin I$, thus, I is not a B-ideal. Hence, we have the following remark.

Remark 4.4. If I is $a \odot$-subalgebra of a companion B -algebra $(X, *, \odot, 0)$, then I is not necessarily a B-ideal.

Let $(\mathbb{Z},-,+, 0)$ be the companion B-algebra given in Example 3.3. Then $I=\mathbb{Z}^{+}$is a + -subalgebra. Note that $I_{1}=\mathbb{Z}^{+} \cup\{0\}$ is a B-ideal since $0 \in I_{1}$. Now, let $x-y \in I_{1}$ and $y \in I_{1}$. Then $x-y \geq 0$ and $y \geq 0$. So $x \geq 0$ and $x \in I_{1}$.

Theorem 4.5. Let $(X, *, \odot, 0)$ be a companion B-algebra. Suppose I is a \odot-subalgebra and $0 \in I$. Then I is a B-ideal.

Proof: Suppose I is a \odot-subalgebra of X and $0 \in I$. Let $u * v \in I$ and $v \in I$. Then by Theorem 2.3(a) and Lemma 3.10(b), $u=(u * v) *(0 * v)=v \odot(u * v) \in I$. Therefore, I is a B-ideal.

The following result follows from Theorem 4.3 and Theorem 2.10.
Corollary 4.6. Let $(X, *, \odot, 0)$ be a companion B-algebra. If S is a B-subalgebra of X, then S is a \odot-subalgebra of X.

Consider again the companion B-algebra $(\mathbb{Z},-,+, 0)$ and + -subalgebra $I=\mathbb{Z}^{+}$. Notice that $3-5=-2 \notin I$. Hence, I is not a B-subalgebra. Thus, we have the following remark.

Remark 4.7. $A \odot$-subalgebra of X is not necessarily a B-subalgebra.
Example 4.8. Consider Example 3.2 and \odot-subalgebra $I=\{0,1,2\}$. It is easy to see that I is a B-subalgebra and $0 * a \in I$, for any $a \in I$.

Theorem 4.9. Let $(X, *, \odot, 0)$ be a companion B-algebra. Suppose I is a \odot-subalgebra and $0 * a \in I$, for any $a \in I$. Then I is a B-subalgebra.

Proof: Suppose I is a \odot-subalgebra and $0 * a \in I$, for any $a \in I$. Let $x, y \in I$. Then $0 * y \in I$. By Theorem 2.3(b) and Lemma 3.10(b), $x * y=x *(0 *(0 * y))=(0 * y) \odot x \in I$. Thus, I is a B-subalgebra.

Consider again the companion B-algebra $(\mathbb{Z},-,+, 0)$ and + -subalgebra $I=\mathbb{Z}^{+}$. Take $a=2$ and $b=3 \in I$. Then $b^{-1}=0-b=-3$ and $a+b^{-1}=-1 \notin I$. Hence, I is not a subgroup of the group $(\mathbb{Z},+, 0)$. So, we have the following remark.

Remark 4.10. If I is a \odot-subalgebra, then I is not necessarily a subgroup.
Consider the companion B-algebra $(\mathbb{Z},-,+, 0), H_{1}=\mathbb{Z}^{+}$and $H_{2}=\mathbb{Z}^{-}$. Then H_{1} and H_{2} are +-subalgebras. However, $H_{1} \cap H_{2}=\varnothing$ and hence, not a +-subalgebra. Thus, we have the following remark.

Remark 4.11. The intersection of \odot-subalgebras need not be $a \odot$-subalgebra.
The proof of the following theorem is straightforward.
Theorem 4.12. Let $\left\{I_{k}: k \in K\right\}$ be a nonempty collection of \odot-subalgebras of a companion B-algebra. If $I=\bigcap_{k \in K} I_{k} \neq \varnothing$, then I is $a \odot$-subalgebra.

Consider Example 3.2. Take $A=\{0,3\}$ and $B=\{0,4\}$. Then A and B are $\odot-$ subalgebras. However, $A \cup B=\{0,3,4\}$ is not a \odot-subalgebra since $3 \odot 4=1 \notin A \cup B$. Hence, we have the following remark.

Remark 4.13. The union of \odot-subalgebras need not be a \odot-subalgebra.

5. On \odot-ideals

Definition 5.1. Let $(X, *, \odot, 0)$ be a companion B-algebra. A nonempty subset I of X is called a \odot-ideal if it satisfies: for any $x, y \in X$,

$$
\text { (i) } 0 \in I \text { and (ii) } x \odot y \in I \text { and } y \in I \text { imply } x \in I
$$

Example 5.2. In Example 3.2, $\{0,3\}$ is a \odot-ideal of X. But, $I=\{0,1\}$ is not a \odot-ideal since $2 \odot 1=0 \in I$ and $1 \in I$ but $2 \notin I$.

Lemma 5.3. Let $(X, *, \odot, 0)$ be a companion B-algebra and let I be $a \odot$-ideal. If $x \in I$, then $x^{-1}=0 * x \in I$.

Proof: By Remark 3.15, $x^{-1}=0 * x$ is the inverse of x. Thus, $(0 * x) \odot x=0 \in I$. Since $x \in I$ and I is a \odot-ideal, then $0 * x \in I$.

Theorem 5.4. Let $(X, *, \odot, 0)$ be a companion B-algebra. If I is a \odot-ideal of X, then I is a \odot-subalgebra.

Proof: Let $x, y \in I$. Note that by Lemma $5.3,0 * y \in I$. Observe that by Lemma 3.10(b), Theorems 2.4, 2.3(c), Definition 2.1(I) and Theorem 2.3(f),

$$
\begin{aligned}
(x \odot y) \odot(0 * y) & =(y *(0 * x)) \odot(0 * y) \\
& =(0 * y) *(0 *(y *(0 * x))) \\
& =(0 * y) *((0 * x) * y) \\
& =((0 * y) *(0 * y)) *(0 * x) \\
& =0 *(0 * x)=x .
\end{aligned}
$$

Since $x \in I, 0 * y \in I$ and I is a \odot-ideal, $x \odot y \in I$. Therefore, I is a \odot-subalgebra.
The converse of Theorem 5.4 need not be true in general. Note that $I=\mathbb{Z}^{+}$is a \odot-subalgebra of $(\mathbb{Z},-,+, 0)$ since for all $x, y \in I, x+y \in I$. However, $0 \notin I$. Hence, I is not a \odot-ideal. Thus, we have the following remark.

Remark 5.5. If I is a \odot-subalgebra, then I is not necessarily $a \odot$-ideal.
Example 5.6. Consider Example 3.6 and \odot-subalgebra $I=\{0,2\}$. Observe that $0 * 0=$ $0 \in I$ and $0 * 2=2 \in I$, so, $0 * a \in I$, for any $a \in I$. It is clear that I is also a \odot-ideal.

Theorem 5.7. Let $(X, *, \odot, 0)$ be a companion B-algebra. Suppose I is a \odot-subalgebra of X and $0 * a \in I$ for any $a \in I$. Then I is $a \odot$-ideal.

Proof: Suppose I is a \odot-subalgebra and $0 * a \in I$ for any $a \in I$. Let $x \in I$. Then $0 * x \in I$. Since I is \odot-subalgebra, $0=x \odot(0 * x) \in I$. Now, suppose $u \odot v \in I$ and $v \in I$. Then $0 * v \in I$. By Lemma 3.10(e), $u=(u \odot v) \odot(0 * v)$. Since I is a \odot-subalgebra, $u \in I$. Therefore, I is a \odot-ideal.

Theorem 5.8. Let $(G, *, \odot, 0)$ be a companion B-algebra. A nonempty subset I of G is a \odot-ideal of G if and only if I is a subgroup of the group $(G, \odot, 0)$.
Proof: Let I be a \odot-ideal and $a, b \in I$. By Lemma $5.3, b^{-1}=0 * b \in I$. Because I is also a \odot-subalgebra by Theorem 5.4, $a \odot b^{-1} \in I$. Hence, I is a subgroup.

Conversely, suppose I is a subgroup of the group $(G, \odot, 0)$ and $a, b \in I$. Then $a \odot b^{-1} \in I$. Note that $a \odot a^{-1}=0$. So, $0 \in I$. Suppose $x \odot y \in I$ and $y \in I$. Then by Lemma 3.10(e), $x=(x \odot y) \odot(0 * y)=(x \odot y) \odot y^{-1} \in I$. Thus, I is a \odot-ideal.

The following corollary follows from Theorem 5.8 and 5.4.
Corollary 5.9. Let $(G, *, \odot, 0)$ be a companion B-algebra. If I is a subgroup of the group $(G, \odot, 0)$, then I is a \odot-subalgebra.

The following corollary follows from Theorem 5.8.
Corollary 5.10. Let $\left\{I_{k}: k \in K\right\}$ be a nonempty collection of \odot-ideals of a companion B-algebra. If $I=\bigcap_{k \in K} I_{k} \neq \varnothing$, then I is a \odot-ideal.

Observe that in Example 3.2, $I_{1}=\{0,3\}$ and $I_{2}=\{0,4\}$ are \odot-ideals. But their union, $I=I_{1} \cup I_{2}=\{0,3,4\}$ is not a \odot-ideal because $1 \odot 4=3 \in I$ and $4 \in I$ but $1 \notin I$. Thus, we have the following remark.

Remark 5.11. The union of \odot-ideals need not be $a \odot$-ideal.

6. On Companion- \boldsymbol{B}-homomorphisms

Definition 6.1. Let $\left(X, *_{X}, \odot_{X}, 0_{X}\right)$ and $\left(Y, *_{Y}, \odot_{Y}, 0_{Y}\right)$ be companion B-algebras. A map $f: X \rightarrow Y$ is called a companion-B-homomorphism if for any $a, b \in X$,

$$
f\left(a *_{X} b\right)=f(a) *_{Y} f(b) \text { and } f\left(a \odot_{X} b\right)=f(a) \odot_{Y} f(b) .
$$

Example 6.2. Let $m \in \mathbb{Z}$ be fixed. The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=m x, x \in \mathbb{Z}$, is a companion- B-homomorphism.

Remark 6.3. A companion B-homomorphism is a B-homomorphism and a group homomorphism.

Example 6.4. Consider the companion B-algebra ($X, *_{1}, \odot_{1}, 0$) in Example 3.6 and $\left(Y, *_{2}, \odot_{2}, 0\right)$ in Example 3.8 where $\odot_{2}=*_{2}$. Let $f: X \rightarrow Y$ and $f(x)=\left\{\begin{array}{l}0, \text { if } x=0,2, \\ 3, \text { if } x=1,3 .\end{array}\right.$
Then f is a companion- B-homomorphism.
Theorem 6.5. Suppose $f: X \rightarrow Y$ is a companion B-homomorphism. Then Kerf is a \odot-subalgebra of X.

Proof: Note that by Remark 6.3, $\operatorname{Ker} f$ is a subgroup of X. Thus, by Corollary 5.9, $\operatorname{Ker} f$ is also a \odot-subalgebra.

The proof of the following theorem is straightforward.
Theorem 6.6. Suppose $f: X \rightarrow Y$ is a companion B-homomorphism. If I is a $\odot-$ subalgebra of X, then $f(I)$ is $a \odot$-subalgebra of Y.

Theorem 6.7. Suppose $f: X \rightarrow Y$ is a companion B-epimorphism and B is $a \odot-$ subalgebra of Y. Then $f^{-1}(B)$ is a \odot-subalgebra of X.

Proof: Let $B \subseteq Y$ be a \odot-subalgebra of Y. Since $B \neq \varnothing$ and f is onto, there exist $a \in B$ and $x \in X$ such that $f(x)=a$. Hence, $x \in f^{-1}(B)$. So, $f^{-1}(B) \neq \varnothing$. Note that $f^{-1}(B)=\{a \in X \quad: f(a) \in B\} \subseteq X$. Now, let $x, y \in f^{-1}(B)$. Then $f(x), f(y) \in B$. Because B is a \odot-subalgebra, $f(x \odot y)=f(x) \odot f(y) \in B$. Hence, $x \odot y \in f^{-1}(B)$. Therefore, $f^{-1}(B)$ is a \odot-subalgebra of X.

By Theorem 5.8, a \odot-ideal is equivalent to a subgroup of (X, \odot). Thus, the following corollary holds:

Corollary 6.8. Suppose $f: X \rightarrow Y$ is a companion B-homomorphism.
(i) If I is $a \odot$-ideal of X, then $f(I)$ is $a \odot$-ideal of Y.
(i) If $B \subseteq Y$ is $a \odot$-ideal of Y, then $f^{-1}(B)$ is $a \odot$-ideal of X.
(iii) Kerf is a \odot-ideal of X.

References

[1] H.K. Abdullah and A.A. Atshan. Complete ideal and n-ideal of B-algebra. Applied Mathematical Sciences, 11(35):1705-1713, 2017.
[2] P.J. Allen, H.S. Kim, and J. Neggers. B-algebras and groups. Scientiae Mathematicae Japonicae Online, 9:159-165, 2003.
[3] P.J. Allen, H.S. Kim, and J. Neggers. Companion d-algebras. Mathematica Slovaca, 57(2):93-106, 2007.
[4] J.C. Endam and R.C. Teves. Some properties of cyclic B-algebras. International Mathematical Forum, 11(8):387-394, 2016.
[5] E. Fitria, S. Gemawati, and Kartini. Prime ideals in B-algebras. International Journal of Algebra, 11(7):301-309, 2017.
[6] K. Iséki. On BCI-algebras. Math. Seminar Notes, 8:125-130, 1980.
[7] K. Iséki and Tanaka. An introduction to theory of BCK-algebras. Math. Japonica, 23:1-26, 1978.
[8] M. Kondo and Y.B. Jun. The class of B-algebras coincides with the class of groups. Scientiae Mathematicae Japonicae Online, 2:175-177, 2002.
[9] J. Neggers and H.S. Kim. On d-algebras. Mathematica Slovaca, 49(1):19-26, 1999.
[10] J. Neggers and H.S. Kim. A fundalmental theorem of B-homomorphism for B algebras. Int.Math.J., 2(3):207-214, 2002.
[11] J. Neggers and H.S. Kim. On B-algebras. Math. Vesnik, 54:21-29, 2002.
[12] A. Walendziak. A note on normal subalgebras in B-algebras. Scientiae Mathematicae Japonicae Online, pages 49-53, 2005.
[13] A. Walendziak. Some axiomizations of B-algebras. Mathematica Slovaca, 56(3):301306, 2006.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v12i3.3495
 Email addresses: lynneldnaingue13@gmail.com (L.D. Naingue), jocelyn.vilela@g.msuiit.edu.ph (J.P. Vilela)
 http://www.ejpam.com 1248 (c) 2019 EJPAM All rights reserved.

