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Abstract. The purpose of this paper is to investigate x-differential identities satisfied by pair
of derivations on prime rings with involution. In particular, we prove that if a 2-torsion free
noncommutative ring R admit nonzero derivations di,ds such that [di(z),d2(z*)] = 0 for all
r € R, then di = Ads, where A € C. Finally, we provide an example to show that the condition
imposed in the hypothesis of our results are necessary.
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1. Introduction

In all that follows, R will represent an associative ring with center Z(R). We de-
note by @ and C' the maximal ring of quotient and the extended centroid of a prime
ring, respectively. For the explanation of ) and C' we refer the reader to [4]. We denote
[z,y] = xy — yz, the commutator of x and y and x oy = xy + yz, the anti-commutator
of x and y. A ring is said to 2-torsion free if 2 = 0 (where z € R) implies x = 0. A
ring R is said to be prime if aRb = (0) (where a,b € R) implies either a = 0 or b = 0,
and is called semiprime ring if aRa = (0) (where @ € R) implies @ = 0. An additive
mapping * : R — R is called an involution if * is an anti-automorphism of order 2; that
is, (z*)* = x for all x € R. An element x in a ring with involution is said to be hermitian
if ¥ = x and skew-hermitian if * = —x. The sets of all hermitian and skew-hermitian
elements of R will be denoted by H(R) and S(R), respectively. A ring equipped with an
involution is known as ring with involution or *-ring. The involution is said to be of the
first kind if Z(R) C H(R), otherwise it is said to be of the second kind. In the later case,
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S(R)NZ(R) # (0). If R is 2-torsion free then every x € R can be uniquely represented in
the form 2z = h + k, where h € H(R) and k € S(R). Note that in this case x is normal
i.e., za* = x*x, if and only if h and k commute. If all elements in R are normal, then R is
called a normal ring. An example is the ring of quaternions. A description of such rings
can be found in [14], where further references can be found.

A derivation on R is an additive mapping d : R — R such that d(xy) = d(z)y + zd(y)
for all z,y € R. A derivation d is said to be inner if there exists a € R such that
d(x) = ax —za for all x € R. Over the last 30 years, several authors have investigated the
relationship between commutativity of the ring R and certain special types of maps on R.
The first result in this direction is due to Divinsky [12], who proved that a simple artinian
ring is commutative if it has a commuting non-trivial automorphism. Two years later,
Posner [18] proved that the existence of a nonzero centralizing derivation on a prime ring
forces the ring to be commutative. Over the last few decades, many authors have refined
and extended these results in various directions (see for example [3, 5-7, 9] where further
references can be looked).

In [13], Herstein proved that if R is a prime ring of characteristic not two admitting
a nonzero derivation d such that [d(x),d(y)] = 0 for all z,y € R, then R is commutative.
Further, Daif [10] showed that a 2-torsion free semiprime ring R admits a nonzero deriva-
tion d such that [d(x),d(y)] = 0 for all x,y € I, where I is a nonzero ideal of R, then
R contains a nonzero central ideal. In [15], Lanski prove that if L is a noncommutative
Lie ideal of a 2-torsion free prime ring R and d, h are nonzero derivations of R such that
[d(x),h(x)] € C for all x € L, then h = A\d, where A € C. Very recently, the first author
together with Dar [11] proved the following result: Let R be a prime ring with involution
* of the second kind such that char(R) # 2. If R admits a nonzero derivation d such that
[d(z),d(x*)] =0 for all x € R, then R is commutative. In the last three decades many au-
thors have generalized the above mention result in several ways (viz.; [1, 2, 8, 11, 15, 17, 19]
where further references can be found).

Motivated by the above results, here we continue this line of investigation by consid-
ering more general situations. Besides proving some other results, the main result is the
following theorem.

Main Theorem. Let R be a 2-torsion free noncommutative prime ring with involution
x of the second kind and dy, dy be two nonzero derivations on R such that

[di(x),da(z*)] =0 for all x € R.
Then di = Adsy, where A € C.

2. Main results

In order to prove our results, we need the following lemma.
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Lemma 1. Let R be a 2-torsion free noncommutative prime ring with involution * of the
second kind and dy,ds be two nonzero derivations on R. If one of the following conditions

holds:
(i) [di(2),d2(y)] =x oy for all z,y € R,
(i) [di(2), da(y)] = —z oy for all z,y € R,
then di = Ada, where A € C.

Proof. (i) We consider the case
[d1(z),da(y)] =z oy forall z,y € R. (1)
Substituting yh for y, where h € H(R) N Z(R), we get
[d1(z),y]d2(h) =0 forall z,y € R. (2)

Using the primeness of R we have either da(h) = 0 forall h € H(R)NZ(R) or [di(x),y] =0
for all z,y € R. If [di(x),y] = O for all z,y € R, then by Posner’s result [18] R is
commutative, a contradiction. Therefore we are left with the case da(h) = 0 for all
h € H(R)N Z(R). Replacing y by yz in (1), we obtain

da(y)[di (x), &) + [di (x), do(y)]z + y[di (), d2(2)] + [di (2), ylda(z) = zyz +ya®  (3)

for all z,y € R. Multiplying (1) by = from right side and subtracting it from (3), we arrive
at
da(y)[di(x), z] + yldi(x),d2(z)] + [di(x), ylde(x) =0 for all z,y € R.

Now taking h for y where h € H(R) N Z(R), we get h[di(z),d2(x)] = 0 for all x € R.
Now using the primeness of R and the fact that S(R) N Z(R) # (0), we finally arrive at
[d1(z),d2(x)] = 0 for all z € R. Thus in view of [15, Theorem 4] we get d; = Ada, where
reC.

(i) Using a similar approach with necessary variations, we can prove that the same con-
clusion holds for the case [d1(z),d2(y)] = —z oy for all z,y € R.

Proof of Main Theorem. By the given assumption, we have
[d1 (), da(27)] = 0 (4)
for all z € R. A linearization of (4) yields that
[di(2), d2(y")] + [di(y), d2(2")] = 0 (5)
for all z,y € R. Replacing y by hy in (5), where y € R and h € H(R) N Z(R), we get

h([d(x), da(y")] + [di(y), d2(27)]) + d2()[dr (2), y"] + d1(h) [y, d2(2")] = 0.
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Using (5), we get
da(h)[d1(z),y"] + di(h)[y, da(2")] = 0 (6)

forall z,y € Rand h € H(R)NZ(R). Substituting ky for y in (6), where k € S(R)NZ(R),
we have

—da(h)[di (), y*k] + di(h)[ky, d2(z")] = 0.
This further implies that

—dy ()l (2), 5] + ci (R)k[y, da(a)] = 0. (7)
Multiplying (6) by k and comparing with (7), we obtain
2d1(h)k[y, d2(2™)] = 0.
Since char(R) # 2 and S(R) N Z(R) # (0), the above expression gives
di(h)[y, d2(z")] = 0 (8)

for all z,y € R and h € H(R) N Z(R). Invoking the primeness of R, we get dy(h) = 0
for all h € H(R) N Z(R) or [y,da(z*)] = 0 for all z,y € R. Suppose [y, d2(x*)] = 0 for all
x,y € R. Replacing x by z* we get [y, d2(x)] = 0 for all z,y € R. Thus in view of Posner’s
result [18], R is commutative, which is a contradiction. Now suppose dj(h) = 0 for all
h € H(R)NZ(R). This further implies that 0 = d; (k?) = 2d; (k)k. Since char(R) # 2 and
S(R)NZ(R) # (0), we have dy (k) = 0 for all k € S(R)NZ(R). Now since every z € Z(R)
can be represented as 2z = h + k where h € H(R) N Z(R) and k € S(R) N Z(R), we get
d1(Z(R)) = (0). Now in view of (7), we have

da(h)k[di(x),y*] =0

forall xz,y € R,h € H(R) N Z(R) and k € S(R) N Z(R). Using primeness, we get either
da(h) =0forall h € H(R)NZ(R) or [dy(z),y*] = 0 for all z,y € R. Replacing y by y*, we
get [di(x),y] = 0 for all z,y € R. Again using Posner’s result [18], we get a contradiction.
Now suppose da(h) = 0 for all h € H(R) N Z(R). This intern implies that d2(Z(R)) = (0).
Replacing y by —ky in (5), we have

k([di (), da(y")] = [d1(y), da(2™)]) = 0.

This further implies that

[d1(z), da(y")] — [di(y), da(2")] = 0 (9)

for all z,y € R, since S(R) N Z(R) # (0). On comparing (9) with (5), we get

2[di(z),d2(y*)] = 0 for all z,y € R. The last relation gives, [di(x),d2(y)] = 0 for all
x,y € R. This implies that [d;(z),d2(x)] = 0 for all x € R. Hence in view of [15, Theorem
4], we conclude that d; = Adg, where A\ € C. This completes the proof of the theorem. [
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Corollary 1. Let R be a 2-torsion free noncommutative prime ring with involution * of
the second kind and di,ds be two nonzero derivations on R such that [di(x),d2(y*)] =
0 for all z,y € R. Then d; = Ads, where A € C.

Theorem 1. Let R be a 2-torsion free noncommutative prime ring with involution % of the
second kind and dy,ds be two nonzero derivations on R. If one of the following conditions

holds:
(1) [di(z),do(z*)] = [x,2*] for all z € R,
(11) [di(x),da(z*)] = =[x, z*] for all x € R,
then di = Ada, where A € C.
Proof. By the given assumption, we have
[d1(z),da(2")] = [x,2¥] for all = € R. (10)
A linearization of (10) yields that
[di (), da(y")] + [di(y), d2(2")] = [2,y"] + [y, 27] forall z,y € R. (11)
Replace y by hy in (11), where h € H(R) N Z(R), we get
[di(x), da((hy)")] + [di(hy), da(27)] = [z, (hy)"] + [hy, 2] (12)
for all z,y € R and h € H(R) N Z(R). On solving, we obtain
[d1(x),y"]d2(h) + [y, do(2")]d1 (h)+ (13)

h(ldi(z), d2(y")] + [d1(y), d2(27)]) = ([z,y"] + [y, 2"])h

for all x,y € R and h € H(R) N Z(R). Multiplying (11) by h and adding with (13), we
arrive at

[d1(z), y*]d2(R) + [y, d2(x7)]d1(h) = O (14)
for all z,y € R and h € H(R) N Z(R). Replacing y by ky, where k € S(R)NZ(R), we get

~{dy (@), y* ko (k) + dy (W) kly, do(a*)] = 0 for all 2,y € R. (15)
Multiplying (14) by k and adding with (15), we obtain
2dy(h)kly,d2(z*)] =0 for all z,y € R.

This implies that
di(h)k[y,d2(z*)] =0 for all z,y € R.

Using the primeness of the ring R and the fact that S(R) N Z(R) # (0), we arrive at

either di(h) =0 or [y,da(z")] =0 for all z,y € R. (16)
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[y, da(z*)] = 0 for all z,y € R implies that R is commutative, a contradiction. Therefore
we are left with d;(h) =0 for all h € H(R) N Z(R). Using this in (15), we get

—[da(z),y*|kda(h) =0 for all z,y € R.
The primeness of R yields that
da(h) =0 forall h € H(R)NZ(R). (17)

or
[di(x),y*] =0 for all z,y € R.

Again if [di(x),y*] = 0 for all x,y € R, we get a contradiction. Therefore we are left with
da(h) = 0. This implies that do(k) = 0 and hence do(Z(R)) = (0). Similarly in view of
(16) we get di1(Z(R)) = (0). Now on replacing y by ky in (11), where k € S(R) N Z(R),
we get

[di (), d2((ky)™)] + [di(ky), da(z™)] = [z, (ky)*] + [ky, 2] (18)
for all z,y € R and k € S(R) N Z(R). On solving, we have

—ldi (), d2(y")]k + k[di(y), da2(x7)] = =[x, y"]k + kly, 27] (19)

for all z,y € R and k € S(R) N Z(R). Multiplying (11) by k and adding with (19), we
obtain 2k[di(y),da(z*)] = 2[y,z*]. Since char(R) # 2 and invoking primeness of R, we
get [d1(y),d2(2*)] = [y, x*] for all x,y € R. Hence [di(y),d2(z)] = [y, z] for all z,y € R.
Taking y for x, we finally arrive at [di(z),d2(x)] = 0 for all x € R. Thus in view of [15,
Theorem 4], we get di = A\da, where A € C.

(é¢) This can be proved by similar manner with necessary variations.

Theorem 2. Let R be a 2-torsion free noncommutative prime ring with involution * of
the second kind and dq,ds be two nonzero derivations on R such that

[di(x),x*da(z)] =0, forall x € R.
Then di = Ado, where A € C.
Proof. By the assumption, we have
[di(z),2"d2(x)] =0 for all = € R. (20)
Linearization of (20) give us
[di(2), x%da ()] + [di (), 27 d2(y)] + [dr(x), y"da(2)] + [di(2), y" d2(y)]

+[d1(y), 2% da ()] + [di(y), 2" d2(y)] + [di(y), y*da(2)] + [di(y), y*da(y)] = 0
for all x,y € R. Using (20), we get

[d1 (), 2" d2(y)] + [di(z), y*d2(2)] + [di(2), y"da(y)] (21)
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+ldi(y), 2" da(2)] + [d(y), 27d2(y)] + [d1(y), y"d2(2)] = 0 for all z,y € R.
Replacing y by h where h € H(R) N Z(R), we get

[dy(z), 2*]dy () + hldi (), dy(x)] = 0 for all z € R. (22)
Substituting z + y for 2 where z,y € R and combining it with (22), we have
([di(2), y™] + [di(y), z*])da(h) + h([di(x), da(y)] + [di(y), da(x)]) = O (23)
for all 2,y € R. Now replacing y by hy where y € R and h € H(R) N Z(R), we obtain
[di (), y*1hda(h) + [di(y), £*hda(h) + [y, 2*]di (R)d2(h) + hP[di(z), da(y)]  (24)
+hldi(x),y]da(h) + h?[d1(y), do(x)] + hdi(h)[y, do(x)] = 0 for all z,y € R.
Multiplying (23) by h where h € H(R) N Z(R) and using in (24) we get
[y, 2"]d1(h)d2(R) + hldi (), y]d2(h) + hdi(h)]y, da(z)] = O (25)
for all 2,y € R. Replacing = by kz where € R and k € S(R) N Z(R), we arrive at
—[y, 2*|kdy(h)da(h) + hk[di(x),yld2(h) + hlz, y|di (k)d2(h) (26)
+hdy (R)[y, da(z)]k + hdy (h)[y, z]da(k) = 0 for all z,y € R.
Multiplying (25) by k where k € S(R) N Z(R) and adding it with (26), we get
2hk([d1(x), yld2(h) + [y, da(2)]d1(R)) + hlz,y]di(k)d2(h) + hdy (h)[y, z]da (k) = O
for all 2,y € R. Taking y = x, we obtain
2hk([d1(x), x]da(h) + [z, da(x)]d1(h)) = 0

for all x € R. Since R is 2-torsion free prime ring and S(R) N Z(R) # (0), the above
relation implies that

[d1(x), x|do(h) + [x,da(z)]d1(h) =0 for all x € R. (27)
Replacing y by z in (25), we get
[z, 2%|d1 (h)da(h) + hldi(x), z]d2(h) + hdi(h)[z, d2(z)] = O (28)

for x € R and h € H(R)N Z(R). Using (27) in (28), we get [x,z*]d1(h)d2(h) = 0 for all
x € Rand h € H(R) N Z(R). Now use the primeness condition we get either [z,z*] = 0
for all z € R or dy(h)da(h) = 0 for all h € H(R) N Z(R). If we consider [z,z*] = 0, then
in view of [16, Lemma 2.1] R is commutative, which is a contradiction to our assumption,
now we have dy(h)d2(h) = 0 for all h € H(R) N Z(R). Using the primeness of the ring
R we get either dy(h) = 0 or dao(h) = 0 for all h € H(R) N Z(R). If consider di(h) = 0.
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Then by (25) we get h[di(x),y]d2(h) =0 for all z,y € R. Now using the primeness of the
ring R, we obtain [dy(z),y]d2(h) = 0 for all z,y € R. Again by the primeness of the ring
R, we have either da(h) = 0 for all h € H(R) N Z(R) or [di(z),y] = 0 for all z,y € R.
If we consider [di(z),y] = 0 for all z,y € R. This gives R is commutative by Posner’s
result [18], a contradiction. Therefore we are left with da(h) =0 for all h € H(R) N Z(R).
Similarly in view of (25) we get dy(h) = 0 for all h € H(R)NZ(R). Replacing y by h where
h € H(R)NZ(R) in (21) and using di(h) = 0 and da(h) = 0, we get h[di(z),d2(x)] =0
for all z € R. Now using the primeness and S(R) N Z(R) # (0) conditions, we get
[d1(z),d2(x)] = 0 for all x € R. Thus by the result of Lanski [15, Theorem 4], we get
d1 = Ads, where A € C.

Corollary 2. Let R be a 2-torsion free noncommutative prime ring with involution * of
the second kind and d;,d2 be two nonzero derivations on R such that [di(x), y*da(y)] =
0 for all z,y € R. Then d; = Ads, where A € C.

Theorem 3. Let R be a 2-torsion free noncommutative prime ring with involution x of the
second kind and dy,ds be two nonzero derivations on R. If one of the following conditions
holds:

(1) [di(x),do(x*)] =2 0 2* for all x € R,
(11) [dy(z),d2(x*)] = —x 0z for all x € R,
then di = Ady, where A € C.
Proof. By the given hypothesis, we have
[di(x),da(z)] = x 0 x™ for all z € R. (29)
Replacing = by x 4+ y in (29), we get
[di (), da(27)] + [d1(y), da(y™)] + [da (), da(y™)] + [da(y), da(2")]
=zozx*+yoy +xy" +yr +x'y+y'x
for all z,y € R. Using (29), we get
(s (2), da(y")] + [d1(v), da(a™)] = 2" + ya' + 2"y + y'a (30)
for all x,y € R. Substituting hy for y in (30) where h € H(R) N Z(R), we have
Bl(ds (2), da(y™)) + [d1(v), da(@™)]) + [dh (2), 5" Mo (R) + dy (B, da(a™)]  (31)

= h(zy* +yz* + %y +y*z) forall z,y € R.
Using (30), (31) reduces to

[d1(x),y*]d2(h) + d1(h)[y,d2(z*)] =0 for all z,y € R. (32)
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Now (32) is same as (14) and thus following the same techniques we get di(Z(R)) = (0)
and d2(Z(R)) = (0). Now replace y by ky in (30) where k € S(R) N Z(R), we get

—ldi(2), do(y*)|k — [di(2), y"]d2(k) + di(F)ly, do(z7)] + k[di(y), d2(2")]  (33)
= —xy*k + kyz* + 2% ky — ky*x
for all z,y € R. Now multiplying (30) by k& € S(R) N Z(R) and adding with (33), we get
2[d1(y),da(z")]k = 2k(yz™ + z*y) for all z,y € R.
This implies that
k([d1(y),d2(z*)] — (yox*)) =0 forall z,y € R.
Invoking the primeness of R, we get
[d1(y),d2(z")] — (yoz*) =0 forall z,y € R.
Now replace x by x*, we obtain
[d1(y),da(z)] — (yox) =0 forall x,y € R.

Hence application of Lemma 1 gives that d; = Ads, where A € C.
(i) Similarly we can prove the second part.

The following example shows that the primeness hypothesis in main theorem and
Theorem 2 is not superfluous.

a1 +1by  as + iby
az + by ag + iby
is a ring of real numbers. Of course, R with matrix addition and matrix multiplication is
a noncommutative prime ring. Define mappings *,d; : R —> R such that

a1 +1tb1 ag + by * a1 —ib1  ag — ibg
. . = . . and,
az +ibs a4+ iby as —iby a4 — iby

d a1 +ib1  ag + ibs _ 0 —(ag + ib2)
! asg + ibg a4 + iby (as + ib3) 0 ’
It can be easily checked that x and d; are respectively involution and derivation on R.
Let H be a ring of real quaternions. Define involution — and derivation dy = d; (where

d; is an inner derivation on H determined by i € H) as follows § = o — i3 — jy — kd and
di(q) = [i,q] for all ¢ € H.

Example 1. Let R = {( > ‘ ai,as,as, aq,bi,bo, b3, by € ]R} , where R

Let S = R x H, where R is same as defined above with involution % and derivation d;
and H is the ring of real quaternions with involution — and derivation ds as above. Clearly,
S is a 2-torsion free noncommutative semiprime ring. Now define an involution « on S,
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as (z,y)* = (z*,7y). Clearly, « is an involution of the second kind. Further, we define the
mappings D; and D from S to S such that Di(x,y) = (di(z),0) and Da(x,y) = (0,d2(x))
for all (z,y) € S. It can be easily checked that D1, Dy are derivations on S and satisfying
[D1(X),D2(X)] = 0 and [D1(X),X*D2(X)] = 0 for all X € S, but D; and Dy are
linearly independent derivations. Hence, in Main Theorem and Theorem 2, the hypothesis
of primeness is essential.
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