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Abstract. The purpose of this paper is to investigate ∗-differential identities satisfied by pair
of derivations on prime rings with involution. In particular, we prove that if a 2-torsion free
noncommutative ring R admit nonzero derivations d1, d2 such that [d1(x), d2(x∗)] = 0 for all
x ∈ R, then d1 = λd2, where λ ∈ C. Finally, we provide an example to show that the condition
imposed in the hypothesis of our results are necessary.
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1. Introduction

In all that follows, R will represent an associative ring with center Z(R). We de-
note by Q and C the maximal ring of quotient and the extended centroid of a prime
ring, respectively. For the explanation of Q and C we refer the reader to [4]. We denote
[x, y] = xy − yx, the commutator of x and y and x ◦ y = xy + yx, the anti-commutator
of x and y. A ring is said to 2-torsion free if 2x = 0 (where x ∈ R) implies x = 0. A
ring R is said to be prime if aRb = (0) (where a, b ∈ R) implies either a = 0 or b = 0,
and is called semiprime ring if aRa = (0) (where a ∈ R) implies a = 0. An additive
mapping ∗ : R → R is called an involution if ∗ is an anti-automorphism of order 2; that
is, (x∗)∗ = x for all x ∈ R. An element x in a ring with involution is said to be hermitian
if x∗ = x and skew-hermitian if x∗ = −x. The sets of all hermitian and skew-hermitian
elements of R will be denoted by H(R) and S(R), respectively. A ring equipped with an
involution is known as ring with involution or ∗-ring. The involution is said to be of the
first kind if Z(R) ⊆ H(R), otherwise it is said to be of the second kind. In the later case,
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S(R)∩Z(R) 6= (0). If R is 2-torsion free then every x ∈ R can be uniquely represented in
the form 2x = h + k, where h ∈ H(R) and k ∈ S(R). Note that in this case x is normal
i.e., xx∗ = x∗x, if and only if h and k commute. If all elements in R are normal, then R is
called a normal ring. An example is the ring of quaternions. A description of such rings
can be found in [14], where further references can be found.

A derivation on R is an additive mapping d : R→ R such that d(xy) = d(x)y+xd(y)
for all x, y ∈ R. A derivation d is said to be inner if there exists a ∈ R such that
d(x) = ax−xa for all x ∈ R. Over the last 30 years, several authors have investigated the
relationship between commutativity of the ring R and certain special types of maps on R.
The first result in this direction is due to Divinsky [12], who proved that a simple artinian
ring is commutative if it has a commuting non-trivial automorphism. Two years later,
Posner [18] proved that the existence of a nonzero centralizing derivation on a prime ring
forces the ring to be commutative. Over the last few decades, many authors have refined
and extended these results in various directions (see for example [3, 5–7, 9] where further
references can be looked).

In [13], Herstein proved that if R is a prime ring of characteristic not two admitting
a nonzero derivation d such that [d(x), d(y)] = 0 for all x, y ∈ R, then R is commutative.
Further, Daif [10] showed that a 2-torsion free semiprime ring R admits a nonzero deriva-
tion d such that [d(x), d(y)] = 0 for all x, y ∈ I, where I is a nonzero ideal of R, then
R contains a nonzero central ideal. In [15], Lanski prove that if L is a noncommutative
Lie ideal of a 2-torsion free prime ring R and d, h are nonzero derivations of R such that
[d(x), h(x)] ∈ C for all x ∈ L, then h = λd, where λ ∈ C. Very recently, the first author
together with Dar [11] proved the following result: Let R be a prime ring with involution
∗ of the second kind such that char(R) 6= 2. If R admits a nonzero derivation d such that
[d(x), d(x∗)] = 0 for all x ∈ R, then R is commutative. In the last three decades many au-
thors have generalized the above mention result in several ways (viz.; [1, 2, 8, 11, 15, 17, 19]
where further references can be found).

Motivated by the above results, here we continue this line of investigation by consid-
ering more general situations. Besides proving some other results, the main result is the
following theorem.

Main Theorem. Let R be a 2-torsion free noncommutative prime ring with involution
∗ of the second kind and d1, d2 be two nonzero derivations on R such that

[d1(x), d2(x
∗)] = 0 for all x ∈ R.

Then d1 = λd2, where λ ∈ C.

2. Main results

In order to prove our results, we need the following lemma.
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Lemma 1. Let R be a 2-torsion free noncommutative prime ring with involution ∗ of the
second kind and d1, d2 be two nonzero derivations on R. If one of the following conditions
holds:

(i) [d1(x), d2(y)] = x ◦ y for all x, y ∈ R,

(ii) [d1(x), d2(y)] = −x ◦ y for all x, y ∈ R,

then d1 = λd2, where λ ∈ C.

Proof. (i) We consider the case

[d1(x), d2(y)] = x ◦ y for all x, y ∈ R. (1)

Substituting yh for y, where h ∈ H(R) ∩ Z(R), we get

[d1(x), y]d2(h) = 0 for all x, y ∈ R. (2)

Using the primeness of R we have either d2(h) = 0 for all h ∈ H(R)∩Z(R) or [d1(x), y] = 0
for all x, y ∈ R. If [d1(x), y] = 0 for all x, y ∈ R, then by Posner’s result [18] R is
commutative, a contradiction. Therefore we are left with the case d2(h) = 0 for all
h ∈ H(R) ∩ Z(R). Replacing y by yx in (1), we obtain

d2(y)[d1(x), x] + [d1(x), d2(y)]x+ y[d1(x), d2(x)] + [d1(x), y]d2(x) = xyx+ yx2 (3)

for all x, y ∈ R. Multiplying (1) by x from right side and subtracting it from (3), we arrive
at

d2(y)[d1(x), x] + y[d1(x), d2(x)] + [d1(x), y]d2(x) = 0 for all x, y ∈ R.

Now taking h for y where h ∈ H(R) ∩ Z(R), we get h[d1(x), d2(x)] = 0 for all x ∈ R.
Now using the primeness of R and the fact that S(R) ∩ Z(R) 6= (0), we finally arrive at
[d1(x), d2(x)] = 0 for all x ∈ R. Thus in view of [15, Theorem 4] we get d1 = λd2, where
λ ∈ C.
(ii) Using a similar approach with necessary variations, we can prove that the same con-
clusion holds for the case [d1(x), d2(y)] = −x ◦ y for all x, y ∈ R.

Proof of Main Theorem. By the given assumption, we have

[d1(x), d2(x
∗)] = 0 (4)

for all x ∈ R. A linearization of (4) yields that

[d1(x), d2(y
∗)] + [d1(y), d2(x

∗)] = 0 (5)

for all x, y ∈ R. Replacing y by hy in (5), where y ∈ R and h ∈ H(R) ∩ Z(R), we get

h([d1(x), d2(y
∗)] + [d1(y), d2(x

∗)]) + d2(h)[d1(x), y∗] + d1(h)[y, d2(x
∗)] = 0.
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Using (5), we get
d2(h)[d1(x), y∗] + d1(h)[y, d2(x

∗)] = 0 (6)

for all x, y ∈ R and h ∈ H(R)∩Z(R). Substituting ky for y in (6), where k ∈ S(R)∩Z(R),
we have

−d2(h)[d1(x), y∗k] + d1(h)[ky, d2(x
∗)] = 0.

This further implies that

−d2(h)k[d1(x), y∗] + d1(h)k[y, d2(x
∗)] = 0. (7)

Multiplying (6) by k and comparing with (7), we obtain

2d1(h)k[y, d2(x
∗)] = 0.

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), the above expression gives

d1(h)[y, d2(x
∗)] = 0 (8)

for all x, y ∈ R and h ∈ H(R) ∩ Z(R). Invoking the primeness of R, we get d1(h) = 0
for all h ∈ H(R) ∩ Z(R) or [y, d2(x

∗)] = 0 for all x, y ∈ R. Suppose [y, d2(x
∗)] = 0 for all

x, y ∈ R. Replacing x by x∗ we get [y, d2(x)] = 0 for all x, y ∈ R. Thus in view of Posner’s
result [18], R is commutative, which is a contradiction. Now suppose d1(h) = 0 for all
h ∈ H(R)∩Z(R). This further implies that 0 = d1(k

2) = 2d1(k)k. Since char(R) 6= 2 and
S(R)∩Z(R) 6= (0), we have d1(k) = 0 for all k ∈ S(R)∩Z(R). Now since every z ∈ Z(R)
can be represented as 2z = h + k where h ∈ H(R) ∩ Z(R) and k ∈ S(R) ∩ Z(R), we get
d1(Z(R)) = (0). Now in view of (7), we have

d2(h)k[d1(x), y∗] = 0

for all x, y ∈ R, h ∈ H(R) ∩ Z(R) and k ∈ S(R) ∩ Z(R). Using primeness, we get either
d2(h) = 0 for all h ∈ H(R)∩Z(R) or [d1(x), y∗] = 0 for all x, y ∈ R. Replacing y by y∗, we
get [d1(x), y] = 0 for all x, y ∈ R. Again using Posner’s result [18], we get a contradiction.
Now suppose d2(h) = 0 for all h ∈ H(R)∩Z(R). This intern implies that d2(Z(R)) = (0).
Replacing y by −ky in (5), we have

k([d1(x), d2(y
∗)]− [d1(y), d2(x

∗)]) = 0.

This further implies that

[d1(x), d2(y
∗)]− [d1(y), d2(x

∗)] = 0 (9)

for all x, y ∈ R, since S(R) ∩ Z(R) 6= (0). On comparing (9) with (5), we get
2[d1(x), d2(y

∗)] = 0 for all x, y ∈ R. The last relation gives, [d1(x), d2(y)] = 0 for all
x, y ∈ R. This implies that [d1(x), d2(x)] = 0 for all x ∈ R. Hence in view of [15, Theorem
4], we conclude that d1 = λd2, where λ ∈ C. This completes the proof of the theorem. �
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Corollary 1. Let R be a 2-torsion free noncommutative prime ring with involution ∗ of
the second kind and d1, d2 be two nonzero derivations on R such that [d1(x), d2(y

∗)] =
0 for all x, y ∈ R. Then d1 = λd2, where λ ∈ C.

Theorem 1. Let R be a 2-torsion free noncommutative prime ring with involution ∗ of the
second kind and d1, d2 be two nonzero derivations on R. If one of the following conditions
holds:

(i) [d1(x), d2(x
∗)] = [x, x∗] for all x ∈ R,

(ii) [d1(x), d2(x
∗)] = −[x, x∗] for all x ∈ R,

then d1 = λd2, where λ ∈ C.

Proof. By the given assumption, we have

[d1(x), d2(x
∗)] = [x, x∗] for all x ∈ R. (10)

A linearization of (10) yields that

[d1(x), d2(y
∗)] + [d1(y), d2(x

∗)] = [x, y∗] + [y, x∗] for all x, y ∈ R. (11)

Replace y by hy in (11), where h ∈ H(R) ∩ Z(R), we get

[d1(x), d2((hy)∗)] + [d1(hy), d2(x
∗)] = [x, (hy)∗] + [hy, x∗] (12)

for all x, y ∈ R and h ∈ H(R) ∩ Z(R). On solving, we obtain

[d1(x), y∗]d2(h) + [y, d2(x
∗)]d1(h)+ (13)

h([d1(x), d2(y
∗)] + [d1(y), d2(x

∗)]) = ([x, y∗] + [y, x∗])h

for all x, y ∈ R and h ∈ H(R) ∩ Z(R). Multiplying (11) by h and adding with (13), we
arrive at

[d1(x), y∗]d2(h) + [y, d2(x
∗)]d1(h) = 0 (14)

for all x, y ∈ R and h ∈ H(R)∩Z(R). Replacing y by ky, where k ∈ S(R)∩Z(R), we get

−[d1(x), y∗]kd2(h) + d1(h)k[y, d2(x
∗)] = 0 for all x, y ∈ R. (15)

Multiplying (14) by k and adding with (15), we obtain

2d1(h)k[y, d2(x
∗)] = 0 for all x, y ∈ R.

This implies that
d1(h)k[y, d2(x

∗)] = 0 for all x, y ∈ R.

Using the primeness of the ring R and the fact that S(R) ∩ Z(R) 6= (0), we arrive at

either d1(h) = 0 or [y, d2(x
∗)] = 0 for all x, y ∈ R. (16)
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[y, d2(x
∗)] = 0 for all x, y ∈ R implies that R is commutative, a contradiction. Therefore

we are left with d1(h) = 0 for all h ∈ H(R) ∩ Z(R). Using this in (15), we get

−[d2(x), y∗]kd2(h) = 0 for all x, y ∈ R.

The primeness of R yields that

d2(h) = 0 for all h ∈ H(R) ∩ Z(R). (17)

or
[d1(x), y∗] = 0 for all x, y ∈ R.

Again if [d1(x), y∗] = 0 for all x, y ∈ R, we get a contradiction. Therefore we are left with
d2(h) = 0. This implies that d2(k) = 0 and hence d2(Z(R)) = (0). Similarly in view of
(16) we get d1(Z(R)) = (0). Now on replacing y by ky in (11), where k ∈ S(R) ∩ Z(R),
we get

[d1(x), d2((ky)∗)] + [d1(ky), d2(x
∗)] = [x, (ky)∗] + [ky, x∗] (18)

for all x, y ∈ R and k ∈ S(R) ∩ Z(R). On solving, we have

−[d1(x), d2(y
∗)]k + k[d1(y), d2(x

∗)] = −[x, y∗]k + k[y, x∗] (19)

for all x, y ∈ R and k ∈ S(R) ∩ Z(R). Multiplying (11) by k and adding with (19), we
obtain 2k[d1(y), d2(x

∗)] = 2[y, x∗]. Since char(R) 6= 2 and invoking primeness of R, we
get [d1(y), d2(x

∗)] = [y, x∗] for all x, y ∈ R. Hence [d1(y), d2(x)] = [y, x] for all x, y ∈ R.
Taking y for x, we finally arrive at [d1(x), d2(x)] = 0 for all x ∈ R. Thus in view of [15,
Theorem 4], we get d1 = λd2, where λ ∈ C.
(ii) This can be proved by similar manner with necessary variations.

Theorem 2. Let R be a 2-torsion free noncommutative prime ring with involution ∗ of
the second kind and d1, d2 be two nonzero derivations on R such that

[d1(x), x∗d2(x)] = 0, for all x ∈ R.

Then d1 = λd2, where λ ∈ C.

Proof. By the assumption, we have

[d1(x), x∗d2(x)] = 0 for all x ∈ R. (20)

Linearization of (20) give us

[d1(x), x∗d2(x)] + [d1(x), x∗d2(y)] + [d1(x), y∗d2(x)] + [d1(x), y∗d2(y)]

+[d1(y), x∗d2(x)] + [d1(y), x∗d2(y)] + [d1(y), y∗d2(x)] + [d1(y), y∗d2(y)] = 0

for all x, y ∈ R. Using (20), we get

[d1(x), x∗d2(y)] + [d1(x), y∗d2(x)] + [d1(x), y∗d2(y)] (21)
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+[d1(y), x∗d2(x)] + [d1(y), x∗d2(y)] + [d1(y), y∗d2(x)] = 0 for all x, y ∈ R.

Replacing y by h where h ∈ H(R) ∩ Z(R), we get

[d1(x), x∗]d2(h) + h[d1(x), d2(x)] = 0 for all x ∈ R. (22)

Substituting x+ y for x where x, y ∈ R and combining it with (22), we have

([d1(x), y∗] + [d1(y), x∗])d2(h) + h([d1(x), d2(y)] + [d1(y), d2(x)]) = 0 (23)

for all x, y ∈ R. Now replacing y by hy where y ∈ R and h ∈ H(R) ∩ Z(R), we obtain

[d1(x), y∗]hd2(h) + [d1(y), x∗]hd2(h) + [y, x∗]d1(h)d2(h) + h2[d1(x), d2(y)] (24)

+h[d1(x), y]d2(h) + h2[d1(y), d2(x)] + hd1(h)[y, d2(x)] = 0 for all x, y ∈ R.

Multiplying (23) by h where h ∈ H(R) ∩ Z(R) and using in (24) we get

[y, x∗]d1(h)d2(h) + h[d1(x), y]d2(h) + hd1(h)[y, d2(x)] = 0 (25)

for all x, y ∈ R. Replacing x by kx where x ∈ R and k ∈ S(R) ∩ Z(R), we arrive at

−[y, x∗]kd1(h)d2(h) + hk[d1(x), y]d2(h) + h[x, y]d1(k)d2(h) (26)

+hd1(h)[y, d2(x)]k + hd1(h)[y, x]d2(k) = 0 for all x, y ∈ R.

Multiplying (25) by k where k ∈ S(R) ∩ Z(R) and adding it with (26), we get

2hk([d1(x), y]d2(h) + [y, d2(x)]d1(h)) + h[x, y]d1(k)d2(h) + hd1(h)[y, x]d2(k) = 0

for all x, y ∈ R. Taking y = x, we obtain

2hk([d1(x), x]d2(h) + [x, d2(x)]d1(h)) = 0

for all x ∈ R. Since R is 2-torsion free prime ring and S(R) ∩ Z(R) 6= (0), the above
relation implies that

[d1(x), x]d2(h) + [x, d2(x)]d1(h) = 0 for all x ∈ R. (27)

Replacing y by x in (25), we get

[x, x∗]d1(h)d2(h) + h[d1(x), x]d2(h) + hd1(h)[x, d2(x)] = 0 (28)

for x ∈ R and h ∈ H(R) ∩ Z(R). Using (27) in (28), we get [x, x∗]d1(h)d2(h) = 0 for all
x ∈ R and h ∈ H(R) ∩ Z(R). Now use the primeness condition we get either [x, x∗] = 0
for all x ∈ R or d1(h)d2(h) = 0 for all h ∈ H(R) ∩ Z(R). If we consider [x, x∗] = 0, then
in view of [16, Lemma 2.1] R is commutative, which is a contradiction to our assumption,
now we have d1(h)d2(h) = 0 for all h ∈ H(R) ∩ Z(R). Using the primeness of the ring
R we get either d1(h) = 0 or d2(h) = 0 for all h ∈ H(R) ∩ Z(R). If consider d1(h) = 0.
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Then by (25) we get h[d1(x), y]d2(h) = 0 for all x, y ∈ R. Now using the primeness of the
ring R, we obtain [d1(x), y]d2(h) = 0 for all x, y ∈ R. Again by the primeness of the ring
R, we have either d2(h) = 0 for all h ∈ H(R) ∩ Z(R) or [d1(x), y] = 0 for all x, y ∈ R.
If we consider [d1(x), y] = 0 for all x, y ∈ R. This gives R is commutative by Posner’s
result [18], a contradiction. Therefore we are left with d2(h) = 0 for all h ∈ H(R)∩Z(R).
Similarly in view of (25) we get d1(h) = 0 for all h ∈ H(R)∩Z(R). Replacing y by h where
h ∈ H(R) ∩ Z(R) in (21) and using d1(h) = 0 and d2(h) = 0, we get h[d1(x), d2(x)] = 0
for all x ∈ R. Now using the primeness and S(R) ∩ Z(R) 6= (0) conditions, we get
[d1(x), d2(x)] = 0 for all x ∈ R. Thus by the result of Lanski [15, Theorem 4], we get
d1 = λd2, where λ ∈ C.

Corollary 2. Let R be a 2-torsion free noncommutative prime ring with involution ∗ of
the second kind and d1, d2 be two nonzero derivations on R such that [d1(x), y∗d2(y)] =
0 for all x, y ∈ R. Then d1 = λd2, where λ ∈ C.

Theorem 3. Let R be a 2-torsion free noncommutative prime ring with involution ∗ of the
second kind and d1, d2 be two nonzero derivations on R. If one of the following conditions
holds:

(i) [d1(x), d2(x
∗)] = x ◦ x∗ for all x ∈ R,

(ii) [d1(x), d2(x
∗)] = −x ◦ x∗ for all x ∈ R,

then d1 = λd2, where λ ∈ C.

Proof. By the given hypothesis, we have

[d1(x), d2(x
∗)] = x ◦ x∗ for all x ∈ R. (29)

Replacing x by x+ y in (29), we get

[d1(x), d2(x
∗)] + [d1(y), d2(y

∗)] + [d1(x), d2(y
∗)] + [d1(y), d2(x

∗)]

= x ◦ x∗ + y ◦ y∗ + xy∗ + yx∗ + x∗y + y∗x

for all x, y ∈ R. Using (29), we get

[d1(x), d2(y
∗)] + [d1(y), d2(x

∗)] = xy∗ + yx∗ + x∗y + y∗x (30)

for all x, y ∈ R. Substituting hy for y in (30) where h ∈ H(R) ∩ Z(R), we have

h([d1(x), d2(y
∗)] + [d1(y), d2(x

∗)]) + [d1(x), y∗]d2(h) + d1(h)[y, d2(x
∗)] (31)

= h(xy∗ + yx∗ + x∗y + y∗x) for all x, y ∈ R.

Using (30), (31) reduces to

[d1(x), y∗]d2(h) + d1(h)[y, d2(x
∗)] = 0 for all x, y ∈ R. (32)
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Now (32) is same as (14) and thus following the same techniques we get d1(Z(R)) = (0)
and d2(Z(R)) = (0). Now replace y by ky in (30) where k ∈ S(R) ∩ Z(R), we get

−[d1(x), d2(y
∗)]k − [d1(x), y∗]d2(k) + d1(k)[y, d2(x

∗)] + k[d1(y), d2(x
∗)] (33)

= −xy∗k + kyx∗ + x∗ky − ky∗x

for all x, y ∈ R. Now multiplying (30) by k ∈ S(R) ∩ Z(R) and adding with (33), we get

2[d1(y), d2(x
∗)]k = 2k(yx∗ + x∗y) for all x, y ∈ R.

This implies that

k([d1(y), d2(x
∗)]− (y ◦ x∗)) = 0 for all x, y ∈ R.

Invoking the primeness of R, we get

[d1(y), d2(x
∗)]− (y ◦ x∗) = 0 for all x, y ∈ R.

Now replace x by x∗, we obtain

[d1(y), d2(x)]− (y ◦ x) = 0 for all x, y ∈ R.

Hence application of Lemma 1 gives that d1 = λd2, where λ ∈ C.
(ii) Similarly we can prove the second part.

The following example shows that the primeness hypothesis in main theorem and
Theorem 2 is not superfluous.

Example 1. Let R =

{(
a1 + ib1 a2 + ib2
a3 + ib3 a4 + ib4

) ∣∣∣ a1, a2, a3, a4, b1, b2, b3, b4 ∈ R
}
, where R

is a ring of real numbers. Of course, R with matrix addition and matrix multiplication is
a noncommutative prime ring. Define mappings ∗, d1 : R −→ R such that(

a1 + ib1 a2 + ib2
a3 + ib3 a4 + ib4

)∗
=

(
a1 − ib1 a3 − ib3
a2 − ib2 a4 − ib4

)
and,

d1

(
a1 + ib1 a2 + ib2
a3 + ib3 a4 + ib4

)
=

(
0 −(a2 + ib2)

(a3 + ib3) 0

)
.

It can be easily checked that ∗ and d1 are respectively involution and derivation on R.
Let H be a ring of real quaternions. Define involution − and derivation d2 = di (where
di is an inner derivation on H determined by i ∈ H) as follows q = α − iβ − jγ − kδ and
di(q) = [i, q] for all q ∈ H.

Let S = R×H, where R is same as defined above with involution ∗ and derivation d1
and H is the ring of real quaternions with involution − and derivation d2 as above. Clearly,
S is a 2-torsion free noncommutative semiprime ring. Now define an involution α on S,
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as (x, y)α = (x∗, y). Clearly, α is an involution of the second kind. Further, we define the
mappings D1 and D2 from S to S such that D1(x, y) = (d1(x), 0) and D2(x, y) = (0, d2(x))
for all (x, y) ∈ S. It can be easily checked that D1, D2 are derivations on S and satisfying
[D1(X), D2(X

α)] = 0 and [D1(X), XαD2(X)] = 0 for all X ∈ S, but D1 and D2 are
linearly independent derivations. Hence, in Main Theorem and Theorem 2, the hypothesis
of primeness is essential.
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