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Abstract. This study deals with the topology generated by the family of subsets determined
by the right application of BE-ordering of a BE-algebra and investigates some of its properties.
Characterizations of some elementary topological concepts as well as the concepts of continuous,
open, and closed maps associated with this topological space are obtained.
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1. Introduction

The study of BCK-algebras was initiated by Y. Imai and K. Iséki [3] in 1966 as a
generalization of the concept of set theoretic difference and propositional calculi. In [5],
K. H. Kim and Y. H. Yon introduced the dual BCK-algebra and study its relation to
MV-algebra. As a generalization of dual BCK-algebra, H. S. Kim and Y. H. Kim [4] intro-
duced the BE-algebra. Today, BE-algebras have been studied by many authors and many
branches of mathematics have been applied to BE-algebras, such as probability theory,
topology, fuzzy set theory and so on. Various authors studied the topological aspects of
BE-algebras. In [7], S. Mehrshad and J. Golzarpoor studied some properties of uniform
topology and topological BE-algebras and compare these topologies. In [8], the author
produced a basis for a topology using left and right stabilizers of a BE-algebra. It is
proved that the generated topological space is a Bair, locally connected and separable
space. Some other topological properties are studied using left and right stabilizers. Mo-
tivated by these works, this paper introduces the topology induced by a BE-algebra using
the right application of BE-ordering and investigates some of its properties.
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An algebra (X; ∗, 1X) is called a BE-algebra if the following hold: for all x, y, z ∈ X,
(BE1) x∗x = 1X ; (BE2) x∗1X = 1X ; (BE3) 1X ∗x = x; and (BE4) x∗ (y ∗z) = y ∗ (x∗z).
A relation “≤” on X, called BE-ordering, is defined by x ≤ y if and only if x ∗ y = 1X .
Throughout this paper, we denote a BE-algebra (X, ∗, 1X) simply by X if no confusion
arises. A non-empty subset S of X is said to be a subalgebra of X if x ∗ y ∈ S for all
x, y ∈ S. A BE-algebra X is said to be self distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for
all x, y, z ∈ X. It is called commutative if satisfies (x ∗ y) ∗ y = (y ∗ x) ∗ x for all x, y ∈ X.
It is said to be a transitive BE-algebra if it satisfies the condition: y ∗ z ≤ (x ∗ y) ∗ (x ∗ z)
for all x, y, z ∈ X. If X is a transitive BE-algebra, then the relation “≤” is transitive. Let
F be a non-empty subset of X. Then F is said to be a filter of X if: (F1) 1X ∈ F ; and
(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F . A non-empty subset I of X is called an ideal of X
if it satisfies: for all x ∈ X and for all a, b ∈ I, (I1) x ∗ a ∈ I, that is, X ∗ I ⊆ I; and (I2)
(a ∗ (b ∗ x)) ∗ x ∈ I. The set [a, 1X ] = {x ∈ X | a ∗ x = 1X} for all a ∈ X is called the final
segment of X. An element a 6= 1X of a BE-algebra X is said to be a dual atom of X if
a ≤ x implies either a = x or x = 1X for all x ∈ X. We will denote by A(X) the set of all
dual atoms of X unless otherwise mentioned. Hence, A(X) = {x ∈ X | x is a dual atom}.
We will consider A1(X) = A(X)∪{1X}. A BE-algebra X is called dual atomistic if every
non-unit element of X is a dual atom in X, that is, X = A1(X), see [1, 8].

Example 1. [8] Let N0 = N ∪ {0} and let ∗ be the binary operation on N0 defined by

x ∗ y =

{
0 if y ≤ x
y − x if x < y.

Then (N0; ∗, 0) is a commutative BE-algebra where 1N0 = 0. It can be seen that A(N0) =
{1}.

Lemma 1. [9] Let (X; ∗, 1X) be a BE-algebra and let I be a non-empty subset of X. Then
I is an ideal of X if and only if it satisfies (i) 1X ∈ I; and (ii) for all x, z ∈ X and for
all y ∈ I, (x ∗ (y ∗ z)) ∈ I implies x ∗ z ∈ I.

Let Y be a non-empty set. A collection τ of subsets of Y is a topology on Y if it
satisfies the following axioms: (G1) ∅ and Y belong to τ ; (G2) if G1 and G2 are elements
of τ , then G1 ∩G2 ∈ τ ; and (G3) if {Gi : i ∈ I} ⊆ τ , then

⋃
i∈I Gi ∈ τ . If τ is a topology

on Y , then the ordered pair (Y, τ) is called a topological space. An element O of τ is called
a τ -open set (or simply open set) and the complement of O is called a τ -closed set (or
simply closed set). The discrete topology on Y is DY = P(Y ). A class B ⊆ τ is a basis for
τ if each open set is the union of members of B. The elements of a basis are called basic
open sets. The topology τ is said to be generated by a basis B if the family τ consists ∅,
Y , and all unions of members of B. A class S of open subsets of Y , that is, S ⊆ τ , is a
subbase or subbasis for the topology τ on Y if and only if finite intersections of members
of S form a basis for τ . Suppose that x ∈ Y and U ⊆ Y . U is a neighborhood of x (briefly
nbd U(x)) if x ∈ U and U ∈ τ . Throughout this paper, we denote a topological space
(Y, τ) by Y , unless otherwise specified. Let A be a subset of a topological space Y . A
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point x ∈ Y is adherent to A or closure point of A if each neighborhood of x contains at
least one point of A (which maybe x itself). The set of all points in Y adherent to A,
denoted by A, is called the closure of A, that is, A = {x ∈ Y | ∀ U(x) : U(x) ∩A 6= ∅}. A
point p ∈ A is called an interior point of A if p belongs to an open set G in Y contained
in A, that is, p ∈ G ⊆ A. The set of all interior points of A, denoted by Int(A), is called
the interior of A, that is, the interior of A is the largest open set contained in A, or,
Int(A) =

⋃
{U | U is open and U ⊆ A}. D ⊆ Y is dense in Y if D = Y . Let Z ⊆ Y . The

topology τZ on Y defined as τZ = {Z ∩ O : O ∈ τ} is called the relative topology on Y .
In this case, (Z, τZ) is called a subspace of (Y, τ). Let Y and Z be topological spaces. A
function f : Y → Z is said to be continuous if the inverse image of each open set in Z is
open in Y ; open if the image of each open set in Y is open in Z; and closed if the image
of each closed set in Y is closed in Y . A space Y is connected if it is not the union of
two non-empty disjoint open sets. A subset B of Y is connected if it is connected as a
subspace of Y . A space Y is disconnected if Y = A ∪ B where ∅ 6= A,B ∈ τ such that
A ∩ B = ∅. Then A ∪ B is a decomposition of Y . Let p ∈ Y . The topology τp given by
τp = {∅} ∪ {A ⊆ Y : p ∈ A} is called a particular point topology on Y . All topological
concepts above are found in [2, 6, 10].

Theorem 1. [6] Let B be a class of subsets of a nonempty set Y . Then B is a base for
some topology on Y if and only if it possesses the following two properties:

(i) Y =
⋃
{B : B ∈ B}.

(ii) For any B,B∗ ∈ B, B ∩ B∗ is the union of members of B, or, equivalently, if
p ∈ B ∩B∗ then there exists Bp such that p ∈ Bp ⊆ B ∩B∗.

Theorem 2. [2] Let Y be a topological space, and B ⊆ τ . Then B is a basis for τ if and
only if for each G ∈ τ and for each x ∈ G, there exists U ∈ B such that x ∈ U ⊆ G.

Theorem 3. [2] Let (Y, τ) be a topological space and (Z, τZ) be a subspace. If {Uα : α ∈
A} is a basis (subbasis) for τ , then {Z ∩ Uα : α ∈ A} is a basis (subbasis) for τZ .

Theorem 4. [2] Let Y,Z be topological spaces and f : Y → Z a map. The following
statements are equivalent:

(i) f is continuous.

(ii) The inverse image of each closed set in Z is closed in Y .

(iii) The inverse image of each member of a subbasis (basis) for Z is open in Y (not
necessarily a member of subbasis, or basis for Y ).

2. Some Properties of rX(A)

Definition 1. Let X be a BE-algebra. For any A ⊆ X, the set rX(A) = {x ∈ X | a ∗ x =
1X ,∀a ∈ A} is called the subset of X determined by right application of BE-ordering on
A. Note that rX({a}) = [a, 1X ] for all a ∈ X.
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Theorem 5. Let A and B be subsets of X. Then the following hold:

(i) rX(∅) = X.

(ii) If A ⊆ B, then rX(B) ⊆ rX(A).

(iii) If X is a transitive BE-algebra, then rX(rX(A)) ⊆ rX(A).

Proof. To prove (i), suppose rX(∅) 6= X. Then there exists x ∈ X such that x /∈
rX(∅). Thus, there exists a ∈ ∅ such that a ∗ x 6= 1X , a contradiction. Therefore,
rX(∅) = X.

To prove (ii), let x ∈ rX(B). Then b ∗ x = 1X for all b ∈ B. Since A ⊆ B, a ∗ x = 1X
for all a ∈ A. Thus, x ∈ rX(A). Hence, rX(B) ⊆ rX(A).

To prove (iii), let x ∈ rX(rX(A)). Then b ∗ x = 1X for all b ∈ rX(A). Since a ∗ b = 1X
for all a ∈ A and X is transitive, it follows that a∗x = 1X for all a ∈ A. Thus, x ∈ rX(A).
Hence, rX(rX(A)) ⊆ rX(A). whitehsdgkjgaskdj

Theorem 6. Let X be a BE-algebra and A ⊆ X. Then rX(A) =
⋂
a∈A

[a, 1X ] and 1X ∈

rX(A). Furthermore, if 1X ∈ A, then rX(A) = {1X}.

Proof. Note that rX(A) = {x ∈ X | a ∗ x = 1X , ∀a ∈ A} = {x ∈ X | x ∈ rX({a}), ∀a ∈
A} =

⋂
a∈A

rX({a}) =
⋂
a∈A

[a, 1X ]. Let a ∈ A. Then a ∗ 1X = 1X for all a ∈ A. Thus,

1X ∈ rX(A). Now, rX({1X}) = {y ∈ X | 1X ∗ y = 1X} = {1X}. Thus, if 1X ∈ A, then
rX(A) ⊆ rX({1X}) = {1X}, that is, rX(A) = {1X}

Theorem 7. Let X be a self distributive BE-algebra and A be a nonempty subset of X.
Then rX(A) is an ideal and a filter.

Proof. By Theorem 6, 1X ∈ rX(A).
Let x, y, z ∈ X. Suppose that y ∈ rX(A). Then a ∗ y = 1X for all a ∈ A. Let

x ∗ (y ∗ z) ∈ rX(A). Then a ∗ (x ∗ (y ∗ z)) = 1X for all a ∈ A. Since x ∗ (y ∗ z) = y ∗ (x ∗ z),
a ∗ (y ∗ (x ∗ z)) = 1X for all a ∈ A. Since X is self distributive, (a ∗ y) ∗ (a ∗ (x ∗ z)) = 1X
for all a ∈ A. Since a ∗ y = 1X for all a ∈ A, 1X ∗ (a ∗ (x ∗ z)) = 1X for all a ∈ A. This
implies that a ∗ (x ∗ z) = 1X . Hence, x ∗ z ∈ rX(A). By Lemma 1, rX(A) is an ideal.

Suppose that x ∈ rX(A) and x∗y ∈ rX(A). Then a∗x = 1X and a∗(x∗y) = 1X for all
a ∈ A. Since X is self distributive, a ∗ y = 1X ∗ (a ∗ y) = (a ∗ x) ∗ (a ∗ y) = a ∗ (x ∗ y) = 1X
for all a ∈ A. Thus, y ∈ rX(A). Therefore, rX(A) is a filter.

3. A Basis Br(X) for a topology on X

Lemma 2. Let X be a BE-algebra and let {Aα : α ∈ I} be a collection of subsets of X.

Then
⋂
α∈I

rX(Aα) = rX

( ⋃
α∈I

Aα

)
.
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Proof. Let x ∈
⋂
α∈I

rX(Aα). Then x ∈ rX(Aα) for all α ∈ I. Thus, a ∗ x = 1X for all

a ∈ Aα and for all α ∈ I. Hence, a ∗ x = 1X for all a ∈
⋃
α∈I

Aα. So, x ∈ rX

( ⋃
α∈I

Aα

)
and

⋂
α∈I

rX(Aα) ⊆ rX

( ⋃
α∈I

Aα

)
. The other inclusion is proved similarly. Therefore, the

equality is true.

Theorem 8. Let X be a BE-algebra. Then Br(X) = {rX(A) : ∅ 6= A ⊆ X} is a basis for
some topology on X.

Proof. Clearly, X =
⋃
a∈X

rX({a}). Suppose that ∅ 6= A,B ⊆ X. By Lemma 2,

rX(A)∩ rX(B) = rX(A∪B) ∈ Br(X). By Theorem 1, Br(X) is a basis for some topology
on X.

We denote by τr(X) the topology generated by Br(X).

Example 2. Consider the BE-algebra N0 in Example 1. Let z ∈ N0. Then rN0(z) =
{0, 1, 2, . . . , z}. It is easy to see that B = {rN0(z) : z ∈ N0} ⊆ Br(N0). Suppose that
∅ 6= A ⊆ N0 and w = minA. By Theorem 6, rN0(A) =

⋂
a∈A

rN0({a}). It follows that

rN0(A) = {0, 1, 2, . . . , w} = rN0(w) ∈ B. Hence, Br(N0) = B = {rN0(z) : z ∈ N0}.
Let ∅ 6= G ∈ τr(N0). Then G =

⋃
x∈K

rN0(x) for some ∅ 6= K ⊆ N0. Clearly, K ⊆ G.

Suppose first that |G| < ∞ and let v = maxK. Then G = rN0(v). Next, suppose that
G is an infinite set. Suppose further that G 6= N0, say m ∈ N0 \ G. Then m /∈ rN0(x)
for all x ∈ K. This implies that x < m for all x ∈ K. Hence, G ⊆ rN0(m), contrary
to the assumption that G is an infinite set. Therefore, G = N0. Accordingly, τr(N0) =
{∅, N0} ∪ {rN0(z) : z ∈ N0} = {∅, N0} ∪ Br(N0).

Theorem 9. Let X be a BE-algebra. Then (X, τr(X)) is connected.

Proof. Let ∅ 6= G ∈ τr(X). By Theorem 2, there exists A ⊆ X such that rX(A) ⊆ G.
By Theorem 6, 1X ∈ G. Thus, if U is a nonempty open set such that U 6= G, then
G ∩ U 6= ∅ since 1X ∈ U . Hence, X cannot have a decomposition, that is, (X, τr(X)) is
connected.

Lemma 3. Let X be a BE-algebra and x ∈ X. Then {x} ∈ τr(X) if and only if x = 1X .

Proof. Suppose that x = 1X . Then {1X} = rX (1X) ∈ Br(X). Hence, {1X} ∈ τr(X).
Suppose that {x} ∈ τr(X). Then there exists ∅ 6= A ⊆ X such that rX(A) = {x}. Since
1X ∈ rX(A), it follows that x = 1X .

Corollary 1. Let X be a BE-algebra. Then τr(X) is the discrete topology on X if and
only if X = {1X}.
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Proof. Suppose that X = {1X}. Then Br(X) = {rX(1X)} = {{1X}}. Hence,
τr(X) = {∅, X}, the discrete topology on X. Conversely, suppose that τr(X) is the
discrete topology on X. Then {x} ∈ τr(X) for all x ∈ X. By Lemma 3, X = {1X}.

Theorem 10. If X is a finite BE-algebra, then Sr(X) = {rX({a}) : a ∈ X} is a subbase
of τr(X).

Proof. Clearly, Sr(X) ⊆ τr(X). By Theorem 6, rX(A) =
⋂
a∈A

rX({a}) for each ∅ 6=

A ⊆ X. Since X is finite, it follows that every element of Br(X) is a finite intersection of
members of Sr(X). Thus, Sr(X) is a subbase of τr(X). whitejgvgvkhg

Lemma 4. Let X be a BE-algebra and a ∈ X \ {1X}. Then a ∈ A(X) if and only if
rX ({a}) = {1X , a}.

Proof. Suppose that a ∈ A(X) and let x ∈ rX({a}). Then a ≤ x. Since a ∈ A(X),
x = 1X or x = a. Thus, rX({a}) = {1X , a}. Conversely, suppose that rX({a}) = {1X , a}.
Then a ≤ x implies that x = 1X or x = a. Therefore, a ∈ A(X). white hgzgjykuiahlu

Theorem 11. Let X be a BE-algebra with |X| ≥ 2. Then

Br(X) = {{1X , a} : a ∈ A(X)}
⋃
{rX(A) : A ∩ A(X) = ∅}.

Proof. By Lemma 4, rX (a) = {1X , a} ∈ Br(X) for each a ∈ A(X). Let ∅ 6= A ⊆ X
such that A∩A(X) 6= ∅, say z ∈ A∩A(X). If 1X ∈ A, then by Theorem 6, rX(A) = {1X}.
Suppose that 1X /∈ A. Since z ∈ A(X) and by Theorem 5(ii), rX(A) ⊆ rX (z) = {1X , z}
and 1X ∈ rX(A), it follows that rX(A) = {1X} or rX(A) = {1X , z}. This proves the
assertion.

Corollary 2. Let X be a BE-algebra with |X| ≥ 2. If A(X) = {a}, then Br(X) =
{{1X , a}} ∪ {rX(A) : a /∈ A}.

Example 3. Consider the BE-algebra N0 in Example 2. For any x ∈ N0, rN0(x) =
{0, 1, . . . , x}. Hence, A(N0) = {1}. By Corollary 2, Br(N0) = {{0, 1}} ∪ {rN0(A) : 1 /∈
A} = {rN0(y) : y ∈ N0}. Therefore, τr(N0) = {∅, N0} ∪ {rN0(y) : y ∈ N0}.

Theorem 12. Let X be a BE-algebra with |X| ≥ 2. Then
Br(X) = {{1X}} ∪ {{1X , a} : a ∈ X \ {1X}} if and only if X is dual atomistic.

Proof. Suppose that X is dual atomistic. By Lemma 4, rX (a) = {1X , a} for all
a ∈ X \ {1X}. The only ∅ 6= A ⊆ X such that A ∩ A(X) = ∅ is A = {1X}. By Theorem
6, rX(A) = {1X}. Thus, Br(X) = {rX({a}) : a ∈ X} = {1X}∪{{1X , a} : a ∈ X \ {1X}}.

Conversely, suppose that Br(X) is the given family of subsets of X. Let a ∈ X \ {1X}.
Then rX({a}) = {1X , a}. Hence, if x ∈ X and a ≤ x, then x = a or x = 1X . Thus,
a ∈ A(X). Accordingly, X is dual atomistic.
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4. Characterizations Involving the Topology τr(X)

This section gives some characterizations of the elementary concepts associated with
the topological space (X, τr(X)).

Theorem 13. Let X be a BE-algebra with |X| ≥ 2. Then τr(X) is the particular point
1X topology τ1X on X if and only if X is dual atomistic.

Proof. Suppose that τr(X) = τ1X = {∅} ∪ {A ⊆ X : 1X ∈ A} and let A ∈ τ1X \ {∅}
such that |A| ≥ 2 . Then A =

⋃
a∈A
{1X , a}, a 6= 1X . If |A| = 1X , then A = {1X}. This

implies that Br(X) = {{1X}} ∪ {{1X , a} : a ∈ X \ {1X}} is a basis for τ1X = τr(X).
Hence, by Theorem 12, X is dual atomistic.

Conversely, suppose that X is a dual atomistic. By Theorem 12, Br(X) = {1X} ∪
{{1X , a} : a ∈ X \ {1X}}. Let A ∈ τr(X). Since Br(X) is a basis for τr(X), A = {1X} or
A =

⋃
a∈A
{1X , a}. Thus, 1X ∈ A implying that A ∈ τ1X . Hence, τr(X) ⊆ τ1X . Now, let

A ∈ τ1X . Then 1X ∈ A. Since Br(X) is a basis for τr(X), A = {1X} or A =
⋃
a∈A
{1X , a}.

Therefore, A ∈ τr(X) and τ1X ⊆ τr(X). Consequently, τr(X) = τ1X .

In a dual atomistic BE-algebra X with respect to τr(X), every set that contains 1X is
open and every set that does not contain 1X is closed. Hence, the following corollary is
true.

Corollary 3. Let X be a dual atomistic BE-algebra with |X| ≥ 2 and let O,C ⊆ X. Then
with respect to τr(X), we have

(i)

Int(O) =

{
∅ if 1X /∈ O
O if 1X ∈ O, and

(ii)

C =

{
X if 1X ∈ C
C if 1X /∈ C.

Theorem 14. Let X be a BE-algebra and let D ⊆ X. Then with respect to τr(X), we
have

(i) z ∈ Int(D) if and only if there exists ∅ 6= B ⊆ X such that b ∗ z = 1X for all b ∈ B
and for all x ∈ X, x ∈ D whenever b ∗ x = 1X for all b ∈ B.

(ii) y ∈ D if and only if for each ∅ 6= A ⊆ X with a ∗ y = 1X for all a ∈ A, there exists
d ∈ D such that a ∗ d = 1X for all a ∈ A.

(iii) D is dense in X if and only if 1X ∈ D. In particular, {1X} is dense in X.

Proof.
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(i) By definition, z ∈ Int(D) if and only if there exists ∅ 6= B ⊆ X such that z ∈
rX(B) ⊆ D, that is, b ∗ z = 1X for all b ∈ B and for all x in X, x ∈ D whenever
b ∗ x = 1X for all b ∈ B.

(ii) By definition, y ∈ D if and only if for each ∅ 6= A ⊆ X with y ∈ rX(A), we have
D ∩ rX(A) 6= ∅, that is, there exists d ∈ D ∩ rX(A). Thus, (ii) holds.

(iii) Let D be dense in X. Then 1X ∈ D = X. Since {1X} = rX (1X), D ∩ rX (1X) 6= ∅,
it follows that 1X ∈ D. Conversely, suppose that 1X ∈ D. Let x ∈ X and let
∅ 6= A ⊆ X such that x ∈ rX(A). Since 1X ∈ rX(A) by Theorem 6, it follows that
rX(A) ∩D 6= ∅. Thus, x ∈ D, showing that D = X. whiteyughjgkh

Lemma 5. Let S be a subalgebra of a BE-algebra X. Then

(i) A(X) ∩ S ⊆ A(S); and

(ii) rS(T ) = rX(T ) ∩ S for every T ⊆ S.

Proof.

(i) Let a ∈ A(X) ∩ S. Then a ∈ S and for all x ∈ X, a ≤ x implies that x = a or
x = 1X . Hence, in particular, for all y ∈ S, a ≤ y implies that y = 1X or y = a.
Thus, a ∈ A(S).

(ii) Let T ⊆ S. Then z ∈ rS(T ) if and only if z ∈ S and t ≤ z for all t ∈ T . Thus,
z ∈ rS(T ) if and only if z ∈ S ∩ rX(t) for each t ∈ T ⊆ S ⊆ X. Accordingly,
rS(T ) = S ∩ rX(T ).

Lemma 6. Let S be a subalgebra of a transitive BE-algebra X. Then for any ∅ 6= A ⊆ X,

rX(A) ∩ S =
⋃

x∈rX(A)∩S

rS(x).

Proof. Suppose that ∅ 6= A ⊆ X and let x ∈ rX(A) ∩ S. Then a ∗ x = 1X for all
a ∈ A and x ∈ S. Let y ∈ rX(x) ∩ S. Then x ∗ y = 1X and y ∈ S. Since X is transitive,
a ∗ y = 1X for all a ∈ A. Hence, y ∈ rX(A) ∩ S showing that rX(x) ∩ S ⊆ rX(A) ∩ S.
Consequently,

⋃
x∈rX(A)∩S

(rX(x) ∩ S) ⊆ rX(A) ∩ S.

Next, let z ∈ rX(A) ∩ S. Clearly, z ∈ rX(z). It follows that z ∈ rX(z) ∩ S showing
that rX(A) ∩ S ⊆ rX(z) ∩ S. Thus, rX(A) ∩ S ⊆

⋃
x∈rX(A)∩S

(rX(x) ∩ S). Therefore, by

Lemma 5(ii), rX(A) ∩ S =
⋃

x∈rX(A)∩S
(rX(x) ∩ S) =

⋃
x∈rX(A)∩S

rS(x).

Theorem 15. Let S be a subalgebra of a transitive BE-algebra X with |S| ≥ 2. Then
τr(S) coincides with the relative topology τS on S.
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Proof. By Theorem 11, a basis for τr(S) is the family

Br(S) = {{1X}} ∪ {{1X , a} : a ∈ A(S)} ∪ {rS(A) : A ⊆ S and A ∩ A(S) = ∅}.

By Theorem 3, a basis for the relative topology τS on S is given by
BS = {{1X}} ∪ {{1X , a} : a ∈ S ∩ A(X)} ∪ {rX(A) ∩ S : A ⊆ S and A ∩ A(X) = ∅} .

Suppose that A(S) \ A(X) = ∅. Then A(S) ⊆ A(X). Since A(S) ⊆ S, for every
a ∈ A(S), we have a ∈ S ∩ A(X). Thus, {1X , a} ∈ BS . Now, suppose that A(S) \
A(X) 6= ∅. Let a ∈ A(S) \ A(X) such that {1X , a} ∈ Br(S). Then {a} ⊆ S and
{a} ∩ A(X) = ∅. By Lemma 5(ii), {1X , a} = rS({a}) = rX({a}) ∩ S ∈ BS . Next,
let ∅ 6= A ⊆ S such that A ∩ A(S) = ∅. Then rS(A) ∈ Br(S). Since by Lemma
5(i), A ∩ A(X) = (A ∩ S) ∩ A(X) = A ∩ (S ∩ A(X)) ⊆ A ∩ A(S) = ∅. This implies
that by Lemma 5(ii), rS(A) = rX(A) ∩ S ∈ BS . Thus, Br(S) ⊆ BS . By Lemma 5(i),
{{1X}}∪{{1X , a} : a ∈ S∩A(X)} ⊆ {{1X}}∪{{1X , a} : a ∈ A(S)}. Let ∅ 6= A ⊆ S such
that A ∩A(X) = ∅. If A ∩A(S) = ∅, then rS(A) ∈ Br(S). Suppose that A ∩A(S) 6= ∅,
say w ∈ A ∩ A(S). By Theorem 5(ii), rS(A) ⊆ rS(w) = {1X , w}. Hence, rS(A) = {1X}
or rS(A) = {1X , w}. Thus, rS(A) ∈ {{1X}} ∪ {{1X , a} : a ∈ A(S)} ⊆ Br(S). Therefore,
BS ⊆ Br(S). Consequently, Br(S) = BS , showing that τr(S) = τS .

Theorem 16. Let (X1, ∗X1 , 1X1) and (X2, ∗X2 , 1X2) be BE-algebras. Then a function
f : (X1, τr(X1)) → (X2, τr(X2)) is continuous on X1 if and only if for each B ⊆ X2 and
for each x ∈ X1 such that b ≤ f(x) for all b ∈ B, there exists A ⊆ X1 satisfying the
following conditions:

(i) a ≤ x for all a ∈ A

(ii) b ≤ f(z) for all b ∈ B whenever a ≤ z for all a ∈ A.

Proof. By Theorem 4, f is continuous on X1 if and only if f−1(G) ∈ τr(X1) for
each G ∈ Br(X2). By Theorem 8, f is continuous if and only if for each B ⊆ X2,
f−1 (rX2(B)) ∈ τr(X1), that is, b ≤ f(x) for all b ∈ B. Now, f−1 (rX2(B)) ∈ τr(X1) if and
only if for each x ∈ f−1 (rX2(B)) there exists A ⊆ X1 (hence rX1(A) ∈ Br(X1)) such that
x ∈ rX1(A) ⊆ f−1 (rX2(B)). Since x ∈ rX1(A), a ≤ x for all a ∈ A. Now, suppose that
a ≤ z for all a ∈ A. Then z ∈ rX1(A) ⊆ f−1(rX2(B)). Thus, z ∈ f−1(rX2(B)). Hence,
f(z) ∈ rX2(B). Therefore, b ≤ f(z) for all b ∈ B.

Theorem 17. Let (X1, ∗X1 , 1X1) and (X2, ∗X2 , 1X2) be BE-algebras and let f : (X1, τr(X1))→
(X2, τr(X2)) be a function. Then

(i) f is open if and only if for each A ⊆ X1 and for each x ∈ X1 with a ≤ x for all
a ∈ A, there exists B ⊆ X2 satisfying the following properties:

(a) b ≤ f(x) for all b ∈ B
(b) there exists z ∈ X1 with a ≤ z for all a ∈ A and f(z) = y whenever a ≤ f−1 (y)

for all a ∈ A and b ≤ y for all b ∈ B.
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(ii) f is closed if and only if for each τr(X1)-closed set F and for all y ∈ X2 with
y 6= f(x) for all x ∈ F , there exists Ay ⊆ X2 such that rX2(Ay) ∩ f(F ) = ∅ and
a ≤ y for all a ∈ Ay.

Proof.

(i) By definition, f is open if and only if f (rX1(A)) ∈ τr(X2) for each A ⊆ X1. Now,
f (rX1(A)) ∈ τr(X2) if and only if for each x ∈ rX1(A), there exists B ⊆ X2 such
that f(x) ∈ rX2(B) ⊆ f (rX1(A)). Since f(x) ∈ rX2(B), b ≤ f(x) for all b ∈ B.
Moreover, if a ≤ f−1(y) for all a ∈ A and b ≤ y for all b ∈ B, then f−1(y) ∈ rX1(A)
and y ∈ rX2(B). This implies that y ∈ rX2(B) ⊆ f(rX1(A)). Consequently, there
exists z ∈ X1 such that z ∈ rX1(A) and y = f(z). Hence, a ≤ z for all a ∈ A and
y = f(z).

(ii) Suppose that f is closed and let F be a closed subset of X1. Then by definition of
a closed map, f(F ) = {f(x) : x ∈ F} is closed in X2, that is, [f(F )]c = {f(x) :
x ∈ F}c =

⋃
A∈P2

rX2(A), where P2 ⊆ P(X2) \ {∅}. Hence, for each y ∈ X2 such that

y 6= f(x) for all x ∈ F , there exists Ay ⊆ X2 such that rX2(Ay) ⊆ [f(F )]c and a ≤ y
for all a ∈ Ay.

Conversely, suppose that for each closed subset F of X1 and for all y ∈ X2 with
y 6= f(x) for all x ∈ F , there exists Ay ⊆ X2 such that rX2(Ay) ∩ f(F ) = ∅ and
a ≤ y for all a ∈ Ay. Let F ∗ be a closed set in X1 and let y ∈ [f(F ∗)]c. Then
y ∈ X2 and y 6= f(x) for all x ∈ F ∗. By assumption, there exists Ay ⊆ X2 such
that rX2(Ay) ∩ f(F ∗) = ∅ and a ≤ y for all a ∈ Ay, that is, y ∈ rX2(Ay). Thus,
[f(F ∗)]c =

⋃
y∈[f(F ∗)]c

rX2(Ay). Hence, [f(F ∗)]c is τr(X2)-open showing that f(F ∗) is

a closed subset of X2. Therefore, f is a closed map.

5. Conclusion

The topology generated by the family of subsets determined by the right application
of BE-ordering of a BE-algebra is always connected. Investigations for some elementary
topological concepts as well as the concepts of continuous, open, and closed maps asso-
ciated with this topological space are obtained. This paper will lead to some studies on
separation axioms associated with this kind of topological space.
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