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Abstract. Given a hyper BCK-algebra (H, ∗, 0), each of the families BL(H) = {LH(A) : ∅ 6=
A ⊆ H} and BR(H) = {RH(A) : ∅ 6= A ⊆ H} forms a base for some topology on H, where
LH(A) = {x ∈ H : x � a, ∀a ∈ A} and RH(A) = {x ∈ H : a � x, ∀a ∈ A} for any subset A
of H. In this paper, we determine the bases of the topologies induced by the hyper sum H1 ⊕H2

and hyper product H1 ×H2, where (H1, ∗1, 01) and (H2, ∗2, 02) are two hyper BCK-algebras.
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1. Introduction

Although algebra and topology seem to differ generally in their nature, they appear
together in some areas of mathematics such as functional analysis, dynamical systems,
and representation theory. Previous studies (see [2]) would show the blend of algebraic
and of topological structures. Indeed, there are various ways of introducing a a topological
structure in a given algebraic structure. For example, in the definition of a topological
group, the requirement imposed is that the topology on a given group is the one that makes
the multiplication and inversion maps continuous. However, given an algebraic structure
(or hyperstructure), it may be possible to find some family of subsets of the underlying
set that will serve as base for some topology on the set. This approach can then give rise
to a structure that is both algebraic and topological.

The present study considers an algebraic structure which is a decendant of BCK-
algebra, an algebraic structure that was introduced and investigated by Y. Imai and K.
Iséki [5] in 1966. This variant of BCK-algebra utilizes the hyperstructure theory introduced
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by F. Marty [7] at the 8th Congress of Scandinavian Mathematicians in 1934. Specifically,
Y.B. Jun et al. [6] applied the hyperstructure theory to BCK-algebras and introduced
the notion of a hyper BCK-algebra. Recently, Patangan and Canoy [8, 9] showed that
the families BL(H) = {LH(A) : ∅ 6= A ⊆ H} and BR(H) = {RH(A) : ∅ 6= A ⊆ H},
where LH(A) = {x ∈ H : x � a, ∀a ∈ A} and RH(A) = {x ∈ H : a � x, ∀a ∈ A}
for any subset A of H, are bases for some topologies on a hyper BCK-algebra (H, ∗, 0).
Thus, given a hyper BCK-algebra, two different topological structures are generated and
investigated.

A hyper BCK-algebra is a nonempty set H endowed with a hyperoperation “ ∗ ” and
a constant 0 satisfying the following axioms: for all x, y, z ∈ H,

(H1) (x ∗ z) ∗ (y ∗ z)� x ∗ y,

(H2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(H3) x ∗H � x,

(H4) x� y and y � x imply x = y,

where for every A,B ⊆ H, A � B if and only if for each a ∈ A, there exists b ∈ B such
that 0 ∈ a ∗ b. In particular, for every x, y ∈ H, x � y if and only if 0 ∈ x ∗ y. In such
case, we call “� ” the hyper order in H.

Throughout this study, (H1, ∗1, 01) (or simply H1) and (H2, ∗2, 02) (or simply H2) are
hyper BCK-algebras.

Let H be a hyper BCK-algebra and A ⊆ H. The sets LH(A) and RH(A) are given as
follows:

LH(A) := {x ∈ H | x� a ∀a ∈ A} = {x ∈ H | 0 ∈ x ∗ a ∀a ∈ A} and

RH(A) := {x ∈ H | a� x ∀a ∈ A} = {x ∈ H | 0 ∈ a ∗ x ∀a ∈ A}.

If A = {a}, we write LH({a}) = LH(a) and RH({a}) = RH(a).
Let (H1, ∗1, 0) and (H2, ∗2, 0) be hyper BCK-algebras such that H1 ∩ H2 = {0} and

H = H1 ∪ H2. Then (H, ∗, 0) is a hyper BCK-algebra denoted by H1 ⊕ H2, called the
hyper sum, where the hyperoperation “ ∗ ” on H is defined for all x, y ∈ H by,

x ∗ y =


x ∗1 y if x, y ∈ H1

x ∗2 y if x, y ∈ H2

{x} otherwise.

Let (H1, ∗1, 01) and (H2, ∗2, 02) be hyper BCK-algebras and H = H1 ×H2. Define a
hyperoperation “∗” on H as follows: for all (a1, b1), (a2, b2) ∈ H, (a1, b1)∗ (a2, b2) = (a1 ∗1
a2, b1 ∗2 b2). For A ⊆ H1 and B ⊆ H2, by (A,B) we mean (A,B) = {(a, b) : a ∈ A, b ∈ B},
0 = (01, 02) and (a1, b1) � (a2, b2) ⇐⇒ a1 � a2 and b1 � b2. Then (H, ∗, 0) is a hyper
BCK-algebra, and it is called the hyper product of H1 and H2.

2. Known Results

Proposition 2.1. [1] Let A and B be subsets of a hyper BCK-algebra H. Then the
following hold:
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(i) LH(∅) = H.

(ii) LH(A) =
⋂
a∈A

LH(a).

(iii) For any A ⊆ H, 0 ∈ LH(A). If 0 ∈ A, then LH(A) = {0}.

Proposition 2.2. [8] Let H be a hyper BCK-algebra and A ⊆ H. Then the following
hold:

(i) RH(A) =
⋂
a∈A

RH(a).

(ii) For any ∅ 6= A ⊆ H such that A 6= {0}, 0 /∈ RH(A).

(iii) RH(x) 6= ∅ ∀x ∈ H. In particular, x ∈ RH(x). Furthermore, RH(x) = H if and
only if x = 0 ∀x ∈ H.

Theorem 2.3. [9] The family BL(H) = {LH(A) : ∅ 6= A ⊆ H} where H is a hyper BCK-
algebra, is a basis for some topology on H.

Theorem 2.4. [8] The family BR(H) = {RH(A) : ∅ 6= A ⊆ H} where H is a hyper BCK-
algebra, is a basis for some topology on H.

3. Bases of τL(H1 ⊕H2) and τR(H1 ⊕H2)

Theorem 3.1. Let H be a hyper sum of hyper BCK-algebras H1 and H2 with |H1| ≥ 2
and |H2| ≥ 2. Then BL(H) = BL(H1 ⊕H2) = BL(H1) ∪ BL(H2).

Proof: Since BL(H1) ⊆ BL(H) and BL(H2) ⊆ BL(H), it follows that BL(H1) ∪ BL(H2) ⊆
BL(H). Next, let V ∈ BL(H). Then there exists a nonempty set B ⊆ H such that
V = LH(B). Let B1 = B ∩H1 and B2 = B ∩H2. If V = {0}, then by Proposition 2.1(iii),
V = LH1(0) ∈ BL(H1)∪BL(H2). So, suppose that V 6= {0}. Suppose further that B1 6= ∅
and B2 6= ∅. Choose x, y ∈ B such that x ∈ B1 and y ∈ B2. Pick u ∈ V \ {0}. Then
u � x and u � y. If u ∈ H1, then u ∗ y = {u}. If u ∈ H2, u ∗ x = {u}. In both cases,
we get a contradiction since u 6= 0. Therefore, either B1 = ∅ or B2 = ∅, say B2 = ∅.
Then B = B1 ⊆ H1. Hence, V = LH(B) = LH1(B) ∈ BL(H1) ∪ BL(H2). Therefore,
BL(H) = BL(H1) ∪ BL(H2).

Theorem 3.2. Let H be a hyper sum of hyper BCK-algebras H1 and H2 with |H1| ≥ 2
and |H2| ≥ 2. Then BR(H) \ {∅, H} = (BR(H1) ∪ BR(H2)) \ {∅, H1, H2}.

Proof: Let P ∈ BR(H1) \ {∅, H1}. Since P 6= H1, by Proposition 2.2(iii), there exists
a nonempty set A ⊆ H1 \ {0} such that P = RH1(A). But A ⊆ H1 \ {0} ⊆ H, thus,
P = RH1(A) = RH(A). Since A 6= {0} and P 6= ∅, by Theorem 2.2(iii) and definition of
a hyper sum, P 6= H and P 6= ∅ in H. Consequently, P = RH(A) ∈ BR(H) \ {∅, H}.
Similarly, if Q ∈ BR(H2) \ {∅, H2} then Q 6= H and Q 6= ∅ in H. Hence, Q = RH(B) ∈
BR(H) \ {∅, H}. Accordingly, (BR(H1) ∪ BR(H2)) \ {∅, H1, H2} ⊆ BR(H) \ {∅, H}.
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Next, let U ∈ BR(H) \ {∅, H}. Since U 6= H, by Proposition 2.2(iii), there exists a
nonempty subset D ⊆ H \ {0} such that U = RH(D). Let D1 = D ∩ (H1 \ {0}) and
D2 = D ∩ (H2 \ {0}). Suppose that D1 6= ∅ and D2 6= ∅. Choose any x ∈ D1 and any
y ∈ D2. Since x, y ∈ D, it follows that x � u and y � u for all u ∈ U . Pick w ∈ U .
By the definition of a hyper sum, if w ∈ H1, then y ∗ w = {y} and if w ∈ H2, then
x ∗w = {x}. Since x and y are nonzero, y 6� w and x 6� w, a contradiction. Thus, either
D1 = ∅ or D2 = ∅, that is, either D = D1 or D = D2. If D = D1 then U = RH1(D1).
Since D1 6= {0} and U 6= ∅ in H, by Theorem 2.2(iii), U 6= H1 and U 6= ∅ in H1. Thus,
U = RH1(D1) ∈ BR(H1) \ {∅, H1} ⊆ [BR(H1) ∪ BR(H2)] \ {∅, H1, H2}. In the same way,
if D = D2 then U = RH2(D2) ∈ BR(H2) \ {∅, H2} ⊆ [BR(H1) ∪ BR(H2)] \ {∅, H1, H2}.
Therefore, BR(H) \ {∅, H} = (BR(H1) ∪ BR(H2)) \ {∅, H1, H2}.

4. Bases of τL(H1 ×H2) and τR(H1 ×H2)

For any ∅ 6= D ⊆ H1×H2, the H1-projection and H2-projection of D are, respectively,
the sets DH1 = {x ∈ H1 : (x, y) ∈ D for some y ∈ H2} and DH2 = {y ∈ H1 : (z, y) ∈
D for some z ∈ DH1}. Now, for each x ∈ S = DH1 , let Tx = {y ∈ DH2 : (x, y) ∈ D}.
Then D =

⋃
x∈S

[{x} × Tx].

Lemma 4.1. Let {Aα : α ∈ I} be a collection of subsets of a hyper BCK-algebra H.
Then ⋂

α∈I
LH(Aα) = LH

(⋃
α∈I

Aα

)
.

Proof: Let {Aα : α ∈ I} be a collection of subsets of H. Then

x ∈
⋂
α∈I

LH(Aα)⇔ x ∈ LH(Aα) for all α ∈ I

⇔ x� a for all a ∈ Aα and for all α ∈ I
⇔ x� a for all a ∈

⋃
α∈I

Aα

⇔ x ∈ LH
(⋃
α∈I

Aα

)
.

Therefore, the equality is true.

Theorem 4.2. Let H be a hyper product of hyper BCK-algebras H1 and H2. Then the
following properties hold:

(i) LH(A×B) = LH1(A)× LH2(B) for A ⊆ H1 and B ⊆ H2.

(ii) If {Aα : α ∈ I} and {Bα : α ∈ I} are collections of subsets of H1 and H2,
respectively, then⋂

α∈I
[LH1(Aα)× LH2(Bα)] = LH1

(⋃
α∈I

Aα

)
× LH2

(⋃
α∈I

Bα

)
.
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(iii) If D =
⋃
x∈S

({x} × Tx), where S ⊆ H1 and Tx ⊆ H2 for each x ∈ S, then

LH(D) =
⋂
x∈S

(LH1(x)× LH2(Tx)) = LH1(S)× LH2(
⋃
x∈S

Tx).

Proof:

(i) Let A and B be subsets of H1 and H2, respectively. Then

LH(A×B) = {(x, y) ∈ H1 ×H2 : (x, y)� (a, b) for all (a, b) ∈ A×B}
= {(x, y) ∈ H1 ×H2 : x� a and y � b ∀a ∈ A and b ∈ B}
= {x ∈ H1 : x� a ∀a ∈ A} × {y ∈ H2 : y � b ∀b ∈ B}
= LH1(A)× LH2(B).

(ii) Let {Aα : α ∈ I} and {Bα : α ∈ I} be collections of subsets of H1 and H2,
respectively, and let K =

⋂
α∈I

[LH1(Aα)× LH2(Bα)]. Then

(x, y) ∈ K ⇔ (x, y) ∈ LH1(Aα)× LH2(Bα) ∀α ∈ I
⇔ x ∈ LH1(Aα) and y ∈ LH2(Bα) ∀α ∈ I
⇔ x� a ∀a ∈ Aα and y � b ∀b ∈ Bα and ∀α ∈ I

⇔ x� a ∀a ∈
⋃
α∈I

Aα and y � b ∀b ∈
⋃
α∈I

Bα

⇔ x ∈ LH1

(⋃
α∈I

Aα

)
and y ∈ LH2

(⋃
α∈I

Bα

)
⇔ (x, y) ∈ LH1

(⋃
α∈I

Aα

)
× LH2

(⋃
α∈I

Bα

)
.

Therefore, the assertion is true.

(iii) Let D =
⋃
x∈S

({x}×Tx), where S ⊆ H1 and Tx ⊆ H2 for each x ∈ S. Then by Lemma

4.1, (i), and (ii),

LH(D) = LH

[⋃
x∈S

({x} × Tx)

]
=
⋂
x∈S

[LH({x} × Tx)]

=
⋂
x∈S

[LH1(x)× LH2(Tx)]

= LH1(S)× LH2

(⋃
x∈S

Tx

)
.
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Theorem 4.3. Let H be a hyper product of hyper BCK-algebras H1 and H2. Then
BL(H) = BL(H1)× BL(H2).

Proof: Let U ∈ BL(H). Then there exists a nonempty set D ⊆ H = H1 ×H2 such that
U = LH(D). Let D =

⋃
x∈S

({x} × Tx) where S ⊆ H1 and Tx ⊆ H2 for each x ∈ S.

Then LH(D) = LH1(S)×LH2(
⋃
x∈S

Tx) by Theorem 4.2(iii). Hence, U ∈ BL(H1)×BL(H2),

showing that BL(H) ⊆ BL(H1) × BL(H2). Next, let V ∈ BL(H1) × BL(H2). Then there
exist nonempty sets A ⊆ H1 and B ⊆ H2 such that V = LH1(A)×LH2(B) = LH(A×B) ∈
BL(H) by Theorem 4.2(i). Thus, BL(H1) × BL(H2) ⊆ BL(H). Therefore, BL(H) =
BL(H1)× BL(H2).

Lemma 4.4. Let {Aα : α ∈ I} be a collection of subsets of a hyper BCK-algebra H.
Then ⋂

α∈I
RH(Aα) = RH

(⋃
α∈I

Aα

)
.

Proof: Let {Aα : α ∈ I} be a collection of subsets of H. Then

x ∈
⋂
α∈I

RH(Aα)⇔ x ∈ RH(Aα) for all α ∈ I

⇔ a� x for all a ∈ Aα and for all α ∈ I
⇔ a� x for all a ∈

⋃
α∈I

Aα

⇔ x ∈ RH
(⋃
α∈I

Aα

)
.

Therefore, the equality holds.

Theorem 4.5. Let H be a hyper product of hyper BCK-algebras H1 and H2. Then the
following properties hold:

(i) RH(A×B) = RH1(A)×RH2(B) for A ⊆ H1 and B ⊆ H2.

(ii) If {Aα : α ∈ I} and {Bα : α ∈ I} are collections of subsets of H1 and H2,
respectively, then⋂

α∈I
[RH1(Aα)×RH2(Bα)] = RH1

(⋃
α∈I

Aα

)
×RH2

(⋃
α∈I

Bα

)
.

(iii) If E =
⋃
x∈P

({x} × Tx), where P ⊆ H1 and Tx ⊆ H2 for each x ∈ P , then

RH(E) =
⋂
x∈P

(RH1(x)×RH2(Tx)) = RH1(P )×RH2(
⋃
x∈P

Tx).

Proof:
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(i) Let A and B be subsets of H1 and H2, respectively. Then

RH(A×B) = {(x, y) ∈ H1 ×H2 : (a, b)� (x, y) for all (a, b) ∈ A×B}
= {(x, y) ∈ H1 ×H2 : a� x and b� y ∀a ∈ A and b ∈ B}
= {x ∈ H1 : a� x ∀a ∈ A} × {y ∈ H2 : b� y ∀b ∈ B}
= RH1(A)×RH2(B).

(ii) Let {Aα : α ∈ I} and {Bα : α ∈ I} be collections of subsets of H1 and H2,
respectively, and let Q =

⋂
α∈I

[RH1(Aα)×RH2(Bα)]. Then

(x, y) ∈ Q⇔ (x, y) ∈ RH1(Aα)×RH2(Bα) ∀α ∈ I
⇔ x ∈ RH1(Aα) and y ∈ RH2(Bα) ∀α ∈ I
⇔ a� x ∀a ∈ Aα and b� y ∀b ∈ Bα and ∀α ∈ I

⇔ a� x ∀a ∈
⋃
α∈I

Aα and b� y ∀b ∈
⋃
α∈I

Bα

⇔ x ∈ RH1

(⋃
α∈I

Aα

)
and y ∈ RH2

(⋃
α∈I

Bα

)
⇔ (x, y) ∈ RH1

(⋃
α∈I

Aα

)
×RH2

(⋃
α∈I

Bα

)
.

Therefore, the equality holds.

(iii) Let E =
⋃
x∈P

({x} × Tx), where P ⊆ H1 and Tx ⊆ H2 for each x ∈ P . Then by

Lemma 4.4, (i), and (ii),

RH(E) = RH

[⋃
x∈P

({x} × Tx)

]
=
⋂
x∈P

[RH({x} × Tx)]

=
⋂
x∈P

[RH1(x)×RH2(Tx)]

= RH1(P )×RH2

(⋃
x∈P

Tx

)
.

Theorem 4.6. Let H be a hyper product of hyper BCK-algebras H1 and H2. Then
BR(H) = BR(H1)× BR(H2).

Proof: Let D ∈ BR(H). Then there exists a nonempty set E ⊆ H = H1 ×H2 such that
D = RH(E). Let E =

⋃
x∈P

({x} × Tx) where P ⊆ H1 and Tx ⊆ H2 for each x ∈ P .
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Then LH(E) = RH1(P ) × RH2(
⋃
x∈P

Tx) ∈ BR(H1) × BR(H2) by Theorem 4.5(iii). Hence,

BR(H) ⊆ BR(H1)×BR(H2). Next, suppose that F ∈ BR(H1)×BR(H2). Then there exist
nonempty sets O ⊆ H1 and U ⊆ H2 such that F = RH1(O) × RH2(U) = RH(O × U) by
Theorem 4.5(i). Thus, F ∈ BR(H), showing that BR(H1)×BR(H2) ⊆ BR(H). Therefore,
BR(H) = BR(H1)× BR(H2).

Conclusion: This study shows that, indeed, a topological structure may be generated
from a given (hyper) algebraic structure by considering some family of subsets of the
underlying set of the structure that would qualify as a base for some topology on the
set. The topology generated in this way need not coincide with the topology for which
continuity is imposed on some hyperoperations associated with the algebraic structure. In
this study, the authors, using the construction of a topological structure they introduced,
are able to determine the bases of the topologies generated by the hyper sum and hyper
product of two hyper BCK-algebras.
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