EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 12, No. 4, 2019, 1524-1532
ISSN 1307-5543 -www.ejpam.com
Published by New York Business Global

Topologies on a Hyper Sum and Hyper Product of Two Hyper BCK-algebras

Rachel M. Patangan ${ }^{1}$, Sergio R. Canoy, Jr. ${ }^{2, *}$
${ }^{1}$ Department of Applied Mathematics, College of Arts and Science, Agusan del Sur State College of Agriculture and Technology, Bunawan, Agusan del Sur, Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center for Graph Theory, Algebra, and Analysis-PRISM, Mindanao State University - Iligan Institute of Technology, 9200, Iligan City, Philippines

Abstract

Given a hyper BCK-algebra ($H, *, 0$), each of the families $\mathcal{B}_{L}(H)=\left\{L_{H}(A): \varnothing \neq\right.$ $A \subseteq H\}$ and $\mathcal{B}_{R}(H)=\left\{R_{H}(A): \varnothing \neq A \subseteq H\right\}$ forms a base for some topology on H, where $L_{H}(A)=\{x \in H: x \ll a, \forall a \in A\}$ and $R_{H}(A)=\{x \in H: a \ll x, \forall a \in A\}$ for any subset A of H. In this paper, we determine the bases of the topologies induced by the hyper sum $H_{1} \oplus H_{2}$ and hyper product $H_{1} \times H_{2}$, where $\left(H_{1}, *_{1}, 0_{1}\right)$ and ($H_{2}, *_{2}, 0_{2}$) are two hyper BCK-algebras.

2010 Mathematics Subject Classifications: 06F35, 03G25
Key Words and Phrases: Hyper BCK-algebra, hyper sum, hyper product

1. Introduction

Although algebra and topology seem to differ generally in their nature, they appear together in some areas of mathematics such as functional analysis, dynamical systems, and representation theory. Previous studies (see [2]) would show the blend of algebraic and of topological structures. Indeed, there are various ways of introducing a a topological structure in a given algebraic structure. For example, in the definition of a topological group, the requirement imposed is that the topology on a given group is the one that makes the multiplication and inversion maps continuous. However, given an algebraic structure (or hyperstructure), it may be possible to find some family of subsets of the underlying set that will serve as base for some topology on the set. This approach can then give rise to a structure that is both algebraic and topological.

The present study considers an algebraic structure which is a decendant of BCKalgebra, an algebraic structure that was introduced and investigated by Y. Imai and K. Iséki [5] in 1966. This variant of BCK-algebra utilizes the hyperstructure theory introduced

[^0]http://www.ejpam.com (C) 2019 EJPAM All rights reserved.
by F. Marty [7] at the 8th Congress of Scandinavian Mathematicians in 1934. Specifically, Y.B. Jun et al. [6] applied the hyperstructure theory to BCK-algebras and introduced the notion of a hyper BCK-algebra. Recently, Patangan and Canoy [8, 9] showed that the families $\mathcal{B}_{L}(H)=\left\{L_{H}(A): \varnothing \neq A \subseteq H\right\}$ and $\mathcal{B}_{R}(H)=\left\{R_{H}(A): \varnothing \neq A \subseteq H\right\}$, where $L_{H}(A)=\{x \in H: x \ll a, \forall a \in A\}$ and $R_{H}(A)=\{x \in H: a \ll x, \forall a \in A\}$ for any subset A of H, are bases for some topologies on a hyper BCK-algebra ($H, *, 0$). Thus, given a hyper BCK-algebra, two different topological structures are generated and investigated.

A hyper BCK-algebra is a nonempty set H endowed with a hyperoperation "*" and a constant 0 satisfying the following axioms: for all $x, y, z \in H$,
(H1) $(x * z) *(y * z) \ll x * y$,
(H3) $x * H \ll x$,
(H2) $(x * y) * z=(x * z) * y$,
(H4) $x \ll y$ and $y \ll x$ imply $x=y$,
where for every $A, B \subseteq H, A \ll B$ if and only if for each $a \in A$, there exists $b \in B$ such that $0 \in a * b$. In particular, for every $x, y \in H, x \ll y$ if and only if $0 \in x * y$. In such case, we call " $<$ " the hyper order in H.

Throughout this study, $\left(H_{1}, *_{1}, 0_{1}\right)$ (or simply $\left.H_{1}\right)$ and $\left(H_{2}, *_{2}, 0_{2}\right)$ (or simply H_{2}) are hyper BCK-algebras.

Let H be a hyper BCK-algebra and $A \subseteq H$. The sets $L_{H}(A)$ and $R_{H}(A)$ are given as follows:

$$
\begin{aligned}
& L_{H}(A):=\{x \in H \mid x \ll a \forall a \in A\}=\{x \in H \mid 0 \in x * a \forall a \in A\} \quad \text { and } \\
& R_{H}(A):=\{x \in H \mid a \ll x \forall a \in A\}=\{x \in H \mid 0 \in a * x \forall a \in A\} .
\end{aligned}
$$

If $A=\{a\}$, we write $L_{H}(\{a\})=L_{H}(a)$ and $R_{H}(\{a\})=R_{H}(a)$.
Let $\left(H_{1}, *_{1}, 0\right)$ and $\left(H_{2}, *_{2}, 0\right)$ be hyper BCK-algebras such that $H_{1} \cap H_{2}=\{0\}$ and $H=H_{1} \cup H_{2}$. Then $(H, *, 0)$ is a hyper BCK-algebra denoted by $H_{1} \oplus H_{2}$, called the hyper sum, where the hyperoperation "*" on H is defined for all $x, y \in H$ by,

$$
x * y= \begin{cases}x *_{1} y & \text { if } x, y \in H_{1} \\ x *_{2} y & \text { if } x, y \in H_{2} \\ \{x\} & \text { otherwise } .\end{cases}
$$

Let $\left(H_{1}, *_{1}, 0_{1}\right)$ and $\left(H_{2}, *_{2}, 0_{2}\right)$ be hyper BCK-algebras and $H=H_{1} \times H_{2}$. Define a hyperoperation "*" on H as follows: for all $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in H,\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right)=\left(a_{1} *_{1}\right.$ $\left.a_{2}, b_{1} *_{2} b_{2}\right)$. For $A \subseteq H_{1}$ and $B \subseteq H_{2}$, by (A, B) we mean $(A, B)=\{(a, b): a \in A, b \in B\}$, $0=\left(0_{1}, 0_{2}\right)$ and $\left(a_{1}, b_{1}\right) \ll\left(a_{2}, b_{2}\right) \Longleftrightarrow a_{1} \ll a_{2}$ and $b_{1} \ll b_{2}$. Then $(H, *, 0)$ is a hyper BCK-algebra, and it is called the hyper product of H_{1} and H_{2}.

2. Known Results

Proposition 2.1. [1] Let A and B be subsets of a hyper BCK-algebra H. Then the following hold:
(i) $L_{H}(\varnothing)=H$.
(ii) $L_{H}(A)=\bigcap_{a \in A} L_{H}(a)$.
(iii) For any $A \subseteq H, 0 \in L_{H}(A)$. If $0 \in A$, then $L_{H}(A)=\{0\}$.

Proposition 2.2. [8] Let H be a hyper BCK-algebra and $A \subseteq H$. Then the following hold:
(i) $R_{H}(A)=\bigcap_{a \in A} R_{H}(a)$.
(ii) For any $\varnothing \neq A \subseteq H$ such that $A \neq\{0\}, 0 \notin R_{H}(A)$.
(iii) $R_{H}(x) \neq \varnothing \forall x \in H$. In particular, $x \in R_{H}(x)$. Furthermore, $R_{H}(x)=H$ if and only if $x=0 \quad \forall x \in H$.

Theorem 2.3. [9] The family $\mathcal{B}_{L}(H)=\left\{L_{H}(A): \varnothing \neq A \subseteq H\right\}$ where H is a hyper BCKalgebra, is a basis for some topology on H.
Theorem 2.4. [8] The family $\mathcal{B}_{R}(H)=\left\{R_{H}(A): \varnothing \neq A \subseteq H\right\}$ where H is a hyper BCKalgebra, is a basis for some topology on H.

3. Bases of $\tau_{L}\left(H_{1} \oplus H_{2}\right)$ and $\tau_{R}\left(H_{1} \oplus H_{2}\right)$

Theorem 3.1. Let H be a hyper sum of hyper BCK-algebras H_{1} and H_{2} with $\left|H_{1}\right| \geq 2$ and $\left|H_{2}\right| \geq 2$. Then $\mathcal{B}_{L}(H)=\mathcal{B}_{L}\left(H_{1} \oplus H_{2}\right)=\mathcal{B}_{L}\left(H_{1}\right) \cup \mathcal{B}_{L}\left(H_{2}\right)$.

Proof: Since $\mathcal{B}_{L}\left(H_{1}\right) \subseteq \mathcal{B}_{L}(H)$ and $\mathcal{B}_{L}\left(H_{2}\right) \subseteq \mathcal{B}_{L}(H)$, it follows that $\mathcal{B}_{L}\left(H_{1}\right) \cup \mathcal{B}_{L}\left(H_{2}\right) \subseteq$ $\mathcal{B}_{L}(H)$. Next, let $V \in \mathcal{B}_{L}(H)$. Then there exists a nonempty set $B \subseteq H$ such that $V=L_{H}(B)$. Let $B_{1}=B \cap H_{1}$ and $B_{2}=B \cap H_{2}$. If $V=\{0\}$, then by Proposition 2.1(iii), $V=L_{H_{1}}(0) \in \mathcal{B}_{L}\left(H_{1}\right) \cup \mathcal{B}_{L}\left(H_{2}\right)$. So, suppose that $V \neq\{0\}$. Suppose further that $B_{1} \neq \varnothing$ and $B_{2} \neq \varnothing$. Choose $x, y \in B$ such that $x \in B_{1}$ and $y \in B_{2}$. Pick $u \in V \backslash\{0\}$. Then $u \ll x$ and $u \ll y$. If $u \in H_{1}$, then $u * y=\{u\}$. If $u \in H_{2}, u * x=\{u\}$. In both cases, we get a contradiction since $u \neq 0$. Therefore, either $B_{1}=\varnothing$ or $B_{2}=\varnothing$, say $B_{2}=\varnothing$. Then $B=B_{1} \subseteq H_{1}$. Hence, $V=L_{H}(B)=L_{H_{1}}(B) \in \mathcal{B}_{L}\left(H_{1}\right) \cup \mathcal{B}_{L}\left(H_{2}\right)$. Therefore, $\mathcal{B}_{L}(H)=\mathcal{B}_{L}\left(H_{1}\right) \cup \mathcal{B}_{L}\left(H_{2}\right)$.
Theorem 3.2. Let H be a hyper sum of hyper BCK-algebras H_{1} and H_{2} with $\left|H_{1}\right| \geq 2$ and $\left|H_{2}\right| \geq 2$. Then $\mathcal{B}_{R}(H) \backslash\{\varnothing, H\}=\left(\mathcal{B}_{R}\left(H_{1}\right) \cup \mathcal{B}_{R}\left(H_{2}\right)\right) \backslash\left\{\varnothing, H_{1}, H_{2}\right\}$.

Proof: Let $P \in \mathcal{B}_{R}\left(H_{1}\right) \backslash\left\{\varnothing, H_{1}\right\}$. Since $P \neq H_{1}$, by Proposition 2.2(iii), there exists a nonempty set $A \subseteq H_{1} \backslash\{0\}$ such that $P=R_{H_{1}}(A)$. But $A \subseteq H_{1} \backslash\{0\} \subseteq H$, thus, $P=R_{H_{1}}(A)=R_{H}(A)$. Since $A \neq\{0\}$ and $P \neq \varnothing$, by Theorem 2.2(iii) and definition of a hyper sum, $P \neq H$ and $P \neq \varnothing$ in H. Consequently, $P=R_{H}(A) \in \mathcal{B}_{R}(H) \backslash\{\varnothing, H\}$. Similarly, if $Q \in \mathcal{B}_{R}\left(H_{2}\right) \backslash\left\{\varnothing, H_{2}\right\}$ then $Q \neq H$ and $Q \neq \varnothing$ in H. Hence, $Q=R_{H}(B) \in$ $\mathcal{B}_{R}(H) \backslash\{\varnothing, H\}$. Accordingly, $\left(\mathcal{B}_{R}\left(H_{1}\right) \cup \mathcal{B}_{R}\left(H_{2}\right)\right) \backslash\left\{\varnothing, H_{1}, H_{2}\right\} \subseteq \mathcal{B}_{R}(H) \backslash\{\varnothing, H\}$.

Next, let $U \in \mathcal{B}_{R}(H) \backslash\{\varnothing, H\}$. Since $U \neq H$, by Proposition 2.2 (iii), there exists a nonempty subset $D \subseteq H \backslash\{0\}$ such that $U=R_{H}(D)$. Let $D_{1}=D \cap\left(H_{1} \backslash\{0\}\right)$ and $D_{2}=D \cap\left(H_{2} \backslash\{0\}\right)$. Suppose that $D_{1} \neq \varnothing$ and $D_{2} \neq \varnothing$. Choose any $x \in D_{1}$ and any $y \in D_{2}$. Since $x, y \in D$, it follows that $x \ll u$ and $y \ll u$ for all $u \in U$. Pick $w \in U$. By the definition of a hyper sum, if $w \in H_{1}$, then $y * w=\{y\}$ and if $w \in H_{2}$, then $x * w=\{x\}$. Since x and y are nonzero, $y \nless w$ and $x \nless w$, a contradiction. Thus, either $D_{1}=\varnothing$ or $D_{2}=\varnothing$, that is, either $D=D_{1}$ or $D=D_{2}$. If $D=D_{1}$ then $U=R_{H_{1}}\left(D_{1}\right)$. Since $D_{1} \neq\{0\}$ and $U \neq \varnothing$ in H, by Theorem 2.2 (iii), $U \neq H_{1}$ and $U \neq \varnothing$ in H_{1}. Thus, $U=R_{H_{1}}\left(D_{1}\right) \in \mathcal{B}_{R}\left(H_{1}\right) \backslash\left\{\varnothing, H_{1}\right\} \subseteq\left[\mathcal{B}_{R}\left(H_{1}\right) \cup \mathcal{B}_{R}\left(H_{2}\right)\right] \backslash\left\{\varnothing, H_{1}, H_{2}\right\}$. In the same way, if $D=D_{2}$ then $U=R_{H_{2}}\left(D_{2}\right) \in \mathcal{B}_{R}\left(H_{2}\right) \backslash\left\{\varnothing, H_{2}\right\} \subseteq\left[\mathcal{B}_{R}\left(H_{1}\right) \cup \mathcal{B}_{R}\left(H_{2}\right)\right] \backslash\left\{\varnothing, H_{1}, H_{2}\right\}$. Therefore, $\mathcal{B}_{R}(H) \backslash\{\varnothing, H\}=\left(\mathcal{B}_{R}\left(H_{1}\right) \cup \mathcal{B}_{R}\left(H_{2}\right)\right) \backslash\left\{\varnothing, H_{1}, H_{2}\right\}$.

4. Bases of $\tau_{L}\left(H_{1} \times H_{2}\right)$ and $\tau_{R}\left(H_{1} \times H_{2}\right)$

For any $\varnothing \neq D \subseteq H_{1} \times H_{2}$, the H_{1}-projection and H_{2}-projection of D are, respectively, the sets $D_{H_{1}}=\left\{x \in H_{1}:(x, y) \in D\right.$ for some $\left.y \in H_{2}\right\}$ and $D_{H_{2}}=\left\{y \in H_{1}:(z, y) \in\right.$ D for some $\left.z \in D_{H_{1}}\right\}$. Now, for each $x \in S=D_{H_{1}}$, let $T_{x}=\left\{y \in D_{H_{2}}:(x, y) \in D\right\}$. Then $D=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$.

Lemma 4.1. Let $\left\{A_{\alpha}: \alpha \in I\right\}$ be a collection of subsets of a hyper BCK-algebra H. Then

$$
\bigcap_{\alpha \in I} L_{H}\left(A_{\alpha}\right)=L_{H}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) .
$$

Proof: Let $\left\{A_{\alpha}: \alpha \in I\right\}$ be a collection of subsets of H. Then

$$
\begin{aligned}
x \in \bigcap_{\alpha \in I} L_{H}\left(A_{\alpha}\right) & \Leftrightarrow x \in L_{H}\left(A_{\alpha}\right) \text { for all } \alpha \in I \\
& \Leftrightarrow x \ll a \text { for all } a \in A_{\alpha} \text { and for all } \alpha \in I \\
& \Leftrightarrow x \ll a \text { for all } a \in \bigcup_{\alpha \in I} A_{\alpha} \\
& \Leftrightarrow x \in L_{H}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) .
\end{aligned}
$$

Therefore, the equality is true.
Theorem 4.2. Let H be a hyper product of hyper BCK-algebras H_{1} and H_{2}. Then the following properties hold:
(i) $L_{H}(A \times B)=L_{H_{1}}(A) \times L_{H_{2}}(B)$ for $A \subseteq H_{1}$ and $B \subseteq H_{2}$.
(ii) If $\left\{A_{\alpha}: \alpha \in I\right\}$ and $\left\{B_{\alpha}: \alpha \in I\right\}$ are collections of subsets of H_{1} and H_{2}, respectively, then

$$
\bigcap_{\alpha \in I}\left[L_{H_{1}}\left(A_{\alpha}\right) \times L_{H_{2}}\left(B_{\alpha}\right)\right]=L_{H_{1}}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \times L_{H_{2}}\left(\bigcup_{\alpha \in I} B_{\alpha}\right) .
$$

(iii) If $D=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$, where $S \subseteq H_{1}$ and $T_{x} \subseteq H_{2}$ for each $x \in S$, then

$$
L_{H}(D)=\bigcap_{x \in S}\left(L_{H_{1}}(x) \times L_{H_{2}}\left(T_{x}\right)\right)=L_{H_{1}}(S) \times L_{H_{2}}\left(\bigcup_{x \in S} T_{x}\right)
$$

Proof:
(i) Let A and B be subsets of H_{1} and H_{2}, respectively. Then

$$
\begin{aligned}
L_{H}(A \times B) & =\left\{(x, y) \in H_{1} \times H_{2}:(x, y) \ll(a, b) \text { for all }(a, b) \in A \times B\right\} \\
& =\left\{(x, y) \in H_{1} \times H_{2}: x \ll a \text { and } y \ll b \forall a \in A \text { and } b \in B\right\} \\
& =\left\{x \in H_{1}: x \ll a \forall a \in A\right\} \times\left\{y \in H_{2}: y \ll b \forall b \in B\right\} \\
& =L_{H_{1}}(A) \times L_{H_{2}}(B) .
\end{aligned}
$$

(ii) Let $\left\{A_{\alpha}: \alpha \in I\right\}$ and $\left\{B_{\alpha}: \alpha \in I\right\}$ be collections of subsets of H_{1} and H_{2}, respectively, and let $K=\bigcap_{\alpha \in I}\left[L_{H_{1}}\left(A_{\alpha}\right) \times L_{H_{2}}\left(B_{\alpha}\right)\right]$. Then

$$
\begin{aligned}
(x, y) \in K & \Leftrightarrow(x, y) \in L_{H_{1}}\left(A_{\alpha}\right) \times L_{H_{2}}\left(B_{\alpha}\right) \quad \forall \alpha \in I \\
& \Leftrightarrow x \in L_{H_{1}}\left(A_{\alpha}\right) \text { and } y \in L_{H_{2}}\left(B_{\alpha}\right) \quad \forall \alpha \in I \\
& \Leftrightarrow x \ll a \forall a \in A_{\alpha} \text { and } y \ll b \forall b \in B_{\alpha} \text { and } \forall \alpha \in I \\
& \Leftrightarrow x \ll a \forall a \in \bigcup_{\alpha \in I} A_{\alpha} \text { and } y \ll b \forall b \in \bigcup_{\alpha \in I} B_{\alpha} \\
& \Leftrightarrow x \in L_{H_{1}}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \text { and } y \in L_{H_{2}}\left(\bigcup_{\alpha \in I} B_{\alpha}\right) \\
& \Leftrightarrow(x, y) \in L_{H_{1}}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \times L_{H_{2}}\left(\bigcup_{\alpha \in I} B_{\alpha}\right) .
\end{aligned}
$$

Therefore, the assertion is true.
(iii) Let $D=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$, where $S \subseteq H_{1}$ and $T_{x} \subseteq H_{2}$ for each $x \in S$. Then by Lemma 4.1, (i), and (ii),

$$
\begin{aligned}
L_{H}(D) & =L_{H}\left[\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)\right] \\
& =\bigcap_{x \in S}\left[L_{H}\left(\{x\} \times T_{x}\right)\right] \\
& =\bigcap_{x \in S}\left[L_{H_{1}}(x) \times L_{H_{2}}\left(T_{x}\right)\right] \\
& =L_{H_{1}}(S) \times L_{H_{2}}\left(\bigcup_{x \in S} T_{x}\right) .
\end{aligned}
$$

Theorem 4.3. Let H be a hyper product of hyper $B C K$-algebras H_{1} and H_{2}. Then $\mathcal{B}_{L}(H)=\mathcal{B}_{L}\left(H_{1}\right) \times \mathcal{B}_{L}\left(H_{2}\right)$.

Proof: Let $U \in \mathcal{B}_{L}(H)$. Then there exists a nonempty set $D \subseteq H=H_{1} \times H_{2}$ such that $U=L_{H}(D)$. Let $D=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$ where $S \subseteq H_{1}$ and $T_{x} \subseteq H_{2}$ for each $x \in S$. Then $L_{H}(D)=L_{H_{1}}(S) \times L_{H_{2}}\left(\bigcup_{x \in S} T_{x}\right)$ by Theorem 4.2(iii). Hence, $U \in \mathcal{B}_{L}\left(H_{1}\right) \times \mathcal{B}_{L}\left(H_{2}\right)$, showing that $\mathcal{B}_{L}(H) \subseteq \mathcal{B}_{L}\left(H_{1}\right) \times \mathcal{B}_{L}\left(H_{2}\right)$. Next, let $V \in \mathcal{B}_{L}\left(H_{1}\right) \times \mathcal{B}_{L}\left(H_{2}\right)$. Then there exist nonempty sets $A \subseteq H_{1}$ and $B \subseteq H_{2}$ such that $V=L_{H_{1}}(A) \times L_{H_{2}}(B)=L_{H}(A \times B) \in$ $\mathcal{B}_{L}(H)$ by Theorem 4.2(i). Thus, $\mathcal{B}_{L}\left(H_{1}\right) \times \mathcal{B}_{L}\left(H_{2}\right) \subseteq \mathcal{B}_{L}(H)$. Therefore, $\mathcal{B}_{L}(H)=$ $\mathcal{B}_{L}\left(H_{1}\right) \times \mathcal{B}_{L}\left(H_{2}\right)$.

Lemma 4.4. Let $\left\{A_{\alpha}: \alpha \in I\right\}$ be a collection of subsets of a hyper BCK-algebra H. Then

$$
\bigcap_{\alpha \in I} R_{H}\left(A_{\alpha}\right)=R_{H}\left(\bigcup_{\alpha \in I} A_{\alpha}\right)
$$

Proof: Let $\left\{A_{\alpha}: \alpha \in I\right\}$ be a collection of subsets of H. Then

$$
\begin{aligned}
x \in \bigcap_{\alpha \in I} R_{H}\left(A_{\alpha}\right) & \Leftrightarrow x \in R_{H}\left(A_{\alpha}\right) \quad \text { for all } \alpha \in I \\
& \Leftrightarrow a \ll x \quad \text { for all } a \in A_{\alpha} \text { and for all } \alpha \in I \\
& \Leftrightarrow a \ll x \quad \text { for all } a \in \bigcup_{\alpha \in I} A_{\alpha} \\
& \Leftrightarrow x \in R_{H}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) .
\end{aligned}
$$

Therefore, the equality holds.
Theorem 4.5. Let H be a hyper product of hyper $B C K$-algebras H_{1} and H_{2}. Then the following properties hold:
(i) $R_{H}(A \times B)=R_{H_{1}}(A) \times R_{H_{2}}(B)$ for $A \subseteq H_{1}$ and $B \subseteq H_{2}$.
(ii) If $\left\{A_{\alpha}: \alpha \in I\right\}$ and $\left\{B_{\alpha}: \alpha \in I\right\}$ are collections of subsets of H_{1} and H_{2}, respectively, then

$$
\bigcap_{\alpha \in I}\left[R_{H_{1}}\left(A_{\alpha}\right) \times R_{H_{2}}\left(B_{\alpha}\right)\right]=R_{H_{1}}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \times R_{H_{2}}\left(\bigcup_{\alpha \in I} B_{\alpha}\right)
$$

(iii) If $E=\bigcup_{x \in P}\left(\{x\} \times T_{x}\right)$, where $P \subseteq H_{1}$ and $T_{x} \subseteq H_{2}$ for each $x \in P$, then

$$
R_{H}(E)=\bigcap_{x \in P}\left(R_{H_{1}}(x) \times R_{H_{2}}\left(T_{x}\right)\right)=R_{H_{1}}(P) \times R_{H_{2}}\left(\bigcup_{x \in P} T_{x}\right)
$$

Proof:
(i) Let A and B be subsets of H_{1} and H_{2}, respectively. Then

$$
\begin{aligned}
R_{H}(A \times B) & =\left\{(x, y) \in H_{1} \times H_{2}:(a, b) \ll(x, y) \text { for all }(a, b) \in A \times B\right\} \\
& =\left\{(x, y) \in H_{1} \times H_{2}: a \ll x \text { and } b \ll y \forall a \in A \text { and } b \in B\right\} \\
& =\left\{x \in H_{1}: a \ll x \forall a \in A\right\} \times\left\{y \in H_{2}: b \ll y \forall b \in B\right\} \\
& =R_{H_{1}}(A) \times R_{H_{2}}(B) .
\end{aligned}
$$

(ii) Let $\left\{A_{\alpha}: \alpha \in I\right\}$ and $\left\{B_{\alpha}: \alpha \in I\right\}$ be collections of subsets of H_{1} and H_{2}, respectively, and let $Q=\bigcap_{\alpha \in I}\left[R_{H_{1}}\left(A_{\alpha}\right) \times R_{H_{2}}\left(B_{\alpha}\right)\right]$. Then

$$
\begin{aligned}
(x, y) \in Q & \Leftrightarrow(x, y) \in R_{H_{1}}\left(A_{\alpha}\right) \times R_{H_{2}}\left(B_{\alpha}\right) \quad \forall \alpha \in I \\
& \Leftrightarrow x \in R_{H_{1}}\left(A_{\alpha}\right) \text { and } y \in R_{H_{2}}\left(B_{\alpha}\right) \quad \forall \alpha \in I \\
& \Leftrightarrow a \ll x \forall a \in A_{\alpha} \text { and } b \ll y \forall b \in B_{\alpha} \text { and } \forall \alpha \in I \\
& \Leftrightarrow a \ll x \forall a \in \bigcup_{\alpha \in I} A_{\alpha} \text { and } b \ll y \forall b \in \bigcup_{\alpha \in I} B_{\alpha} \\
& \Leftrightarrow x \in R_{H_{1}}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \text { and } y \in R_{H_{2}}\left(\bigcup_{\alpha \in I} B_{\alpha}\right) \\
& \Leftrightarrow(x, y) \in R_{H_{1}}\left(\bigcup_{\alpha \in I} A_{\alpha}\right) \times R_{H_{2}}\left(\bigcup_{\alpha \in I} B_{\alpha}\right) .
\end{aligned}
$$

Therefore, the equality holds.
(iii) Let $E=\bigcup_{x \in P}\left(\{x\} \times T_{x}\right)$, where $P \subseteq H_{1}$ and $T_{x} \subseteq H_{2}$ for each $x \in P$. Then by Lemma 4.4, (i), and (ii),

$$
\begin{aligned}
R_{H}(E) & =R_{H}\left[\bigcup_{x \in P}\left(\{x\} \times T_{x}\right)\right] \\
& =\bigcap_{x \in P}\left[R_{H}\left(\{x\} \times T_{x}\right)\right] \\
& =\bigcap_{x \in P}\left[R_{H_{1}}(x) \times R_{H_{2}}\left(T_{x}\right)\right] \\
& =R_{H_{1}}(P) \times R_{H_{2}}\left(\bigcup_{x \in P} T_{x}\right) .
\end{aligned}
$$

Theorem 4.6. Let H be a hyper product of hyper BCK-algebras H_{1} and H_{2}. Then $\mathcal{B}_{R}(H)=\mathcal{B}_{R}\left(H_{1}\right) \times \mathcal{B}_{R}\left(H_{2}\right)$.

Proof: Let $D \in \mathcal{B}_{R}(H)$. Then there exists a nonempty set $E \subseteq H=H_{1} \times H_{2}$ such that $D=R_{H}(E)$. Let $E=\bigcup_{x \in P}\left(\{x\} \times T_{x}\right)$ where $P \subseteq H_{1}$ and $T_{x} \subseteq H_{2}$ for each $x \in P$.

Then $L_{H}(E)=R_{H_{1}}(P) \times R_{H_{2}}\left(\bigcup_{x \in P} T_{x}\right) \in \mathcal{B}_{R}\left(H_{1}\right) \times \mathcal{B}_{R}\left(H_{2}\right)$ by Theorem 4.5(iii). Hence, $\mathcal{B}_{R}(H) \subseteq \mathcal{B}_{R}\left(H_{1}\right) \times \mathcal{B}_{R}\left(H_{2}\right)$. Next, suppose that $F \in \mathcal{B}_{R}\left(H_{1}\right) \times \mathcal{B}_{R}\left(H_{2}\right)$. Then there exist nonempty sets $O \subseteq H_{1}$ and $U \subseteq H_{2}$ such that $F=R_{H_{1}}(O) \times R_{H_{2}}(U)=R_{H}(O \times U)$ by Theorem 4.5(i). Thus, $F \in \mathcal{B}_{R}(H)$, showing that $\mathcal{B}_{R}\left(H_{1}\right) \times \mathcal{B}_{R}\left(H_{2}\right) \subseteq \mathcal{B}_{R}(H)$. Therefore, $\mathcal{B}_{R}(H)=\mathcal{B}_{R}\left(H_{1}\right) \times \mathcal{B}_{R}\left(H_{2}\right)$.
Conclusion: This study shows that, indeed, a topological structure may be generated from a given (hyper) algebraic structure by considering some family of subsets of the underlying set of the structure that would qualify as a base for some topology on the set. The topology generated in this way need not coincide with the topology for which continuity is imposed on some hyperoperations associated with the algebraic structure. In this study, the authors, using the construction of a topological structure they introduced, are able to determine the bases of the topologies generated by the hyper sum and hyper product of two hyper BCK-algebras.

Acknowledgements

This research is funded by the Philippine Department of Science and Technology Accelerated Science and Technology Human Resource Development Program (DOSTASTHRDP) and MSU-Iligan Institute of Technology.

References

[1] J Albaracin and J Vilela. Zero Divisor Graph of Finite Hyper BCK-algebra involving hyperatoms. Far East Journal of Mathematical Sciences, 103(4): 743-755, 2018.
[2] A Arhangel'skii and M Tkachenko. Topological Groups and Related Structures. World Scientific, 2008.
[3] R Borzooie, A Hasankhani, M Zahedi, and Y Jun. On Hyper K-algebras. Mathematicae Japonicae, 52(1): 113-121, 2000.
[4] H Harizavi. On Direct Sum of Branches in Hyper BCK-algebras. Iranian Journal of Mathematical Sciences and Informatics, 11(2): 43-55, 2016.
[5] Y Imai and K Iséki. On Axiom systems of Propositional Calculi XIV. Proc. Japan Academy, 42: 19-22, 1966.
[6] Y Jun, M Zahedi, X Xin, and R Borzooei. On Hyper BCK-algebras. Italian Journal of Pure and Applied Mathematics, 8: 127-136, 2000.
[7] F. Marty. Sun une Generalization da la Notion de Group. Stockholm: 8th Congress Math. Scandinaves, pages 45-49, 1934.
[8] R Patangan and Canoy, S Canoy, Jr. A Topology on a Hyper BCK-algebra. JP Journal of Algebra, Number Theory and Applications, 40: 787-797, 2018.
[9] R Patangan and S Canoy, Jr. A Topology on a Hyper BCK-algebra via Left Application of a Hyper Order. JP Journal of Algebra, Number Theory and Applications, 40: 321-332, 2018.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v12i4.3559
 Email addresses: rhapsodistchelar@gmail.com (R. Patangan),
 sergio.canoy@g.msuiit.edu.ph (S. Canoy, Jr.)

