EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 13, No. 1, 2020, 130-143 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Simple Properties and Existence Theorem for the Henstock–Kurzweil–Stieltjes Integral of Functions Taking Values on C[a, b] Space-valued Functions

Andrew Felix Cunanan^{1,*}, Julius Benitez²

 ¹ Department of Natural Sciences and Mathematics, College of Arts and Sciences, Surigao Del Sur State University, Tandag City, Surigao del Sur, Philippines
 ² Department of Mathematics and Statistics, College of Sciences and Mathematics, Mindanao State University-Iligan Institute of Technology, Tibanga, Iligan City, Philippines

Abstract. Henstock–Kurzweil integral, a nonabsolute integral, is a natural extension of the Riemann integral that was studied independently by Ralph Henstock and Jaroslav Kurzweil. This paper will introduce the Henstock–Kurzweil–Stieltjes integral of C[a, b]-valued functions defined on a closed interval $[f,g] \subseteq C[a,b]$, where C[a,b] is the space of all continuous real-valued functions defined on $[a,b] \subseteq \mathbb{R}$. Some simple properties of this integral will be formulated including the Cauchy criterion and an existence theorem will be provided.

2020 Mathematics Subject Classifications: 58C06,51M20, 26A42, 26B05, 26B30

Key Words and Phrases: C[a, b] space-valued function, δ -fine tagged division, Henstock–Kurzweil–Stieltjes integral, Continuity, Bounded variation.

1. Introduction

The Henstock-Kurzweil-Stieltjes integral is a generalized Riemann-Stieltjes integral which has properties similar to it. In the paper [9], Ubaidillah introduce the Henstock-Kurzweil integral of functions taking values in C[a, b] through Riemann sums

$$S(F,D) = \sum_{D} F(t_i)[h_{i-1}, h_i]$$

where $D = \{([h_{i-1}, h_i], t_i)\}_{i=1}^n$ is a tagged division of [f, g] Notion of integrals for Banach space-valued functions like Henstock integral for Banach space-valued functions, Henstock–Stieltjes integral of real-valued functions with respect to an increasing function and Henstock–Stieltjes integral for Banach spaces were already defined by Cao [3],

http://www.ejpam.com

© 2020 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v13i1.3626

Email addresses: deofscunananiv@yahoo.com (A. Cunanan), julius.benitez@g.msuiit,edu.ph (J. Benitez)

Lim [7] and Tikare [8], respectively. In this paper we change the way to define the domain of the function and the integrator. We shall choose first a closed interval [f, g] as our domain and a continuous real-valued function H instead of the identity map as our integrator.

2. Preliminaries

Throughout, we consider the space C[a, b] of all continuous real-valued functions defined on [a, b]. For more details of the space C[a, b], see [2], [5] or [9].

Let [f, g] be a closed interval of C[a, b]. A **division** of [f, g] is any finite set $\{h_0, h_1, \ldots, h_n\} \subset [f, g]$ such that

$$h_0 = f, h_n = g \text{ and } h_{i-1} < h_i$$

for all i = 1, 2, ..., n. A **tagged division** of [f, g] is a finite collection $\{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ of interval-point pairs such that $\{h_0, h_1, ..., h_n\}$ is a division of [f, g]and $t_i \in [h_{i-1}, h_i]$ for every i = 1, 2, ..., n. Each point t_i is referred to as the tag of the corresponding subinterval $[h_{i-1}, h_i]$. Let θ be the null element in $\mathcal{C}[a, b]$, that is, $\theta(x) = 0$, for all $x \in [a, b]$. A function $\delta : [f, g] \to \mathcal{C}[a, b]$ is said to be a **gauge** on [f, g] if $\theta < \delta(h)$ for every $h \in [f, g]$.

Definition 1. [9] Let δ be a gauge on [f, g]. A tagged division $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ is said to be δ -fine if

$$t_i \in [h_{i-1}, h_i] \subset (t_i - \delta(t_i), t_i + \delta(t_i))$$

for every i = 1, 2, ..., n.

Theorem 1. [9] (Cousin's Lemma) If δ is a gauge on $[f,g] \subset C[a,b]$, then there is a δ -fine tagged division of [f,g].

3. Henstock-Kurzweil-Stieltjes Integral on $\mathcal{C}[a, b]$

Let $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ be a tagged division of [f, g] and $F, H : [f, g] \to C[a, b]$ be functions. We write

$$S(F, H; D) = \sum_{i=1}^{n} F(t_i) [H(h_i) - H(h_{i-1})],$$

called as **Henstock–Kurzweil–Stieltjes sum** of F with respect to H on [f,g]. For brevity, we write $D = \{([u,v],t)\}$ for a tagged division of [f,g] and

$$S(F, H; D) = \sum_{D} F(t)[H(v) - H(u)]$$

Definition 2. Let $F, H : [f,g] \to C[a,b]$ be functions. We say that the function F is **Henstock–Kurzweil–Stieltjes integrable** with respect to H on [f,g] to $S \in C[a,b]$, briefly \mathcal{HKS} -integrable, if for any $\epsilon > 0$, there exists a gauge δ on [f,g] such that for any δ -fine tagged division D of [f,g], we have

$$|S(F,H;D) - S| < \epsilon \cdot e$$

where e is the **multiplicative identity** in C[a, b]. The element $S \in C[a, b]$ is called **Henstock–Kurweil–Stieltjes** integral, briefly \mathcal{HKS} -integral, of F with respect to H on [f, g] and is written by

$$S = (\mathcal{HKS}) \int_{f}^{g} F \ dH.$$

The collection of all functions which are \mathcal{HKS} -integrable with respect to H on [f, g] is denoted by $\mathcal{HKS}([f, g], H)$.

Theorem 2. (Uniqueness) If F is \mathcal{HKS} -integrable with respect to H on [f,g], then the \mathcal{HKS} -integral of F with respect to H on [f,g] is unique.

Proof. Suppose that F is \mathcal{HKS} -integrable with respect to H on [f,g] to $S_1 \in \mathcal{C}[a,b]$ and $S_2 \in \mathcal{C}[a,b]$. Let $\epsilon > 0$. Then there exists a gauge δ_1 on [f,g] such that for all δ_1 -fine tagged division $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ of [f,g], we have

$$|S(F,H;D) - S_1| < \frac{\epsilon}{2} \cdot e.$$
(1)

Similarly, there exists a gauge δ_2 on [f, g] such that for all δ_2 -fine tagged division $Q = \{([k_{i-1}, k_i], s_i) : i = 1, 2, ..., m\}$ of [f, g], we have

$$|S(F,H;Q) - S_2| < \frac{\epsilon}{2} \cdot e.$$
⁽²⁾

Define a function $\delta : [f,g] \to \mathcal{C}[a,b]$ by $\delta = \delta_1 \wedge \delta_2$. Hence, by (1) and (2)

$$|S_1 - S_2| < \frac{\epsilon}{2} \cdot e + \frac{\epsilon}{2} \cdot e = \epsilon \cdot e.$$

This shows that $S_1 = S_2$. Therefore, the \mathcal{HKS} -integral of F with respect to H on [f, g] is unique.

4. Simple Properties

Theorem 3. If $F, G \in \mathcal{HKS}([f,g],H)$ and $\alpha \in \mathbb{R}$, then

(i) Homogenity: $\alpha \cdot F \in \mathcal{HKS}([f,g],H)$ and

$$(\mathcal{HKS})\int_{f}^{g}(\alpha\cdot F)dH = \alpha\cdot(\mathcal{HKS})\int_{f}^{g}FdH.$$

(*ii*) Linearity: $F + G \in \mathcal{HKS}([f,g],H)$ and

$$(\mathcal{HKS})\int_{f}^{g}(F+G)dH = (\mathcal{HKS})\int_{f}^{g}FdH + (\mathcal{HKS})\int_{f}^{g}GdH.$$

Proof.

(i) Let $\epsilon > 0$. Then there exists a gauge δ on [f,g] such that for any δ -fine tagged division $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ of [f,g], we have

$$\left|\sum_{i=1}^{n} F(t_i)[H(h_i) - H(h_{i-1})] - (\mathcal{HKS}) \int_{f}^{g} F dH\right| < \frac{\epsilon}{|\alpha| + 1} \cdot e^{-\frac{1}{2}}$$

Thus, for any δ -fine tagged division $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, \dots, n\}$ of [f, g]

$$\begin{split} \sum_{i=1}^{n} (\alpha \cdot F)(t_{i})[H(h_{i}) - H(h_{i-1})] &- \alpha \cdot (\mathcal{HKS}) \int_{f}^{g} F dH \\ &= \left| \alpha \left\{ \sum_{i=1}^{n} F(t_{i})[H(h_{i}) - H(h_{i-1})] - (\mathcal{HKS}) \int_{f}^{g} F dH \right\} \right| \\ &= \left| \alpha \right| \cdot \left| \sum_{i=1}^{n} F(t_{i})[H(h_{i}) - H(h_{i-1})] - (\mathcal{HKS}) \int_{f}^{g} F dH \right| \\ &< \left| \alpha \right| \cdot \frac{\epsilon}{\left| \alpha \right| + 1} \cdot e \\ &\leq \epsilon \cdot e. \end{split}$$

This shows that $\alpha \cdot F \in \mathcal{HKS}([f,g],H)$ and

$$(\mathcal{HKS})\int_{f}^{g} (\alpha \cdot F)dH = \alpha \cdot (\mathcal{HKS})\int_{f}^{g} FdH.$$

(*ii*) Let $\epsilon > 0$. Then there exists gauge δ_F on [f,g] such that for any δ_F -fine tagged division $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ of [f,g], we have

$$\left|\sum_{i=1}^{n} F(t_i)[H(h_i) - H(h_{i-1})] - (\mathcal{HKS}) \int_{f}^{g} F dH\right| < \frac{\epsilon}{2} \cdot e.$$
(3)

Similarly, there exists gauge δ_G on [f, g] such that for any δ_G -fine tagged division $Q = \{([k_{i-1}, k_i], s_i) : i = 1, 2, ..., m\}$ of [f, g], we have

$$\left|\sum_{i=1}^{m} G(s_i)[H(k_i) - H(k_{i-1})] - (\mathcal{HKS}) \int_{f}^{g} GdH\right| < \frac{\epsilon}{2} \cdot e.$$
(4)

Define $\delta = \delta_F \wedge \delta_G$. Then δ is a gauge on [f,g]. Let $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, \ldots, n\}$ be a δ -fine tagged division of [f,g]. Then D is both δ_F and δ_G -fine. By (3) and (4),

$$\begin{split} \left| \sum_{i=1}^{n} (F+G)(t_{i})[H(h_{i}) - H(h_{i-1})] - \left\{ (\mathcal{HKS}) \int_{f}^{g} F dH + (\mathcal{HKS}) \int_{f}^{g} G dH \right\} \right| \\ \leq \left| \sum_{i=1}^{n} F(t_{i})[H(h_{i}) - H(h_{i-1})] - (\mathcal{HKS}) \int_{f}^{g} F dH \right| \\ + \left| \sum_{i=1}^{n} G(t_{i})[H(h_{i}) - H(h_{i-1})] - (\mathcal{HKS}) \int_{f}^{g} G dH \right| \\ < \frac{\epsilon}{2} \cdot e + \frac{\epsilon}{2} \cdot e = \epsilon \cdot e. \end{split}$$

Therefore, $F + G \in \mathcal{HKS}([f, g], H)$ and

$$(\mathcal{HKS})\int_{f}^{g}(F+G)dH = (\mathcal{HKS})\int_{f}^{g}FdH + (\mathcal{HKS})\int_{f}^{g}GdH.$$

Theorem 4. (Linearity of Integrator) If $F \in \mathcal{HKS}([f,g], H_1) \cap \mathcal{HKS}([f,g], H_2)$, then $F \in \mathcal{HKS}([f,g], H_1 + H_2)$ and

$$(\mathcal{HKS})\int_{f}^{g} Fd(H_{1}+H_{2}) = (\mathcal{HKS})\int_{f}^{g} FdH_{1} + (\mathcal{HKS})\int_{f}^{g} FdH_{2}.$$

Proof. Let $\epsilon > 0$. Then there exists gauge δ_{H_1} on [f, g] such that for any δ_{H_1} -fine tagged division $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ of [f, g], we have

$$\left|\sum_{i=1}^{n} F(t_i)[H_1(h_i) - H_1(h_{i-1})] - (\mathcal{HKS}) \int_f^g F dH_1\right| < \frac{\epsilon}{2} \cdot e.$$
(5)

Similarly, there exists gauge δ_{H_2} on [f,g] such that for any δ_{H_2} -fine tagged division $Q = \{([k_{i-1},k_i],s_i): i = 1, 2, ..., m\}$ of [f,g], we have

$$\left|\sum_{i=1}^{m} F(s_i)[H_2(k_i) - H_2(k_{i-1})] - (\mathcal{HKS}) \int_f^g F dH_2\right| < \frac{\epsilon}{2} \cdot e.$$
(6)

Define $\delta = \delta_{H_1} \wedge \delta_{H_2}$. Then δ is a gauge on [f, g]. Let $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ be a δ -fine tagged division of [f, g]. Then D is both δ_{H_1} and δ_{H_2} -fine. By (5) and (6),

$$\left|\sum_{i=1}^{n} F(t_{i})[(H_{1}+H_{2})(h_{i})-(H_{1}+H_{2})(h_{i-1})]-\left\{(\mathcal{HKS})\int_{f}^{g} FdH_{1}+(\mathcal{HKS})\int_{f}^{g} FdH_{2}\right\}\right|$$

$$\leq \left| \sum_{i=1}^{n} F(t_i) [H_1(h_i) - H_1(h_{i-1})] - (\mathcal{HKS}) \int_f^g F dH_1 \right|$$

$$+ \left| \sum_{i=1}^{n} F(t_i) [H_2(h_i) - H_2(h_{i-1})] - (\mathcal{HKS}) \int_f^g F dH_2 \right|$$

$$< \frac{\epsilon}{2} \cdot e + \frac{\epsilon}{2} \cdot e = \epsilon \cdot e.$$

Therefore, $F \in \mathcal{HKS}([f,g], H_1 + H_2)$ and

$$(\mathcal{HKS})\int_{f}^{g} Fd(H_{1}+H_{2}) = (\mathcal{HKS})\int_{f}^{g} FdH_{1} + (\mathcal{HKS})\int_{f}^{g} FdH_{2}.$$

Theorem 5. (Additivity) Let $f \leq r \leq g$. If $F \in \mathcal{HKS}([f, r], H)$ and $F \in \mathcal{HKS}([r, g], H)$, then $F \in \mathcal{HKS}([f, g], H)$ and

$$(\mathcal{HKS})\int_{f}^{g}FdH = (\mathcal{HKS})\int_{f}^{r}FdH + (\mathcal{HKS})\int_{r}^{g}FdH.$$

Proof. Let $\epsilon > 0$. Then there exists gauge δ_1 on [f, r] such that for any δ_1 -fine tagged division $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ of [f, r], we have

$$\left|\sum_{i=1}^{n} F(t_i)[H(h_i) - H(h_{i-1})] - (\mathcal{HKS}) \int_{f}^{r} F dH\right| < \frac{\epsilon}{2} \cdot e.$$
(7)

Similarly, there exists gauge δ_2 on [r,g] such that for any δ_2 -fine tagged division $Q = \{([k_{i-1},k_i],s_i): i = 1, 2, ..., m\}$ of [r,g], we have

$$\left|\sum_{i=1}^{m} F(s_i)[H(k_i) - H(k_{i-1})] - (\mathcal{HKS}) \int_r^g FdH\right| < \frac{\epsilon}{2} \cdot e.$$
(8)

Define a function $\delta : [f,g] \to \mathcal{C}[f,g]$ by

$$\delta(h) = \begin{cases} \delta_1(h) \wedge (r-h) &, \text{ if } f \le h \le r \\ \delta_1(h \wedge r) \wedge \delta_2(h \lor r) &, \text{ if } h = r \text{ or } h \text{ is incomparable to } r \\ \delta_2(h) \wedge (h-r) &, \text{ if } r \le h \le g. \end{cases}$$

Then δ is a gauge on [f, g]. Let $D = \{([h_{i-1}, h_i], t_i) : i = 1, 2, ..., n\}$ be a δ -fine tagged division of [f, g]. By definition of δ , we have $r = h_{i_0}$ for some $i_0 \in \{1, 2, ..., n\}$. Hence, $D = D_1 \cup D_2$ for some δ_1 -fine tagged division D_1 of [f, r] and δ_2 -fine tagged division D_2 of [r, g]. By (7) and (8),

$$\left|\sum_{i=1}^{n} F(t_i)[H(h_i) - H(h_{i-1})] - \left\{ (\mathcal{HKS}) \int_{f}^{r} FdH + (\mathcal{HKS}) \int_{r}^{g} FdH \right\} \right| < \epsilon \cdot e.$$

135

Therefore, $F \in \mathcal{HKS}([f,g],H)$ and

$$(\mathcal{HKS})\int_{f}^{g}FdH = (\mathcal{HKS})\int_{f}^{r}FdH + (\mathcal{HKS})\int_{r}^{g}FdH.$$

In the next theorem, we give an analogous form of Cauchy criterion for \mathcal{HKS} -integral.

Theorem 6. (Cauchy Criterion) $F \in \mathcal{HKS}([f,g],H)$ if and only if for every $\epsilon > 0$ there exists a gauge δ on [f,g] such that for any δ -fine tagged divisions $D = \{([u,v],t)\}$ and $Q = \{([u',v'],s)\}$ of [f,g], we have

$$\left|\sum_{D} F(t)[H(v) - H(u)] - \sum_{Q} F(s)[H(v') - H(u')]\right| < \epsilon \cdot e.$$

Proof. (\Rightarrow) Let $\epsilon > 0$. Then there exists a gauge δ on [f, g] such that for any δ -fine tagged division $D = \{([u, v], t)\}$ of [f, g], we have

$$\left|\sum_{D} F(t)[H(v) - H(u)] - (\mathcal{HKS}) \int_{f}^{g} F dH\right| < \frac{\epsilon}{2} \cdot e.$$
(9)

Let $D = \{([u, v], t)\}$ and $Q = \{([u', v'], s)\}$ be any δ -fine tagged divisions of [f, g]. By (9)

$$\left|\sum_{D} F(t)[H(v) - H(u)] - \sum_{Q} F(s)[H(v') - H(u')]\right| < \epsilon \cdot e.$$

(\Leftarrow) By assumption, for each $n \in \mathbb{N}$, there exists a gauge δ_n on [f, g] such that for any δ_n -fine division $D = \{([u, v], t)\}$ and $Q = \{([u', v'], s)\}$ of [f, g], we have

$$\left|\sum_{D} F(t)[H(v) - H(u)] - \sum_{Q} F(s)[H(v') - H(u')]\right| < \frac{1}{n} \cdot e.$$
(10)

We may assume that $\{\delta_n\}$ is decreasing; that is, $\delta_n \ge \delta_{n+1}$ for all n.

Now, for each $n \in \mathbb{N}$, fix a δ_n -fine tagged division $D_n = \{([u, v], t)\}$ of [f, g] and we write

$$r_n = \sum_{D_n} F(t)[H(v) - H(u)].$$

Note that if $m \ge n$ then $\delta_n \ge \delta_m$; implying that every δ_m -fine tagged division of [f, g] is also a δ_n -fine tagged division of [f, g]. Thus, for all m > n

$$|r_n - r_m| = \left|\sum_{D_n} F(t)[H(v) - H(u)] - \sum_{D_m} F(s)[H(v') - H(u')]\right| < \frac{1}{n} \cdot e.$$

136

Hence, $\{r_n\}$ is a Cauchy sequence in $\mathcal{C}[a, b]$. Since $\mathcal{C}[a, b]$ is complete, $\{r_n\}$ converges to some $r \in \mathcal{C}[a, b]$. We claim that

$$r = (\mathcal{HKS}) \int_{f}^{g} F dH.$$

Let $\epsilon > 0$. Since $\lim_{n \to \infty} r_n = r$ in $\mathcal{C}[a, b]$, there exists $N_1 \in \mathbb{N}$ such that for any $n \ge N_1$,

$$\left|r_n - r\right| < e \cdot \frac{\epsilon}{2}.\tag{11}$$

By Archimedean Principle, there exists $N_2 \in \mathbb{N}$ such that $\frac{1}{N_2} < \frac{\epsilon}{2}$. Take $N = N_1 \wedge N_2$. Define a gauge $\delta : [f,g] \to \mathcal{C}[a,b]$ by $\delta = \delta_N$. Let $D = \{([u,v],t)\}$ be any δ -fine tagged division of [f,g]. Note that D is also δ_N -fine tagged division of $[f,g], N \ge N_1$ and $N \ge N_2$. Thus, by (10) and (11)

$$\left|\sum_{D} F(t)[H(v) - H(u)] - r\right| < \epsilon \cdot e.$$

This proves our claim.

Theorem 7. If $F \in \mathcal{HKS}([f,g],H)$ and $[r,s] \subseteq [f,g]$, then $F \in \mathcal{HKS}([r,s],H)$.

Proof. Let $\epsilon > 0$. By Theorem 6, there exists a gauge δ on [f, g] such that for any δ -fine tagged divisions D and Q of [f, g], we have

$$\left|\sum_{D} F(t)[H(v) - H(u)] - \sum_{Q} F(t)[H(v) - H(u)]\right| < \epsilon \cdot e.$$
(12)

Consider any δ -fine tagged divisions P_1 and P_2 of [r, s]. If D_1 is any δ -fine tagged division of [f, r] and D_2 is any δ -fine tagged division of [s, g], then

 $D = D_1 \cup P_1 \cup D_2$ and $Q = D_1 \cup P_2 \cup D_2$

are δ -fine tagged divisions of [f, g] and by (12)

$$\left|\sum_{P_1} F(t)[H(v) - H(u)] - \sum_{P_2} F(t)[H(v) - H(u)]\right| < \epsilon \cdot e.$$

By Cauchy criterion, $F \in \mathcal{HKS}([r, s], H)$.

Theorem 8. Let $H : [f,g] \to C[a,b]$ be increasing, that is, $H(k) \leq H(h)$ for any $k \leq h$ in [f,g]. If $F \in \mathcal{HKS}([f,g], H)$ and $F(h) \geq \theta$ for every $h \in [f,g]$, then

$$(\mathcal{HKS})\int_{f}^{g}FdH \geq \theta.$$

Proof. Let $\epsilon > 0$. Then there exists a gauge δ on [f, g] such that for any δ -fine tagged division D of [f, g], we have

$$\left|\sum_{D} F(t)[H(v) - H(u)] - (\mathcal{HKS}) \int_{f}^{g} F dH\right| < \epsilon \cdot e.$$
(13)

Since $F(h) \ge \theta$ for all $h \in [f, g]$ and H is increasing,

$$\sum_{D} F(t)[H(v) - H(u)] \ge \theta$$

Therefore,

$$\theta \leq \sum_{D} F(t)[H(v) - H(u)] < (\mathcal{HKS}) \int_{f}^{g} F dH + \epsilon \cdot e$$

Since $\epsilon > 0$ is arbitrary,

$$(\mathcal{HKS})\int_{f}^{g}FdH \geq \theta.$$

Theorem 9. If $F, G \in \mathcal{HKS}([f,g],H)$ and $F(h) \leq G(h)$, for all $h \in [f,g]$, then

$$(\mathcal{HKS})\int_{f}^{g}FdH \leq (\mathcal{HKS})\int_{f}^{g}GdH.$$

Proof. Define a function E on [f,g] by setting E(h) = G(h) - F(h), for all $h \in [f,g]$. Then $E(h) \ge \theta$, for all $h \in [f,g]$. Since $F, G \in \mathcal{HKS}([f,g], H)$, $E \in \mathcal{HKS}([f,g], H)$ and by Theorem 8

$$(\mathcal{HKS})\int_{f}^{g} EdH \geq \theta.$$

Hence,

$$\theta \leq (\mathcal{HKS}) \int_{f}^{g} EdH = (\mathcal{HKS}) \int_{f}^{g} (G - F) dH = (\mathcal{HKS}) \int_{f}^{g} GdH - (\mathcal{HKS}) \int_{f}^{g} FdH.$$

Therefore,

$$(\mathcal{HKS})\int_{f}^{g}GdH \leq (\mathcal{HKS})\int_{f}^{g}FdH.$$

5. An Existence Theorem

A function $F : [f,g] \to \mathcal{C}[a,b]$ is **bounded** on [f,g] if there exists $K \ge \theta$ in $\mathcal{C}[a,b]$ such that

$$|F(h)| \le K$$
, for all $h \in [f,g]$.

A function $F : [f,g] \to C[a,b]$ is **continuous** at $h_0 \in [f,g]$, if for any $\epsilon > 0$ there exists $\delta = \delta(h_0) > \theta$ such that whenever $h \in [f,g]$ with $|h - h_0| < \delta$, we have

$$\left|F(h) - F(h_0)\right| < \epsilon \cdot e.$$

F is said to be **uniformly continuous** on [f, g], if for any $\epsilon > 0$ there exists $\delta > \theta$ such that whenever $h, h' \in [f, g]$ with $|h' - h| < \delta$, we have

$$\left|F(h') - F(h)\right| < \epsilon \cdot e.$$

If $F : [f,g] \to \mathcal{C}[a,b]$ is uniformly continuous on [f,g], then it is continuous on [f,g].

Definition 3. Let D_1 and D_2 be tagged divisions of [f, g]. We say that D_2 is **finer** than D_1 , denoted by $D_1 \ll D_2$, if for every $([u, v], t) \in D_2$ there exists $([u', v'], t') \in D_1$ such that $[u, v] \subseteq [u', v']$, and every tag in D_1 is a tag in D_2 . For every $([u', v'], t') \in D_1$, the tagged division $P = \{([z_{i-1}, z_i], t_i) \in D_2 : [z_{i-1}, z_i] \subseteq [u', v'], i = 1, 2, ..., n\}$ is the **refinement** of ([u', v'], t') in D_2 .

We can easily see that if D_1 and D_2 are tagged divisions of [f, g], then there exists a tagged division D_0 of [f, g] such that $D_1 \ll D_0$ and $D_2 \ll D_0$.

Let $\mathcal{D}([f,g])$ be the collection of all divisions of [f,g]. For $F : [f,g] \to \mathcal{C}[a,b]$ and $D = \{[u,v]\} \in \mathcal{D}([f,g])$, the **variation of** F **over** D is given by

$$var(F,D) = \sum_{D} |F(v) - F(u)|$$

Note that for any division D of [f, g], var(F, D) is a continuous function on [a, b]; that is, $var(F, D) \in C[a, b]$, for any $D \in D([f, g])$.

Definition 4. We say that the function $F : [f,g] \to C[a,b]$ is of **bounded variation** on [f,g] if

$$\boldsymbol{v}_F = \boldsymbol{v}(F; [f,g]) = \sup_{D \in \mathcal{D}([f,g])} \boldsymbol{var}(F,D)$$

is continuous on [a, b]; that is, $\boldsymbol{v}_F \in \mathcal{C}[a, b]$.

Note that for any $F: [f,g] \to \mathcal{C}[a,b], v_F$ is a mapping from [a,b] to $[0,+\infty]$; that is,

$$0 \leq \boldsymbol{v}_F(x) \leq +\infty$$
, for all $x \in [a, b]$.

Hence, if $F : [f, g] \to \mathcal{C}[a, b]$ is of bounded variation, then

$$0 \leq \boldsymbol{v}_F(x) < +\infty$$
, for all $x \in [a, b]$.

Theorem 10. Let $H : [f,g] \mapsto C[a,b]$ be of bounded variation. Then the variation of H is additive; that is, if $f \leq r \leq g$, then

$$\boldsymbol{\upsilon}(H;[f,g]) = \boldsymbol{\upsilon}(H;[f,r]) + \boldsymbol{\upsilon}(H;[r,g]).$$

Proof. Suppose that $H : [f,g] \to C[a,b]$ is of bounded variation. Let $r \in [f,g]$ and $D = \{h_0,\ldots,h_n\}$ be a division of [f,g]. Then $D' = \{h_0,\ldots,h_{k-1},r,h_k,\ldots,h_n\}$ is a refinement of D obtained by adjoining r to D. Thus

$$\sum_{D} |H(v) - H(u)| \le \sum_{D_1} |H(v) - H(u)| + \sum_{D_2} |H(v) - H(u)|$$

where $D_1 = \{f = h_0, h_1, ..., h_{k-1}, r\}$ and $D_2 = \{r, h_k, ..., h_n = g\}$. Note that $D' = D_1 \cup D_2$ and that

$$\begin{split} &\sum_{D_1} \left| H(v) - H(u) \right| \le \sup_{D \in \mathcal{D}([f,r])} \left(\sum_{D} \left| H(v) - H(u) \right| \right) = \boldsymbol{v}(H;[f,r]) \quad \text{and} \\ &\sum_{D_2} \left| H(v) - H(u) \right| \le \sup_{D \in \mathcal{D}([r,g])} \left(\sum_{D} \left| H(v) - H(u) \right| \right) = \boldsymbol{v}(H;[r,g]). \end{split}$$

Hence,

$$oldsymbol{v}(H;[f,g]) = \sup_{D \in \mathcal{D}([f,g])} \left(\sum_{D} \left| H(v) - H(u) \right|
ight) \le oldsymbol{v}(H;[f,r]) + oldsymbol{v}(H;[r,g]).$$

On the other hand, for any $D_1 \in \mathcal{D}([f,r])$ and $D_2 \in \mathcal{D}([r,g])$, their union $D' = D_1 \cup D_2 \in \mathcal{D}_r([f,g])$, where $\mathcal{D}_r([f,g])$ is the set of all divisions of [f,g] with r as one of the division points. Note that $\mathcal{D}_r([f,g]) \subseteq \mathcal{D}([f,g])$. Hence,

$$\sup_{D'\in\mathcal{D}_r([f,g])}\left(\sum_{D'}\left|H(v)-H(u)\right|\right)\leq\sup_{D\in\mathcal{D}([f,g])}\left(\sum_{D}\left|H(v)-H(u)\right|\right)=\boldsymbol{v}(H;[f,g])$$

Thus,

$$\boldsymbol{\upsilon}(H;[f,r]) + \boldsymbol{\upsilon}(H;[r,g]) \leq \sup_{\substack{D' \in \mathcal{D}_r([f,g])}} \left(\sum_{\substack{D'}} \left| H(v) - H(u) \right| \right) \\ \leq \boldsymbol{\upsilon}(H;[f,g]).$$

Therefore, combining the two inequalities

$$\boldsymbol{v}(H;[f,r]) + \boldsymbol{v}(H;[r,g]) = \boldsymbol{v}(H;[f,g]). \qquad \Box$$

Theorem 11. (Existence Theorem) If $F : [f,g] \to C[a,b]$ is continuous and $H : [f,g] \to C[a,b]$ is of bounded variation on [f,g], then $F \in \mathcal{HKS}([f,g],H)$.

Proof. Let $\epsilon > 0$. Since H is of bounded variation, $v_H \in \mathcal{C}[a, b]$. This means that there exists K > 0 such that $v_H(x) \leq K$ for all $x \in [a, b]$. Since F is continuous on [f, g], for all $h_0 \in [f, g]$ there exists $\delta_0(h_0) > \theta$ in $\mathcal{C}[a, b]$ such that whenever $h \in [f, g]$ with $|h - h_0| < \delta_0(h_0)$, we have

$$|F(h) - F(h_0)| < \epsilon \cdot e.$$

Define a gauge δ on [f,g] by $\delta(h) = \frac{\delta_0(h)}{2}$, for all $h \in [f,g]$. Let

$$D = \{([f, h_1], t_1), ([h_1, h_2], t_2), \dots, ([h_{m-1}, g], t_m)\}$$

and

$$Q = \{([f, k_1], r_1), ([k_1, k_2], r_2), \dots, ([k_{q-1}, g], r_q)\}$$

be δ -fine tagged divisions of [f, g]. Then there exists a tagged division D_0 such that $D \ll D_0$ and $Q \ll D_0$. Now, for every $([h_{i-1}, h_i], t_i) \in D$, $f = h_0, h_m = g$, $1 \le i \le m$, consider the difference

$$\Delta(h_{i-1}, h_i) = F(t_i) [H(h_i) - H(h_{i-1})] - S(F, H; P_i)$$

where

$$P_{i} = \left\{ \left(\left[z_{j-1}^{(i)}, z_{j}^{(i)} \right], s_{j}^{(i)} \right) \right\}_{j=1}^{n_{i}}, \quad z_{0}^{(i)} = h_{i-1}, \ z_{n_{i}}^{(i)} = h_{i}$$

is the refinement of $([h_{i-1}, h_i], t_i)$ in D_0 . Then

$$\Delta(h_{i-1}, h_i) = \sum_{j=1}^{n_i} \left[F(t_i) - F(s_j^{(i)}) \right] \left[H(z_j^{(i)}) - H(z_{j-1}^{(i)}) \right].$$

Now, $s_j^{(i)}, t_i \in [h_{i-1}, h_i] \subseteq (t_i - \delta(t_i), t_i + \delta(t_i))$ which implies that

$$\left|t_i - s_j^{(i)}\right| \le \left|h_i - h_{i-1}\right| < \delta(t_i).$$

By continuity of F at t_i ,

$$\left|s_j^{(i)} - t_i\right| < \delta(t_i) = \frac{\delta_0(t_i)}{2} < \delta_0(t_i) \Rightarrow \left|F(s_j^{(i)}) - F(t_i)\right| < \epsilon \cdot e.$$

So,

$$|\Delta(h_{i-1}, h_i)| = \bigg| \sum_{j=1}^{n_i} \big[F(t_i) - F(s_j^{(i)}) \big] \big[H(z_j^{(i)}) - H(z_{j-1}^{(i)}) \big] \bigg|.$$

Hence, by Theorem 10, we have

$$\left| S(F,H;D) - S(F,H;D_0) \right| = \left| \sum_{i=1}^m F(t_i) [H(h_i) - H(h_{i-1})] - \sum_{i=1}^m S(F,H,P_i) \right|$$
$$= \left| \sum_{i=1}^m \left\{ F(t_i) [H(h_i) - H(h_{i-1})] - S(F,H,P_i) \right\} \right| = \left| \sum_{i=1}^m \Delta(h_{i-1},h_i) \right|$$
$$\leq \sum_{i=1}^m \left| \Delta(h_{i-1},h_i) \right|$$

REFERENCES

$$= \sum_{i=1}^{m} \left| \sum_{j=1}^{n_i} \left[F(t_i) - F(s_j^{(i)}) \right] \left[H(z_j^{(i)}) - H(z_{j-1}^{(i)}) \right] \right|$$

$$\leq \sum_{i=1}^{m} \left(\sum_{j=1}^{n_i} \left| F(t_i) - F(s_j^{(i)}) \right| \left| H(z_j^{(i)}) - H(z_{j-1}^{(i)}) \right| \right)$$

$$\leq \sum_{i=1}^{m} \left(\sum_{j=1}^{n_i} \frac{\epsilon}{K} \cdot e \cdot \left| H(z_j^{(i)}) - H(z_{j-1}^{(i)}) \right| \right)$$

$$\leq \frac{\epsilon}{K} \cdot e \cdot \sum_{i=1}^{m} \left(\sum_{j=1}^{n_i} \left| H(z_j^{(i)}) - H(z_{j-1}^{(i)}) \right| \right)$$

$$\leq \frac{\epsilon}{K} \cdot e \cdot \sum_{i=1}^{m} v(H; [h_{i-1}, h_i])$$

$$= \frac{\epsilon}{K} \cdot e \cdot v_H < \frac{\epsilon}{K} \cdot e \cdot K < \epsilon \cdot e.$$

By similar argument,

$$|S(F,H;Q) - S(F,H;D_0)| < \epsilon \cdot e.$$

Thus,

$$\begin{aligned} |S(F,H;D) - S(F,H;Q)| &= |S(F,H;D) - S(F,H;D_0) + S(F,H;D_0) - S(F,H;Q)| \\ &\leq |S(F,H;D) - S(F,H;D_0)| + |S(F,H;Q) - S(F,H;D_0)| \\ &< \epsilon \cdot e + \epsilon \cdot e \\ &= 2\epsilon \cdot e. \end{aligned}$$

By Cauchy criterion, $F \in \mathcal{HKS}([f,g],H)$.

Acknowledgements

This article is funded by CHED-K12 Transition Program.

References

- T. M. Apostol, Mathematical Analysis, 2nd edition, Narosa Publishing House, New Delhi, 2002.
- [2] R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 4th edition, John Wiley, New York, 2011.
- [3] S. S. Cao, The Henstock Integral for Banach-valued Functions, Southeast Asian Bull. Math. 16, NO. 1, (1992), 35-40.

- [4] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, (Cambridge University Press). 978-0-0521-09031-5.
- [5] E. Kreyszig, Introductory Functional Analysis with Application, John Wiley and Sons. Inc., New York, 1978.
- [6] J. Kurzweil, Generalized Ordinary Differential Equation and Continuous Dependence on a Parameter, CMJ, 7(82) (1957), 418-449.
- [7] J. S. Lim, J. H. Yoon, and G. S. Eun, On Henstock-Stieltjes integral, Kangweon-Kyungki Math. J.6, No.1, (1998), 87-96.
- [8] S. A. Tikare and M. S. Chaudhary, The Henstock-Stieltjes Integral for Banach Space-valued Functions, Bull. Kerala Math. Assoc. Vol. 6, No. 2, (2010), 83-92.
- [9] F. Ubaidillah, S. Darmawijaya, and Ch. R. Indrati On the Henstock-Kurzweil Integral of C[a, b] Space-valued Functions, IJMA, **37**(9)(2015), 1831-1846.