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Abstract. Motivated by a study of Davvaz and Shabbani which introduced the concept of U-
complexes and proposed a generalization on some results in homological algebra, we study the
category of U -complexes and the homotopy category of U -complexes. In [8] we said that the category
of U-complexes is an abelian category. Here, we show that the object that we claimed to be the
kernel of a morphism of U -complexes does not satisfy the universal property of the kernel, hence we
can not conclude that the category of U -complexes is an abelian category. The homotopy category
of U-complexes is an additive category. In this paper, we propose a weakly chain U-complex by
changing the second condition of the chain U-complex. We prove that the homotopy category of
weakly U-complexes is a triangulated category.
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1. Introduction

The notion of U-complexes was introduced by Davvaz and Shabani-Solt in [6] as
a generalization of chain complexes of R-modules. They established some results in
homological algebra such as Lambek Lemma, Snake Lemma and Connecting homomorphism
and Exact Triangle. Their study was motivated by results from Freni and Sureau in [12]
and Davvaz and Parnian-Garamaleky in [5]. Freni and Sureau introduced a notion of
exact sequences of hypergroups by defining the kernel of a hypergroup homomorphism
as the inverse image of U where U is the intersection of all ultra-closed subhypergroups
of its codomain (note that a hypergroup does not always has zero element). Inspired
by this, Davvaz and Parnian-Garamaleky proposed a generalization of exact sequences
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of R-modules, called U-exact sequences, by replacing the kernel of any differential with
the preimage of a submodule U of its codomain. Then, Anvariyeh and Davvaz studied
application of U -exactness and U -split exact sequences [1]. Further results on U -exactness
given by Anvariyeh and Davvaz in [2] and Madanshekaf in [16].

Recently some authors continued working on U-exactness. Mahatma and Muchtadi-
Alamsyah defined U -projective resolutions and U -extension modules [17]. Baur et al. then
computed the U -projective resolution of modules over kQ where Q is quiver of type An and
Ãn [3]. Fitriani, Surojo and Wijayanti introduced X-sub-exact sequence as a generalization
of U-exact sequence [9]. By using the concept of X-sub-exact sequence, they studied
X-sub-linearly independent [10]. Furthermore, the authors generalized the U-generator
and M -subgenerator related to category σ [M ] [11]. In [7] and [8], we study the category
of U-complexes and its homotopy category of U-complexes. We proved that the category
of U-complexes and its homotopy category are additive categories.

In this article we provide a corrigendum to the result in [8] which stated that the
category of U-complexes is an abelian category. Then, we introduce a generalization of
chain U -complexes, called weakly chain U -complexes, by changing the second condition of
in the definition of the chain U -complexes. We show that the homotopy category of weakly
U-complexes is a triangulated category.

The paper is organized as follows. In section 2, we give the definition of additive
category, triangulated category and we review the category of complexes. In section 3,
we recall some results in [6], [7] and [8] that will be needed in the next section. Section 4
is the central section of our paper. In this section we introduce weakly U-complexes and
show that the homotopy category of weakly U-complexes is a triangulated category.

Convention: Throughout this paper, unless otherwise specified, we use the following
notations: R denotes a ring with identity. Chain complexes and its generalizations are
over R-Mod, the category of R modules. C (R) , U-C (R) , CU (R) denote the category of
complexes, U-complexes and weakly U-complexes respectively. We denote 0 and 1 for the
zero and identity morphisms respectively .

2. Preliminaries

In this section we recall some basic concepts that will be needed in the following sections.
For more detail we refer to [4], [13], [14], [15], [18] and [19].

2.1. Additive and Triangulated Categories

In this section we review the definition of additive category and triangulated category.

Definition 1 ([14]). A category A is called an additive category if the following conditions
hold:

A1 For every pair of objects X,Y the set of morphisms HomA (X,Y ) is an abelian group
and the composition of following morphisms is bilinear over the integers.

HomA (Y,Z)×HomA (X,Y )→ HomA (X,Z) (1)
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A2 A contains a zero object 0 (i.e for every objects X in A each morphism set HomA (X, 0)
and HomA (0, X) has precisely one element).

A3 For every pair of objects X,Y in A there exists a coproduct X ⊕ Y .

A category satisfying (A1) and (A2) is called a preadditive category. If A is a pre-
additive category, then by using the following proposition we can replace the condition A3
above with the existence of a biproduct in A.

Proposition 1 ([4]). Given two objects A,B of a preadditive category C, the following
conditions are equivalent:

(i) the product (P, pA, pB) of A,B exists;

(ii) the coproduct (P, sA, sB) of A,B exists;

(iii) the biproduct (P, pA, pB, sA, sB) of A,B exists, i.e. there exists an object P and
morphisms

pA : P −→ A, pB : P −→ B, sA : A −→ P, sB : B −→ P (2)

with the properties

pAsA = 1, pBsB = 1, pAsB = 0, pBsA = 0 (3)

sApA + sApB = 1 (4)

Moreover, under these conditions sA = ker pB, sB = ker pA, pA = co ker sB, pB =
co ker sA.

Let T be an additive category and Σ : T −→ T be an additive automorphism. A
triangle in T is a sequence of objects and morphism in T of the form

X Y Z ΣXu v w (5)

A morphism of triangles is a triple (f, g, h) of morphisms in T such that the following
diagram is commutative in T .

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

u

f

v

g

w

h Σf

u′ v′ w′

(6)

The triple (f, g, h) is called an isomorphism of triangles if the morphisms f, g and h are
isomorphisms in T .

Definition 2 ([14]). A triangulated category is an additive category T together with an
additive automorphism Σ, the translation or shift functor, and a colllection of distinguished
triangles satisfying the following axioms:
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TR0 Any triangle isomorphic to a distinguised triangle is again a distinguised triangle.

TR1 For every object X in T , the triangle

X X 0 ΣX1 (7)

is a distinguised triangle.

TR2 For every morphism f : X −→ Y in T there is a distinguised triangle of the form

X Y Z ΣX
f

(8)

TR3 If

X Y M(α(f)) ΣX
f α(f) β(f)

(9)

is a distinguised triangle then the following rotated triangle is also a distinguised
triangle.

Y M(α(f)) ΣX ΣY
α(f) β(f) −Σf

(10)

TR4 Given distinguished triangles X Y Z ΣXu v w and

X ′ Y ′ Z ′ ΣX ′u′ v′ w′ then each commutative diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

u

f

v

g

w

Σf

u′ v′ w′

(11)

can be completed to a morphism of triangles (but not necessarily uniquely).

TR5 (Octahedral axiom) Given the following distinguised triangles

X Y Z ′ ΣX

Y Z X ′ ΣY

X Z Y ′ ΣX

u

v

vu

(12)

then there exists a distinguished triangle Z ′ Y ′ X ′ ΣZ ′ making
the following diagram commutative
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X Y Z ′ ΣX

X Z Y ′ ΣX

Y Z X ′ ΣY

Z ′ Y ′ X ′ ΣZ ′

u

1 v 1

vu

u 1 Σu

v

1

(13)

2.2. The Category of Complexes

2.2.1. Chain Complexes

A complexes (over R-Mod) is a family X =
(
Xn, d

X
n

)
n∈Z

· · · Xn+1 Xn Xn−1 · · ·
dXn+1 dXn (14)

where Xn are R-modules, and dXn : Xn −→ Xn−1 are R-modules homomorphisms such that
dXn+1d

X
n = 0 for all n ∈ Z. The morphism dXn is called the differential of X on degree n. A

morphism f : X → Y of complexes is a family f = (fn)n∈Z of morphisms hn : Xn −→ Yn
such that fnd

X
n+1 = dYn+1fn+1 for all n ∈ Z.

· · · Xn+1 Xn Xn−1 · · ·

· · · Yn+1 Yn Xn−1 · · ·

dXn+1

fn+1

dXn

fn fn−1

dYn+1 dYn

(15)

The chain complexes together with morphism of complexes form a category C(R), the
category of complexes. This category is an abelian category.

2.2.2. The Homotopy Category of Complexes

Let X and Y be two objects in C(R). A morphsim f ∈ HomC(R) (X,Y ) is called homotopic
to zero (or null homotopic) if there exists a family h = (hn)n∈Z of morphisms hn : Xn →
Yn+1

· · · Xn+1 Xn Xn−1 · · ·

· · · Yn+1 Yn Xn−1 · · ·

dXn+1

fn+1

dXn

fn
hn hn−1

fn−1

dYn+1 dYn

(16)

satisfying
fn = dYn+1hn + hn−1d

X
n for all n ∈ Z (17)
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The morphism h is called a (chain) homotopy map. Two morphisms f, g ∈HomC(R) (X,Y )
are called homotopy equivalent, denoted by f ∼ g, if and only if f − g is homotopic to zero.
A complex X is called homotopic to zero if the identity morphism on X is homotopic to
zero.

The homotopy relation is an equivalence relation on the class of morphism in C (R).
Moreover if Ht (X,Y ) is the set of morphisms from X to Y which are homotopic to zero,
then the collection of all Ht (X,Y ) form and ideal in C (R). This implies the composition
of two equivalence classes (modulo homotopy) can be defined as the equivalence classes of
composition of two representative morphisms from each equivalence class. The quotient
category of C (R) modulo this ideal is called homotopy category.

Definition 3 ([15]). The homotopy category of complexes, denote by K (R), has the same
object as the category C (R). The morphisms in K (R) are the equivalence classes of
morphism in C (R) modulo homotopy, i.e.

HomK(R) (X,Y ) = HomC(R) (X,Y ) /Ht (X,Y ) (18)

and the composition of two equivalence classes (modulo homotopy) is defined as the equiva-
lence classes of composition of two representative morphisms from each equivalence class, i.e.
ḡ ◦ f̄ = g ◦ f for all f̄ ∈ HomC(R) (X,Y ) /Ht (X,Y ) and ḡ ∈ HomC(R) (Y, Z) /Ht (X,Y ).

Proposition 2 ([14]). The homotopy category K (R) is an additive category.

2.2.3. Triangulated Structure of the Homotopy Category of Complexes

In this section we recall a method to get a triangulated structure on K (R). At first we need
an additive automorphism on K (R), then we find a suitable set distinguished triangles in
K (R). The additive automorphism can be defined on the level of the cateogry C (R) as
follow.

Definition 4 ([14]). A translation functor or (left) shift Σ in C (R) is defined by shifting
any complex one degree to the left. More precisely, for an object X =

(
Xn, d

X
n

)
n∈Z in C (R),

define ΣX =
(
(ΣX)n , d

ΣX
n

)
n∈Z with (ΣX)n = Xn−1 and dΣX

n = −dXn−1. For a morphism
f : X −→ Y in C (R), set Σf = ((Σf)n)n∈Z where (Σf)n = fn−1. This functor is an addi-
tive functor, i.e. for every pair objects X,Y in C (R) the map Hom(X,Y ) −→ Hom(ΣX,ΣY )
is a morphism of abelian groups. Moreover it is an automorphism of the category C (R),
where the inverse is given by (right) shift.

To find the set of distinguished triangles in K (R) we need the following construction
of the mapping cone.

Definition 5 ([14]). Let f : X −→ Y be a morphism in C (R). The mapping cone of f is
the object M (f) in C (R) defined by

M (f)n = Xn−1 ⊕ Yn and dM(f)
n =

(
−dXn−1 0
fn−1 dYn

)
(19)
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The following morphisms are canonical morphisms in C (R)

α (f) : Y −→M (f) , where α (f) =

(
0
1

)
(20)

β (f) : M (f) −→ ΣX, where β (f) =
(
1 0

)
(21)

The morphisms above are also well-defined in K (R). Hence a distinguished triangle in
K (R) can be defined as follow.

Definition 6 ([14]). A standard triangle in K (R) is a sequence

X Y M(f) ΣX
f α(f) β(f)

(22)

A distinguished triangle in K (R) is a triangle which is isomorphic (in K (R)) to a
standard triangle.

With this class of distinghuished triangles we can prove the following proposition.

Proposition 3. [14]The homotopy category K (R) of complexes is a triangulated category.

3. A Generalization of the Category of Complexes

In this section we review some results in [6], [7] and [8]. In the first subsection we also
provide a corrigendum to [8].

3.1. The Category of U-Complexes

A chain U-complex (over R-Mod) is a family X =
(
Xn, U

X
n , d

X
n

)
n∈Z

· · · Xn+1 Xn Xn−1 Xn−2 · · ·
dXn+1 dXn dXn−1

(23)

where Xn and UXn are R-modules, UXn is a submodule of Xn, and dXn : Xn −→ Xn−1 are
R-modules homomorphisms such that for all n ∈ Z:

(i) dXn d
X
n+1 (Xn+1) ⊆ UXn−1, and

(ii) Im
(
dXn
)
⊇ UXn−1

A morphism of U-complexes f : X → Y is a family f = (fn : Xn −→ Yn)n∈Z of R-
modules homomorphisms such that every rectangle commutes and fn

(
UXn
)
⊆ UYn for all

n ∈ Z. The morphism f is called an isomorphism of U -complexes if each fn is an R-module
isomorphism and the sequence of R-module morphisms f−1 =

(
f−1
n : Yn −→ Xn

)
n∈Z is

also a morphism of U-complexes. The following are examples of chain U-complexes and
morphisms of U-complexes.
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Example 1. (i) Every chain complex is a chain U-complex with Un = 0 for all n ∈ Z.

(ii) Suppose we have the following sequence of R-modules and R-modules homomorphsim

· · · Xn+1 Xn Xn−1 Xn−2 · · ·dn+1 dn dn−1

(24)

Then the families X = (Xn, dn+1dn+2 (Xn+2) , dn)n∈Z and Y = (Xn, dn (Xn) , dn)n∈Z
are chain U-complexes. A morphsim f : X −→ Y defined by fn = 1 is a morphism
of U-complexes, but generally it is not an isomorphism of U-complexes.

Suppose f = (fn : Xn −→ Yn)n∈Z and g = (gn : Yn −→ Zn)n∈Z are morphisms of
U-complexes, then it is clear that gf = (gnfn : Xn −→ Zn)n∈Z is also a morphism of
U-complexes. We define the category of U-complexes, denote by U-C (R), as a category
whose objects are chain U-complexes and the morphisms are morphism of U-complexes.
This category is an additive category.

In [8], we also stated that U-C (R) is an abelian category by claiming the kernel of a
morphism U-complexes f : X −→ Y is K =

(
Kn, U

K
n , d

K
n

)
n∈Z with

Kn = ker fn = {x ∈ Xn | fn (x) = 0} , UKn =
(
dKn+1d

K
n+2

)
(Kn+2) (25)

and dKn is the resitriction of dXn on Kn. But in the following example we can see that
generally it does not satisfy the universal property of kernel. Hence we can not conclude
that U-C (R) is an abelian category by defining the kernel as in (25).

Example 2. Suppose X be the chain U-complex defined by X0 = X−1 = Z and zero
otherwise, dX0 = 1 and zero otherwise, UX−1 = Z and zero otherwise. Let Y be the chain
U-complex defined by shifting X one degree to the left. If f : X −→ Y is defined by f0 = 1
and zero otherwise, then we have K = X as follow:

K : 0 0 0 0 ⊆ Z 0

X : 0 0 0 ⊂ Z Z ⊆ Z 0

Y : 0 0 ⊂ Z Z ⊆ Z 0 0

k 1

f

1

1

1

(26)

Let L = X, then l : L −→ X defined by l−1 = 1 and zero otherwise is a morphism of
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U-complexes, moreover fl = 0.

K : 0 0 0 0 ⊂ Z 0

L : 0 0 0 ⊂ Z Z ⊆ Z 0

X : 0 0 0 ⊂ Z Z ⊆ Z 0

Y : 0 0 ⊂ Z Z ⊆ Z 0 0

k

g

l

1

1

1

f

1

1

1

(27)

The morphism g : L −→ X defined by g−1 = 1 and zero otherwise is the only morphism
such that kg = l, but g is not a morphism of U-complexes since g

(
UL−1

)
= Z 6⊆ UK−1 = 0.

Hence K is not the kernel of f .

3.2. The Homotopy Category of U-Complexes

A morphism f : X −→ Y in U -C (R) is called homotopic to zero (or null homotopic) if
there exists a chain homotopy map h = (hn : Xn −→ Yn+1)n∈Z such that

fn = dYn+1hn + hn−1d
X
n and hn

(
UXn
)
⊆ UYn+1 (28)

We call two morphisms f, g : X −→ Y in U -C (R) homotopic (or homotopy equivalent),
if f − g is null homotopic. We write f ∼ g if they are homotopy equivalent. The homotopy
relation ∼ is also an equivalence relation on the class of morphisms in U -C (R). Furthemore
the collections of homotopy equivalence classes of morphisms of U -complexes form an ideal
in U-C (R).

Lemma 1. Suppose X and Y are any objects in U-C (R). Then the collections of all

Ht (X,Y ) =
{
f ∈ HomCU (R) (X,Y ) | f ∼ 0

}
(29)

forms an ideal in U-C (R).

Proof. Let f, g ∈ Ht (X,Y ), α ∈ HomU−C(R) (Y,Z) and β ∈ HomU−C(R) (W,X).
Suppose r = (rn : Xn → Yn+1)n∈Z and s = (sn : Xn → Yn+1)n∈Z be homotopy maps such
that fn = dYn+1rn + rn−1d

X
n and gn = dYn+1sn + sn−1d

X
n . Then

βn (fn − gn)αn = βn
(
dYn+1rn + rn−1d

X
n − dYn+1sn − sn−1d

X
n

)
αn

= βnd
Y
n+1 (rn − sn)αn + βn (rn−1 − sn−1) dXn αn

= dZn+1βn+1 (rn − sn)αn + βn (rn−1 − sn−1)αn−1d
W
n−1

Set t = (tn = βn+1 (rn − sn)αn : Wn → Zn+1)n∈Z, then tn is a homotopy map. Hence
βn (fn − gn)αn ∼ 0.

Therefore we can define the homotopy category of chain U-complexes as the quotient
of U-C (R) modulo this ideal.
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Definition 7. The homotopy category of U-complexes, denote by U-K (R), has the same
object as the category U-C (R). The morphisms in U-K (R) are the equivalence classes of
morphism in U-C (R) modulo homotopy, i.e.

HomU−K(R) (X,Y ) = HomU−C(R) (X,Y ) /Ht (X,Y ) (30)

The homotopy category of U-complexes is also an additive category [7]. To check
whether the homotopy category of U-complexes U-K (R) carries a triangulated structure,
we need to construct a mapping cone in U-C (R).

Let f : X −→ Y be a morphism in U-C (R). Suppose

M (f)n = Xn−1 ⊕ Yn, UM(f)
n = UXn−1 ⊕ UYn and dM(f)

n =

(
−dXn−1 0
fn−1 dYn

)
(31)

For any (x, y) ∈ Xn−1 ⊕ Yn, observe that

dM(f)
n d

M(f)
n+1 (x, y) =

(
dXn d

X
n−1 0

dYn fn − dXn fn−1 dYn d
Y
n+1

)(
x
y

)
∈

(
UXn−2

UYn−1

)
= U

M(f)
n−1 (32)

and

dM(f)
n (x, y) =

(
−dXn−1(x)

fn−1(x) + dYn (y)

)
(33)

In the following example we note that in general Im
(
d
M(f)
n

)
does not contain U

M(f)
n−1 . Hence

we can not define the mapping cone in U-C (R) as in (31).

Example 3. Suppose we have the following morphism of chain U-complexes

X : 0 0 R R 0

Y : 0 R R⊕R 0 0

f

1

f0

dY1 dY0

(34)

where dX0 = 1, f0 =

(
0
1

)
, dY1 =

(
1
0

)
, dY0 =

(
0 0

)
, UX−1 = R, UY0 = R⊕0. Then M(f) is

0 R⊕R R⊕(R⊕R) 0 0∂ (35)

For any (x, y) ∈ R⊕R, observe that

∂

(
x
y

)
=

−1 0
0 1
1 0

(x
y

)
=

−xy
z

 (36)

Since Im(∂) = −R⊕ (R⊕R) 6⊇ R⊕(R⊕0) = UX0 ⊕UY1 we conclude that M(f) is not an
object in U-C (R).
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Observe that for M (f) in the construction (31) we have d
M(f)
n

(
U
M(f)
n

)
⊆ U

M(f)
n−1 .

Furthermore for any chain U -complex X, it also satisfies dXn
(
UXn
)
⊆ UXn−1. This motivate

us to define a weakly chain U-complex.

4. A Generalization of the Category of U-Complexes

In this section we propose a generalization of chain U-complex, called weakly chain
U-complex. Then, we prove that the homotopy category of weakly U-complexes carries
triangulated structure.

Let X =
(
Xn, U

X
n , d

X
n

)
n∈Z be a family of R-modules and R-modules homomorphisms

where UXn is a submodule of Xn. We define a weakly chain U-complex (over R-Mod) by
replacing the second condition of chain U -complex i.e dn (Xn) ⊇ Un−1 with dn(Un) ⊆ Un−1.
It is easy to check that every chain complex and chain U-complex are weakly chain
U-complexes.

We define a morphism of weakly chain U -complexes analog to the definition of morphism
of U-complexes, i.e. f : X −→ Y is a morphism of weakly chain U-complexes if f =
(fn : Xn −→ Yn)n∈Z is a family of R-modules homomorphisms such that every rectangle
commutes and fn

(
UXn
)
⊆ UYn for all n ∈ Z. We denote the category of weakly chain

U-complexes as CU (R).

Proposition 4. The category CU (R) of weakly chain U-complexes is an additive category.

Proof. The structure of an abelian group of HomCU (R) (X,Y ) and the billinearity
of composition of morphisms are inherited from HomC(R) (X,Y ). The zero object in
C (R) is also a zero object in CU (R). A biproduct of two objects X and Y is quintuple
(X ⊕ Y, pX , pY , sX , sY ) where X ⊕ Y, pX , pY , sX and sY are defined as follow:

X ⊕ Y =
(
X ⊕ Y,UX⊕Y , dX⊕Y

)
=
(
Xn ⊕ Yn, UX⊕Yn , dX⊕Yn

)
n∈Z (37)

where

UX⊕Yn =

(
UXn
UYn

)
and dX⊕Yn =

(
dXn 0
0 dYn

)
(38)

(sX)n =

(
1
0

)
, (sY )n =

(
0
1

)
, (39)

(pX)n =
(
1 0

)
, (pY )n =

(
0 1

)
(40)

Analog to the definition of homotopy equivalent in the category of U-complexes, we
call two morphisms f, g ∈ HomCU (R) (X,Y ) are homotopy equivalent if f − g is homotopic
to zero (or null homotopic), i.e., there exists a chain map s = (sn : Xn −→ Yn+1)n∈Z such
that

fn − gn = dYn+1sn + sn−1d
X
n and sn

(
UXn
)
⊆ UYn+1 (41)
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We called a weakly chain U-complex X is homotopic to zero (or null homotopic) if the
identity morphism on X is homotopic to zero.

It is clear that the homotopy relation is an equivalence relation on the class of morphisms
in CU (R) and the collection of homotopy equivalence classes of morphisms in CU (R) form
an ideal in CU (R). We define the homotopy category KU (R) of weakly chain U -complexes
as the quotient of CU (R) modulo this ideal. Since composition and addition are well
defined on the homotopy classes, it follows that KU (R) inherits the bilinear composition
from CU (R). Therefore we have the following result.

Proposition 5. The homotopy category KU (R) of weakly chain U-complexes is an additive
category.

Next, we will show that KU (R) is a triangulated category. We construct a translation
functor Σ on CU (R) analog to translator functor on K (R).

Definition 8. The translation functor shift Σ of X is an object ΣX =
(
ΣXn, U

ΣX
n , dΣX

n

)
n∈Z

defined by
ΣXn = Xn−1, U

ΣX
n = UXn−1, and dΣX

n = −dXn−1 (42)

and for a morphism f = (fn)n∈Z in KU (R) we set

Σf = (Σfn)n∈Z where Σfn = fn−1. (43)

The functor Σ above is an additive automorphism in CU (R). Moreover it is compatible
with homotopies, hence we have a well-defined induced functor Σ on KU (R). A triangle
and morphism of triangles in CU (R) is defined analog to the definition of triangle and
morphism of triangles in homotopy category C (R) of complexes.

Lemma 2. Let f : X −→ Y be a morphism in CU (R) then

M (f) =
(
M (f)n , U

M(f)
n , dM(f)

n

)
n∈Z

(44)

where

M (f)n = Xn−1 ⊕ Yn, UM(f)
n = UXn−1 ⊕ UYn , and dM(f)

n =

(
−dXn−1 0
fn−1 dYn

)
(45)

is an object in KU (R)

Proof. From (31) we know that d
M(f)
n d

M(f)
n+1

(
M (f)n+1

)
⊆ U

M(f)
n−1 . Now let (a, b) ∈

UXn−1 ⊕ UYn , note that

dM(f)
n (a, b) =

(
−dXn−1 0
fn−1 dYn

)(
a
b

)
=

(
−dXn−1 (a)

fn−1 (a) + dYn (b)

)
∈ UM(f)

n−1 (46)

The object M (f) above is called the mapping cone of f .
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Lemma 3. The mapping cone M (1) of identity morphims on X is homotopic to zero.

Proof. The mapping cone of identity morphism on X is

M (1) =
(
Xn−1 ⊕Xn, U

X
n−1 ⊕ UXn , dM(1)

n

)
n∈Z

(47)

where

dM(1)
n =

(
−dXn−1 0

1 dXn

)
: Xn−1 ⊕Xn −→ Xn−2 ⊕Xn−1 (48)

Look at the following diagram.

· · · Xn ⊕Xn+1 Xn−1 ⊕Xn Xn−2 ⊕Xn−1 · · ·

· · · Xn ⊕Xn+1 Xn−1 ⊕Xn Xn−2 ⊕Xn−1 · · ·

d
M(1)
n+1 d

M(1)
n

1
sn sn−1

d
M(1)
n+1 d

M(1)
n

(49)

Suppose sn : Xn−1 ⊕Xn → Xn ⊕Xn+1 is defined by sn =

(
0 1
0 0

)
.

It is clear that sn

(
U
M(1)
n

)
⊆ UM(1)

n+1 and d
M(1)
n

(
U
M(1)
n

)
⊆ UM(1)

n−1 . Observe that

d
M(1)
n+1 sn + sn−1d

M(1)
n =

(
−dXn 0

1 dXn+1

)(
0 1
0 0

)
+

(
0 1
0 0

)(
−dXn−1 0

1 dXn

)
=

(
1 0
0 1

)
(50)

Hence, in the homotopy category KU (R) of weakly chain U-complexes, the identity
morphism on M (1) is equal to the zero map. As a censequence, in the KU (R), the mapping
cone M (1) is isomorphic to zero complex.

Lemma 4. If f : X −→ Y is a morphism in CU (R), then the following canonical
morphisms are also morphisms in CU (R):

α (f) : Y −→M (f) where α (f) =

(
0
1

)
(51)

and
β (f) : M (f) −→ ΣX, where β (f) =

(
1 0

)
(52)

Furthermore,

X Y M(f) ΣX
f α(f) β(f)

(53)

is a short exact sequence of chain complexes.
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Proof. We only need to show that α (f) dan β (f) satisfy the second condition of

morphsim of U-complexes. Suppose x ∈ UYn and (v, w) ∈ UM(f)
n , then

α (f)n (x) =

(
0
x

)
∈
(
UXn−1

UYn

)
= UM(f)

n (54)

and

β (f)n

(
v
w

)
= v ∈ UΣX

n (55)

The morphisms α (f) and β (f) above are also well-defined in KU (R). This bring us
to the following definition.

Definition 9. A distinguished triangle in KU (R) is a triangle which is isomorphic (in
KU (R) to the following standard triangle

X Y M(f) ΣX
f α(f) β(f)

(56)

We use this class of distinguished triangles to prove that the homotopy category of
weakly U-complexes has a triangulated structure.

Theorem 1. The homotopy category KU (R) of weakly U-complexes is a triangulated
category.

Proof. By Definition 9 and Lemma 4 it is clear that axioms (TR0) and (TR2) are
satisfied. Suppose X,Y are objects in KU (R) .

TR1 Consider the triangle

X X M(1) ΣX1 β(f)
(57)

From Lemma 3 we know that the mapping cone M (1) is isomorphic to a zero object
in KU (R). Hence, the following is a distinguished triangle.

X X 0 ΣX1 (58)

TR3 Suppose X Y M(f) ΣX
f α(f) β(f)

be a distinguised triangle. We will

show that the rotated triangle

Y M(f) ΣX ΣY
α(f) β(f) f

(59)

is a distinguished triangle by proving that it is isomorphic in KU (R) to the following
standard triangle

Y M(f) M (α (f)) ΣY
α(f) α(α(f)) β(α(f))

(60)
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To construct an isomorphism between (59) and (60), we take identity map for the
first, second and fourth entries.

Y M(f) ΣX ΣY

Y M(f) M(α(f)) ΣY

α(f) β(f) −Σf

φ

α(f) α(α(f)) β(α(f))

ψ (61)

and define φn =

−fn−1

1
0

 and ψn =
(
0 1 0

)
. First we will show that φ and ψ

are morphisms in KU (R). Look at the following diagram

Xn Xn−1 Xn−2

Yn ⊕Xn ⊕ Yn+1 Yn−1 ⊕Xn−1 ⊕ Yn Yn−2 ⊕Xn−2 ⊕ Yn−1

−dXn −dXn−1

φn
d
M(α(f))
n+1 d

M(α(f))
n

ψn (62)

where

dM(α(f))
n =

−dYn−1 0 0
0 −dXn−1 0
1 fn dYn

 (63)

It is clear that φn
(
UΣX
n

)
⊆ UM(α(f))

n and ψn

(
U
M(α(f))
n

)
⊆ UΣX

n . Moreover

φn
(
−dXn

)fndXn−dXn
0

 = d
M(α(f))
n+1 φn+1 (64)

and

−dXn−1ψn =
(
0 −dXn−1 0

)
= ψn−1d

M(α(f))
n (65)

Now we will show that φ and ψ give a morphism of triangle in KU (R). Note that

β(α(f))nφn =
(
1 0 0

)−fn−1

1
0

 = −fn−1 (66)

Hence β (α (f))φ = −Σf . Observe the following diagram

Xn ⊕ Yn+1 Xn−1 ⊕ Yn Xn−2 ⊕ Yn−1

Yn ⊕Xn ⊕ Yn+1 Yn−1 ⊕Xn−1 ⊕ Yn Yn−2 ⊕Xn−2 ⊕ Yn−1

d
M(f)
n+1 d

M(f)
n

φnβ(f)n α(α(f))n
hn hn−1

d
M(α(f))
n+1 d

M(α(f))
n

(67)
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where

d
M(α(f))
n+1

−dYn 0 0
0 −dXn 0
1 fn dYn+1

 and dM(f)
n =

(
−dXn−1 0
fn−1 dYn

)
(68)

Let

hn =

0 −1
0 0
0 0

 : M (f)n −→M (α (f))n+1 (69)

then it is clear that hn

(
U
M(f)
n

)
⊆ UM(α(f))

n+1 and

φnβ (f)n − α (α (f))n =

−fn−1 0
0 0
0 −1

 = d
M(α(f))
n+1 hn−1 + hnd

M(f)
n (70)

Thus φβ (f) ∼ α (α (f)). We also have β(f) = ψα (α(f)) since

β (f)n − ψnα (α (f))n =
(
1 0

)
−
(
0 1 0

)0 0
1 0
0 1

 =
(
0 0

)
(71)

Now we will show −Σfψ ∼ β (α (f)). Consider the folowing diagram

Yn ⊕Xn ⊕ Yn+1 Yn−1 ⊕Xn−1 ⊕ Yn Yn−2 ⊕Xn−2 ⊕ Yn−1

Yn Yn−1 Yn−2

d
M(α(f))
n+1 d

M(f)
n

−Σfnψn β(α(f))n
gn

−dYn −dYn−1

(72)

Let gn =
(
0 0 −1

)
then it is clear that gn

(
U
M(α(f))
n

)
⊆ UΣY

n+1 and

−Σfnψn − β (α (f))n =
(
−1 −fn−1 0

)
= −dYn gn + gn−1d

M(α(f))
n (73)

We get −Σfψ ∼ β (α (f)). Next, we will show that ψφ = 1 and φψ ∼ 1. Note that

ψφ =
(
0 1 0

)−Σf
1
0

 = 1 (74)

Let

pn : M (α (f))n −→M (α (f))n+1 =

0 0 −1
0 0 0
0 0 0

 (75)
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Then it is clear that pn

(
U
M(α(f))
n

)
⊆ U

M(α(f))
n+1 and

φnψn − 1 =

−1 −fn−1 0
0 0 0
0 0 −1

 = d
M(α(f))
n+1 pn−1 + pnd

M(f)
n (76)

Thus φψ ∼ 1. So the following is a distinguished triangle.

Y M(f) Σ ΣY
α(f) β(f) −Σf

(77)

TR4 Suppose we have a diagram

X Y M(u) ΣX

X ′ Y ′ M(u′) ΣX ′

u

f

α(u)

g

β(u)

Σf

u′ α(u′) β(u′)

(78)

where the left square commutes in KU (R), i.e. there exist homotopy map sn : Xn −→
Y ′n+1 such that gnun − u′nfn = dY

′
n+1sn + sn−1d

X
n and sn

(
UXn
)
⊆ UY ′n+1 for all n ∈ Z.

Define

h = (hn) : M (u) −→M
(
u′
)

where hn =

(
fn−1 0
sn−1 gn

)
(79)

Observe that

hnα (u)n =

(
0
gn

)
= α

(
u′
)
gn (80)

and
β
(
u′
)
n
hn =

(
fn−1 0

)
= (Σf)n β (u)n (81)

and for any (a, b) ∈ UM(u)
n = UXn−1 ⊕ UYn we have

h

(
a
b

)
=

(
fn−1 (a)

gn (b) + sn−1 (a)

)
∈
(
UX

′
n−1

UY
′

n

)
= UM(u′)

n (82)

Hence (f, g, h) is a morphism of triangle in KU (R).

TR5 Assume that we have the following diagram in KU (R).

X Y M(u) ΣX

X Z M(vu) ΣX

Y Z M(v) ΣY

M(u) M(vu) M(v) ΣM(u)

u α(u)

v

β(u)

vu

u

α(vu) β(vu)

Σu

α(u)

v

α(vu)

α(v) β(v)

Σα(u)

(83)
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We define the missing morphisms as follows.

f : M (u) −→M (vu) where fn =

(
1 0
0 vn

)
(84)

g : M (vu) −→M (v) where gn =

(
un−1 0

0 1

)
(85)

h : M (v) −→ ΣM (u) where hn = Σα (u)β (v) =

(
0 0
1 0

)
(86)

X Y M(u) ΣX

X Z M(vu) ΣX

Y Z M(v) ΣY

M(u) M(vu) M(v) ΣM(u)

u α(u)

v

β(u)

f

vu

u

α(vu) β(vu)

g Σu

α(u)

v

α(vu)

α(v) β(v)

Σα(u)

f g h

(87)

It easy to check that fn

(
U
M(u)
n

)
⊆ UM(vu)

n , g
(
U
M(vu)
n

)
⊆ UM(v)

n and hn

(
U
M(v)
n

)
⊆

U
ΣM(v)
n . Moreover

fnα(u)n − α(vu)nvn =

(
1 0
0 vn

)(
0
1

)
−
(

0
1

)
vn =

(
0
0

)
(88)

β(vu)nfn − 1β(u)n =
(
1 0

)(1 0
0 vn

)
− 1

(
1 0

)
=
(
0 0

)
(89)

gnα(vu)n − α(v)n =

(
un−1 0

0 1

)(
0
1

)
−
(

0
1

)
=

(
0
0

)
(90)

β(v)ngn − un−1β(vu)n =
(
1 0

)(un−1 0
0 1

)
− un−1

(
1 0

)
=
(
0 0

)
(91)

Hence (f, g, h) is a morphism of triangles in KU (R). Now we need to show that the
bottom line

M(u) M(vu) M(v) ΣM(u)
f g h (92)

is a distinguished triangle di KU (R). For this we construct an isomorphism to the
standard triangle

M(u) M(vu) M(f) ΣM(u)
f α(f) β(f)

(93)

Since only the third entries in triangles are different, it suffices to find morphisms
σ : M (v) −→ M (f) and τ : M (f) −→ M (v) such that the diagrams commute in
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KU (R), i.e. β (f)σ = h, hτ = β (f) , σg = α (f) and τα (f) = g, up to homotopy.
Moreover, we have to show that they are isomorphisms in KU (R). Set

σn =


0 0
1 0
0 0
0 1

 and τn =

(
0 1 un−1 0
0 0 0 1

)
(94)

Look at the following diagram

M(u) M(vu) M(u) ΣM(u)

M(u) M(vu) M(f) ΣM(u)

f g h

σ

f α(f) β(f)

τ (95)

By definition we can check that σn

(
U
M(v)
n

)
⊆ U

M(f)
n and τn

(
U
M(f)
n

)
⊆ U

M(v)
n .

Moreover

τnα (f)n − gn =

(
0 1 un−1 0
0 0 0 1

)
0 0
0 0
1 0
0 1

− (un−1 0
0 1

)
=

(
0 0
0 0

)
(96)

and

β (f)n σn − hn =

(
1 0 0 0
0 1 0 0

)
0 0
1 0
0 0
0 1

− (0 0
1 0

)
=

(
0 0
0 0

)

Thus τα (f) = g and β (f)σ = h. Next we will show that α (f) ∼ σg. Consider the
following diagram.

Xn ⊕ Zn+1 Xn−1 ⊕ Zn Xn−2 ⊕ Zn−1

Xn−1 ⊕ Yn ⊕Xn ⊕ Zn+1 Xn−2 ⊕ Yn−1 ⊕Xn−1 ⊕ Zn Xn−3 ⊕ Yn−2 ⊕Xn−2 ⊕ Zn−1

d
M(vu)
n+1 d

M(vu)
n

α(f))n σngn
sn sn−1

d
M(f)
n+1 d

M(f)
n

(97)
Note that

dM(vu)
n =

(
−dXn−1 0

(vu)n−1 dZn

)
(98)

dM(f)
n =


dXn−2 0 0 0
−un−2 −dYn−1 0 0

1 0 −dXn−1 0
0 vn−1 (vu)n−1 dZn

 (99)
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Define rn : M (vu)n →M (f)n+1 by rn =


1 0
0 0
0 0
0 0

. Then rn

(
U
M(vu)
n

)
⊆ UM(f)

n+1 and

α (f)n − σngn =


0 0
0 0
1 0
0 1

−


0 0
1 0
0 0
0 1

(un−1 0
0 1

)

=


0 0

−un−1 0
1 0
0 0

 = d
M(f)
n+1 rn + rn−1d

M(vu)
n (100)

Therefore we obtain α (f) ∼ σg.

Now we will show that β (f) ∼ hτ . Look at the following diagram

Xn−1 ⊕ Yn ⊕Xn ⊕ Zn+1 Xn−2 ⊕ Yn−1 ⊕Xn−1 ⊕ Zn Xn−3 ⊕ Yn−2 ⊕Xn−2 ⊕ Zn−1

Xn−1 ⊕ Yn Xn−2 ⊕ Yn−1 Xn−3 ⊕ Yn−2

d
M(f)
n+1 d

M(f)
n

βfn hnτn
sn sn−1

d
ΣM(u)
n+1 d

ΣM(u)
n

(101)
with

dΣM(u)
n =

(
−dXn−2 0
un−2 dYn−1

)
(102)

Let sn =

(
0 0 −1 0
0 0 0 0

)
then it is clear that sn

(
U
M(f)
n

)
⊆ UΣM(u)

n+1 and

β (f)n − hnτn =

(
1 0 0 0
0 1 0 0

)
−
(

0 0
1 0

)(
0 1 un−1 0
0 0 0 1

)
=

(
1 0 0 0
0 0 −un−1 0

)
= d

ΣM(u)
n+1 sn + sn−1d

M(f)
n (103)

Hence we have β (f) ∼ hτ .

Last we will show that τ and σ are isomorphisms in the homotopy category KU (R).
Note that

τnσn − 1 =

(
0 0
0 0

)
(104)

Let tn : M (f)n −→M (f)n+1 defined by

tn =


0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 (105)
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then it is clear that tn

(
U
M(f)
n

)
⊆ UM(f)

n+1 and

σnτn − 1n =


−1 0 0 0
0 0 un−1 0
0 0 −1 0
0 0 0 0

 = d
M(f)
n+1 tn + tn−1d

M(f)
n

Thus τσ = 1 and στ ∼ 1 which mean that σ and τ are isomorphism of triangle in

KU (R). Hence, M(u) M(vu) M(v) ΣM(u)
f g h is a distinguished

triangle in KU (R) and we have proved the octahedral axiom for KU (R).

5. Conclusion

Category of U -complexes is a generalization of category of complexes defined by replacing
the objects with chain U-complexes and the morphisms with morphisms of U-complexes.
It is an additive category. The homotopy category of U-complexes is also an additive
category.

Let X =
(
Xn, U

X
n , d

X
n

)
n∈Z be a chain U -complex, then dXn

(
UXn
)
⊆ UXn−1. We introduce

a weakly chain U-complex by replacing the second condition of chain U-complex with
dXn
(
UXn
)
⊆ UXn−1. The category of weakly U-complexes is again an additive category and

its homotopy category is a triangulated category.
Every chain complex is a chain U-complex with Un = 0foralln ∈ mathbbZ. From the

first and the second condition of chain U -complex we know that chain U -complexes is also
a weakly U-complexes.
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