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On regular hypersemigroups

Niovi Kehayopulu

Abstract. It is shown that an hypersemigroup (S, o) is regular if and only if the set of all quasi-

Wy

ideals of S with the operation “x” is a von Neumann regular semigroup. It is both regular and

intra-regular if and only if the set of all quasi-ideals of S with the operation “x” is a band.
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It has been shown in Semigroup Forum [2] that an le-semigroup (S, -, <) is regular if
and only if the set @ of all quasi-ideal elements of .S with the multiplication “” of S is a
von Neumann regular semigroup. Moreover, it has been proved that if S is both regular
and intra-regular, then (Q,-) is a band. “Conversely”, if the quasi-ideal elements of S are
idempotent, then S is both regular and intra-regular. As a consequence, an le-semigroup
S is both regular and intra-regular if and only if (@, -) is a band.

As an example to the paper in Turkish J. Math. [7], we examine the above results
on lattice ordered semigroups in case of an hypersemigroup. An hypersemigroup (.9, o) is
called regular if for every a € S there exists € S such that a € (a o z) * {a}; that is, for
every a € S there exists y € a o x such that a € yoa. It is called intra-regular if for every
a € S there exist x,y € S such that a € (zoa)*(aoy); that is, for every a € S there exist
z,y € S, u € xoaand v € aoy such that a € wowv. A subset A of an hypersemigroup
(S,0) is called idempotent if A+ A = A. For notations and definitions not given in the
present paper we refer to [7].

Lemma 1 [3] Let (S,0) be an hypersemigroup. If S is regular, then the right ideals and
the left ideals of S are idempotent and for every right ideal A and every left ideal B of S,
the product A x B is a quasi-ideal of S.

Lemma 2 [4,5] An hypersemigroup (S, o) is regular if and only if, for any nonempty
subset A of S, we have A C Ax S x A.

Lemma 3 Let (S,0) be an hypersemigroup, A a right ideal and B a left ideal of S. Then
the intersection AN B is a quasi-ideal of S.
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Proof First of all, since A is a right ideal and B is a left ideal of .S, the intersection
AN B is nonempty. Indeed: Take an element a € A and an element b € B (A, B # ());
then aocb CA*xBCAxSCAandaobC AxBCSxBC B,soaobC AN B. Since
a o b is a nonempty set, the set AN B is nonempty as well (see also [5]). We also have

«Anm*@r(suAmm)g@usyusuﬂgAma

thus A N B is a quasi-ideal of S. 0

Lemma 4 [4,5] An hypersemigroup (S,o) is reqular if and only if, for every right ideal
A and every left ideal B of S, we have ANB C Ax B (equivalently, AN B = Ax B).

Lemma 5 If (S,0) is a reqular hypersemigroup, then S xS =S.

Proof Since S is regular, for every nonempty subset A of S, by Lemma 2, we have
ACA*S«A. Thus we have SC (S*xS)*SCS*xSCSandso S5 =3S5. O

A semigroup (S,-) is called von Neumann regular (or just regular) if for each a € S
there exists = € S such that a = aza [1, 8].

As always, P*(S) denotes the set of all nonempty subsets of S.

Theorem 6 An hypersemigroup (S, o) is reqular if and only if the set Q of all quasi-ideals
of S with the multiplication “«” of P*(S) is a von Neumann regular semigroup.

Proof =. First of all, for every quasi-ideal @ of S, we have

Q=(Q*5)N(5*=Q) (1)
In fact: Since S is regular, R(Q) is a right ideal and L(Q) is a left ideal of (S,0), by
Lemma 1, they are idempotent and we have
Q S QUQ*S)=RQ) =RQ)+RQ) =(QUQ+S))+(QuQ=+9)
= Q*QUQEA*xS*xQUEA*Q*xSUQ*xS+xQ*xSC QxS
and
Q S QU(S*Q) = LQ) =L@ +LQ) = (QU(S+Q)) * (QU(S+Q))
= Q*xQUS*Q+*xQUEA*S+*QUS*Q*xS*xQ C S*Q.

Thus we have Q C (Q*S)N(S*Q) C @, then Q = (Q *5) N (S * Q) and property (1) is
satisfied.

In addition, since S is regular, A is a right ideal and B is a left ideal of S, by Lemmas
3 and 4, A x B is a quasi-ideal of S. So, by (1), we have

AxB=(A*xBxS)N(S*AxB) (2)

We are ready now to prove that (Q,*) is a von Neumann regular semigroup. In this
respect, we prove the following:
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(Q, *) is semigroup. Indeed: First of all, in an hypersemigroup, the operation “x” is
associative (see [5], also [6; p. 22]). Let now @1, Q2 be quasi-ideals of S. Then @ * Q2 is
a quasi-ideal of S. Indeed: Since S is regular, Q1 * Q2 * S is a right ideal and S * Q1 * Q2
is a left ideal of S, by Lemma 1, they are idempotent and we have

((Ql * Q2) * S) N <S * (Q1 * QQ))

= (Q1xQ2%8)* (Q1xQ2%5)N(S*xQ1xQ2) (S *Q1*Q2)

= (Q1*Q2*xS*x8)*x(Q1*xQ2*xS)N(S*Q1*%xQ2)*(S*5*Q1*Q2)
(since S x S =9)
(Qux Q2% 8) * (S*Q1%Q2) * SN S *(Q1xQ2%85)*(S*Q1 Q)
(Q1 % Q2% .5) x (S Q1% Q2) (by (2))
Q1 * (Q2 % S * Qo)

Q1% (Q2+xSNS*Q2)
Q1 * Q2 (since Q9 is a quasi-ideal of S).

N 1N 1N

Hence @ * Q2 is a quasi-ideal of S. Thus (Q, *) is semigroup.

The semigroup (Q, ) is a von Neumann regular semigroup. In fact: Let @Q € Q. Since
(S,0) is regular, by Lemma 2, we have

QCRQ*xS+xQC(Q+xSN(S*xQ) CQ.
Then Q = @ %S % Q, where S € Q and so (Q, *) is a von Neumann regular semigroup.

<. We remark first that for each quasi-ideal () of S, we have

Q=Q+5+Q (3)

In fact: Let @ be a quasi-ideal of S. Since (Q, %) is von Neumann regular semigroup, there
exists X € Q such that Q = Q x X * Q. Then

Q=0Q+xX*xQCRQ*xS*QC(Q*x5)N(SxQ)CQ.

Thus we have Q = @ * S * ) and property (3) holds.

We are ready now to prove that (S, 0) is regular. For this, let A be a nonempty subset
of S. By Lemma 2, it is enough to prove that A C A x S x A.

Since R(A) is a right ideal and L(A) is a left ideal of S, by Lemma 3, R(A) N L(A) is
a quasi-ideal of S. Then, by (3), we have

A

N

R(A) N L(A) = (R(A) N L(A)) %S % (R(A) N L(A))
C (R(A) « s) « L(A) C R(A) % L(A)
- (AU(A*S)) 5 (AU(S*A)>
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= AxAUAxS+AUAxS+xS*xA
Ax AUAxSx A,

then Ax ACA*xAxAUA*xS+*AxAC AxSx* A, thus we obtain A C A% S5 x A and so
the hypersemigroup (5, o) is regular. O

Lemma 7 [4,5] An hypersemigroup (S, o) is intra-regular if and only if, for every right
ideal A and every left ideal B of S, we have AN B C B x A.

An element a of a semigroup S is called idempotent if a®> = a. An idempotent semigroup
or shorter a band is a semigroup in which all elements are idempotent.

Theorem 8 Let (S,0) is an hypersemigroup. If (S,0) is both regular and intra-regular,

“y

then the set Q of all quasi-ideals of S with the operation “«” is a band. “Conversely”, if
the quasi-ideals of (S, o) are idempotent, then S is both regular and intra-regular.

Proof —. Let (S, 0) be both regular and intra-regular. Since (S, o) is regular, by Theo-
rem 6, (Q, ) is a semigroup. Moreover, the elements of the semigroup Q are idempotent.
In fact: Let @ be a quasi-ideal of S. Since S is regular, we have Q@ = @ * S * Q (cf. the
proof of Theorem 6). Hence we have

Q = QeS+Q=(Q*S+Q)+5+(Q+5+Q)
= (Q@*xS+*Q)xSxS*(Q*S5xQ) (by Lemma 5)
= (Q@*x9)*(Q*9)x(S*xQ)*(S*Q).

Since S is intra-regular and @ % S is a right ideal and S * @ is a left ideal of S, by Lemma
7, we have (Q*S)N(S*Q) C (S*Q)*(Q*S). Thus we have

Q = (@x9)*x(Q*8)x(5+Q)*(5xQ)
Qx5)* (S*Q)*(Q*5)*(S*Q)
Q+xS*xS*xQ)*(Q*xS*x5*Q)
(Q@*xS*Q)*(Q*S*Q) (by Lemma 5)
RQ+xQC(@x5)N(SxQ)CQ,

and @ * @ = Q. Hence (Q, %) is an idempotent semigroup and so is a band.

N

(
(
(

<. Let A be a right ideal and B a left ideal of S. By Lemma 3, AN B is a quasi-ideal of
S. By hypothesis, we have ANB = (ANB)*(ANB) C AxB, BxA. Since ANB C AxB,
by Lemma 4, S is regular. Since AN B C B x A, by Lemma 7, S is intra-regular. O

Corollary 9 An hypersemigroup (S, o) is both reqular and intra-regular if and only if the

“y

set Q of all quasi-ideals of S with the operation “«” is a band.

Proof If (Q,x) is a band, that is an idempotent semigroup, then for every @Q € Q, we
have @ * @ = @, that means that the quasi-ideals of (S, o) are idempotent so, by Theorem
8, S is both regular and intra-regular. O
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