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1. Introduction

In 1934, F. Marty [7] first introduced the concept of hyperstructure theory at the
8th Congress of Scandinavian Mathematics. This led to the formulation of hyper BCK-
algebra by Y. Jun et al. [11], hyper BCl-algebra by X. Long [6], and many other classes
of algebras. R. Borzooei and H. Harizavi [1] defined the regular congruence relation on a
hyper BCK-algebra, constructed a quotient hyper BCK-algebra, established some homo-
morphism theorems, and got some related results involving the hyper product of hyper
BCK-algebras. G. Flores and G. Petalcorin [2] introduced regular congruence relation on
a hyper BCl-algebra and presented some isomorphism theorems on hyper BCI-algebras.

In 2017, A. Tampan [4] defined a new algebraic structure called a UP-algebra and
showed that the notion of UP-algebras is a generalization of KU-algebras that was intro-
duced by C. Prabpayak and U. Leerawat [8]. Recently, D. Gomisong [3] applied hyperstuc-
tures to UP-algebras in her graduate thesis following the structure of hyper KU-algebras by
S. Mostafa et al. [5]. D. Romano gave an equivalent definition of hyper UP-algebra in [10]
and proved that every hyper KU-algebra is a hyper UP-algebra. He also introduced the
quotient of a hyper UP-algebra in [9]. In this paper, we investigate the concept of regular
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congruence relation on a hyper UP-algebra and present some homomorphism theorems on
hyper UP-algebras. We also examine the concept of hyper product of hyper UP-algebras
and extend it to the hyper product of an arbitrary family of hyper UP-algebras.

2. Preliminaries

Let H be a nonempty set and P*(H) be the set of all nonempty subsets of H. A
hyperoperation on H is a mapping from H x H into P*(H).

Definition 1. [3] A hyper UP-algebra is a set H with constant 0 and hyperoperation ®
satisfying the following axioms: for all z,y,z € H,

where x < y is defined by 0 € y ® z and for every A, B C H, A < B is defined by: for all
a € A, there exists b € B such that ¢ < b. In such case, we call “<” the hyperorder in H.

A hyper UP-algebra H with constant 0 and hyperoperation ® is denoted by (H; ®,0).
By (HUP2) or (HUP3), z ®y # @ for all x,y € H.

Note that in [10], # < y is defined by Romano as 0 € x ® y. Thus, (HUP1) in [3] and
[10] are equivalent; that is, 0 € (y®2) ® [(z ® y) ® (x ® 2)]. Moreover, (HUP2) to (HUP4)
are identical, with “o” denoted by “® ”.

Example 1. [3] Let H = {0, a, b, c} be a set. Define the hyperoperation ® by the following
Cayley table :

‘ 0 a b C
{o} {a} {b}  {c}
{or {0a} {0b}  {c}
{o} {a} {ob} {c}
{0} {0,a} {0,b} {0,a,c}

Then, (H;®,0) is a hyper UP-algebra.

o T o OoO®

Proposition 1. [3, 10] Let H be a hyper UP-algebra. Then the following hold for all
x,y,z € H and for every nonempty subsets A, B,C C H:

(1) 0®0={0} (1i1) z < z

(i) 0@ A=A (iv) A C B implies A< B
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(W) r®2z<L 2 (viti) A®(B®C)=B® (A®C)
(vi) A® 0= {0} (iz) 0K x
(vii) A < {0} implies A = {0} (x) z € (0®y) implies x < y

Definition 2. [3] Let (H;®,0) and (H'; ®,0") be hyper UP-algebras. A mapping
f: H— K is called a hyper homomorphism if

(HH1) £(0) =0,
(HH2) f(z®y) = f(z)® f(y) for all z,y € H.

The following definitions are analogous to the ones given by Borzooei and Harizavi [1]
for regular congruence realtions on hyper BCK-algebras.

Definition 3. Let 6 be an equivalence relation on a hyper UP-algebra H and A, B C H.
Then

(i) A6B if there exists a € A and b € B such that afb;

(ii) AOB if for all a € A, there exists b € B such that afb and for all b € B, there exists
a € A such that afb;

(iii) 6 is called a congruence relation on H if whenever 26y and 2'6y’, then (z®z")0(y®y'),
for all z,y,2',y € H;

(iv) @ is called a regular congruence relation on H if 0 is a congruence relation on H and
whenever (z ® y)0{0} and (y ® x)0{0}, then z0y for all z,y € H.

The set [z]g = {y € H : yOx} is called the congruence class determined by x.

3. Regular Congruence Relations and Hyper Homomorphisms on
Hyper UP-algebras

All throughout, H, H', H" are hyper UP-algebras.

Proposition 2. If f : H — H' is a hyper homomorphism, then for all nonempty subsets
A, B C H we have f(A® B) = f(A) & f(B).

Proof. Let f: H — H’' be a hyper homomorphism and @ # A, B C H. Let x €

f(A®B) = f U a®b |. Then there exist a € A and b € B such that x € f(a®b).
acAbeB
Since f is a hyper homomorphism,

z € f(a)® f(b) C U fla) & f(b) = f(A) & f(B).
fla) € f(A), f(b) € f(B)
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Thus, f(A® B) C f(A) ® f(B). Now, let

y € f(A) @ f(B) = U fla) @ f(b).
f(a) € f(A), f(b) € f(B)

Then there exist f(a) € f(A) and f(b) € f(B) such that y € f(a) ® f(b). Since f is a
hyper homomorphism,

yefladb)ef| |J a®b|=fA®B)

a€A,beB

Thus, f(A) ® f(B) C f(A® B). Therefore, f(A® B) = f(A) & f(B). O

Definition 4. Let f : H — H’ be a hyper homomorphism. We say that f is a hyper
monomorphism if f is one-to-one, and f is a hyper epimorphism if f is onto; f is a hyper
isomorphism, denoted by =4, if f is both one-to-one and onto.

Lemma 1. Suppose f : H — H' and g : H — H" are both hyper homomorphisms
(epimorphisms) of hyper UP-algebras. Then gof is a hyper homomorphism (epimorphism)
of hyper UP-algebras.

The following result establishes the transitivity of the relation § on H.

Lemma 2. Let 0 be an equivalence relation on H and A,B C H. If AOB and BOC, then
AlC.

Proof. Suppose that A9B and BOC. Since AOB, by Definition 3(ii), for each a € A
(respectively b € B), there exists b € B (respectively a € A) such that afb. Similarly,
since BAC, for all b € B (respectively ¢ € C), there exists ¢ € C(respectively b € B) such
that bfc. Since by assumption # is an equivalence relation for each a € A (respectively
c € C), there exists ¢ € C(respectively a € A) such that aflc. Therefore, A9C. O

Lemma 3. Let 0 be an equivalence relation on H. Then the following are equivalent:

(i) 0 is a congruence relation on H;

(ii) if 0y, then (xr ® a)f(y ® a) and (a ® x)0(a ®y) for all a,x,y € H.

Proof. (i) = (i) Let 0 be a congruence relation on H and a,z,y € H. Suppose z0y.

Since 6 is a congruence relation on H and afa, (x ® a)f(y ® a) and (a ® x)0(a ® y), by
Definition 3(7).
(i) = (i) Assume xfly. Let x,y,2’,y" € H. Suppose that zfy and 2'0y’. By

(7), (z ® 2")0(y ® 2’) and (y ® 2’)0(y ® ¢'), so that by Lemma 2, (x ® 2/)0(y ® ¢/). By
Definition 3(7ii), 6 is a congruence relation on H. O
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Theorem 1. Suppose that 0 and 8" are reqular congruence relations on H with [0]g = [0]g.
Then 6 = 6'.

Proof. Let 6 and 6’ be regular conguence relations on H with [0]g = [0]¢:. Since 6 and
0" are both equivalence relations on H, it suffices to show that z6y if and only if 26’y for
all z,y € H. Let zfy. Since  is a congruence relation on H, by Lemma 3, (z®z)0(xz ®y).
Note that 0 € z ® 2 by Proposition 1(iii). Thus by Definition 3(ii), there exists an element
s € x ® y such that 00s. It follows that s € [0]p = [0]¢. Hence, (z ® y)0'{0}.

In a similar manner, since z0y, (y ® 2)0(y ® y). Also, 0 € y ® y implies that there
exists t € y ® = such that 00t. Hence, t € [0]p = [0]p. Thus, (y ® z)0’{0}. Now,
since (z ® y)0'{0}, (y ® 2)0’{0}, and @’ is a regular congruence relation, we have 26’y
by Definition 3(iv).

Similarly, let z6"y. Then (z ® z)0(x ® ). Also, 0 € x ® x implies that there exists an
element s €  ® y such that 00's. Furthermore, s € [0l = [0]p. So, (z ® y)0{0}.

By similar argument, we will obtain (y ® z)0’(y ® y). Since 0 € y ® y, there exists
v € y ® x such that 00'v. So, v € [0]pr = [0]p. Hence, (y ® x)§{0}. Since 6 is a regular

congruence relation, we have x0y. O

We now reformulate the quotient structure of a hyper UP-algebra presented in [9] via
regular congruence relation on a hyper UP-algebra H.

Theorem 2. [9] Let 0 be a regular congruence relation on H, I = Iy = [0]g and H/I =
{I, : x € H}, where I, = [x]g for all x € H. Then H/I with the hyperoperation ® and
hyperorder < which are defined as follows

Lely={L:zcx®y} and I, < I, if and only if I € I, ® I,
is a hyper UP-algebra which is called the quotient hyper UP-algebra.

Example 2. Let H = {0, 1,2,3} be a set. Define the hyperoperation ® by the following
Cayley table:

| 0 1 2 3
oy {1 {2z {3
{0} {0,1} {02} {13}
{0y {1} {02y {3}
{0}y {o,1} {02} {0,1,3}

By routine calculations, (H;®,0) is a hyper UP-algebra. Define a relation § on H by
6 = {(0,0),(1,1),(0,2),(2,0),(2,2),(3,3)}. By Lemma 3, it can be verified that 0 is a
congruence relation on H. Moreover, by routine calculations, 6 is a regular congruence
relation. Consider Ip = I = [0]g = {0,2},1; = {1}, and I3 = {3}. Then H/I = {I, 11, I3}.
Thus, our Cayley table is as follows:

® ‘ I I I3

LAy {hL} {3

Lo {1y {L L}y {L, I}

I {1y {0y {L 4,13}

W N = Ol®
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By routine calculations, H/I is a hyper UP-algebra.

To establish the First Hyper Isomorphism Theorem on hyper UP-algebras, we first
reformulate some results on hyper homomorphisms of hyper UP- algebras.

Lemma 4. [9] Let 0 be a regular congruence relation on H and I = [0]y. Then the mapping
m: H — H/I which is defined by 7n(x) = I, for all x € H, is a hyper epimorphism which
1s called the canonical epimorphism.

Theorem 3. [9] (Hyper Homomorphism Theorem) Let 6 be a reqular congruence on
H and I =[0)p. If f : H — H' is a hyper homomorphism of hyper UP-algebras such that
I is contained in the kernel of f, then f : H/I — H', which is defined by f(I.) = f(z),
for all x € H, is a unique hyper homomorphism such that f om = f, where © denotes the
canonical epimorphism and o is the composition map.

Theorem 4. (First Hyper Isomorphism Theorem) Let 6 be a regular congruence
relation on H and I = [0)g. If f : H — H' is a hyper homomorphism of hyper UP-
algebras such that ker f =1, then H/ker f =4 Imf.

Proof. Define f : H/I — H' by f(I,) = f(z) for all z € H. Let z,y € H.
Then I,,I, € H/I. From Theorem 3, f is a hyper homomorphism. Thus, f(I, ® I,)) =
F(L) & f(1,) and F(I) =0

Suppose that f(I,) = f(I,) with 2,y € H. Then f(z) = f(y). Since f is a hyper
homomorphism, 0’ = f(0) € f(z ®z) = f(z) ® f(z) = f(z) ® f(y) = f(x ®y). So, there
exists an element u € z ® y such that f(u) = 0, that is, u € kerf = I = [0]p. Thus, u60
and (z ® y)6{0}. Also, 0' = £(0) € f(x ®2) = f(z) &' f(z) = f(y) & f(z) = f(y ® ).
Thus, there exists an element v € y®ax such that f(v) = 0'. Moreover, v € kerf =1 = [0]y
and v00. Thus, (y ® x)0{0}. Since 0 is a regular congruence relation, it follows that z6y.
Thus, I, = I,. Hence, f is one-to-one, thus ker f = (ker f)/I C H/I is trivial, which
occurs if and only if ker f = I. Clearly, Im f = Im f and f : H/I — Im f is onto.
Therefore, H/ker f =y Imf. O

Lemma 5. Let f : H — H' be a hyper homomorphism on hyper UP-algebras with
I = [0)g and J = [0']gy where 6 and 0" are regular congruence relations on H and H',
respectively. Suppose that I C ker f. Then for all x,y € H,x0y implies that f(x)6 f(y).

Proof. Let f : H — H' be a hyper homomorphism with I = [0]g C ker f and
J = [0/]¢ where 0 and @' are regular congruence relations on H and H’, respectively.
Let z,y € H such that z0y. Since 0 is a regular congruence relation, we have z6x and
(x ® x)0(x ® y) by Definition 3(iii). Since 0 € x ® z by Proposition 1(44i), there exists an
element u € x ® y such that 06u. Thus, u € I C ker f, that is, f(u) = 0. It follows that
f(u) € H and f(u)0’'0’. Since f is a hyper homomorphism, f(u) € f(z®y) = f(z)®' f(y),
thus (f(z) ® f(y))0'{0}.

Using similar argument, with yfy, we have (f(y) ® f(x))@{0’}. Since ¢’ is a regular
congruence relation, by Definition 3(iv) we have f(x)6'f(y). O
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Theorem 5. Let 6 and ' be reqular congruence relations on hyper UP-algebras H and H',
respectively, such that I = [0]g and J = [0]g. If f : H — H' is a hyper homomorphism
of hyper UP-algebras such that x8y if and only if f(x)0'f(y), for all x,y € H, then there
exists a unique hyper homomorphism f* : H/I — H'/J such that 7' o f = f* o where
7w and ' are the canonical epimorphisms and o is the composition map.

H — H

I i

qir Lo omyg

Proof. Consider the mapping f* : H/I — H'/J defined by f*(I;) = Jy(y), for all
x € H. Let z,y € H such that I, = I,,. Then zfy and so f(x)@' f(y) by assumption. Hence,
[Uz) = Jp@) = Jp) = [F(1,) and f* is well-defined.

Let I, I, € H/I and J; € f*(I; ® I,). Then there exists an element t' € = ® y such
that Jpuy = f*(Iy) = Ji. Now, t' € x ® y implies f(t') € f(z ®y) = f(z) & f(y). So,
T = Jrun € Ty ® Ty = £2(1) @ (L), Hence, f*(I, @ I,)  f*(L) &' f*(1,).

Next, let Js € f*(I;) &' f*(Iy) = Jpaz) ® Jpq)- Then s € f(z) @ f(y) = flz ®y).
Now, s € f(z ®y) implies there exists w € x ® y such that f(w) = s, that is, I,, € I, ® I,
and Js = Jy) = f*(Lw) € f*(I ® I). Therefore, f*(I) ® f*(1,) € f*(I. ® I,) and so
[y ® 1) = f*(I;) ® f*(I,). Moreover, f*(I) = Jyqy = Jo = J. Also, dom(r’ o f) =
H = dom(f*om). Let z € H. Then

("o f)(x) = 7'(f(2)) = Jy() = [*(Le) = f*(n(2)) = (f* o m)(2).

Thus, 7’ o f = f*onw. Next, we let ¢ : H/I — H'/J be a homomorphism such that
7o f = ¢om. Note that dom(n' o f) = H = dom(¢ o). Then ¢ = f* since for all x € H,
we have ¢(I) = ¢(n(2)) = Jn(x) = 7' (f(z)) = (7" 0 f)(2) = (f* o m)(z) = f* (L) O

Theorem 6. Suppose f : H —s H' is a hyper epimorphism of hyper UP-algebras, 0’ is
a regqular conruence relation on H' and J = [0']¢:. Then there exists a reqular congruence
relation 0 on H such that H/I =4 H'/J, where I = [0].

Proof. Define § on H by z0y if and only if f(z)0'f(y), for all ,y € H. Let x € H.
Then f(x) € H' and so, by reflexivity of ¢ on H’', we have f(z)0' f(z). It follows that zfz
and 6 is a reflexive relation on H. Assume that x6y, where x,y € H. So, f(z), f(y) € H’
and f(z)0 f(y). Hence, f(y)0 f(xz) which will imply that yfz. Thus, 6 is a symmetric
relation on H. Suppose z8y and yfz, where x,y, 2 € H. Then f(z)0'f(y) and f(y)0'f(2),
for all z,y,2z € H. Note that f(z), f(y), f(z) € H' and by transitivity of § on H’, we
have f(x)0'f(z). Thus, 26z on H and 6 is a transitive relation on H. Therefore, 6 is an
equivalence relation on H.

Next, we will show that 6 is a congruence relation. Let a,x,y € H such that xf0y.
Then f(z)0'f(y). Since f(a), f(x), f(y) € H and 6 is a congruence relation on H', from
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Lemma 3 it follows that (f(z) ® f(a))@(f(y) ® f(a)) and (f(a) ® f(x))0'(f(a) ® f(y)).
Thus, (z ® a)f(y ® a) and (a ® z)0(a ® y). Therefore, by Lemma 3, # is a congruence
relation on H.

Let z,y € H such that (z ® y)0{0} and (y ® x)0{0}. Then f(z), f(y) € H and there
exist a € (x®y) and b € (y® x) such that af0 and b00. Since f is a hyper homomorphism
and f(0) =0, f(a) € flx@y) = f(z) ® f(y) and f(b) € fly®x) = f(y) ® f(x) such
that f(a)0'0" and f(b)¢’0’. Thus, (f(z) ® f(y))0'{0'} and (f(y) ®" f(x))0'{0"}. Since ¢’
is a regular congruence relation on H', f(z)0'f(y), implying that x6y. Therefore, 6 is a
regular congruence relation on H.

Next, let z € I = [0]y. Since x60 and f(0) = 0/, f(x)0'0'. It follows that f(z) €
[01]gr = J, 80 & € f~1(J). Thus, I C f~1(J). On the other hand, let y € f~'(J). Then
fly) € J = [0]¢ and f(y)@'0'. Hence, 500 and y € [0]g = I, implying that f~1(J) C I.
Thus, I = f~(J).

Now, let m : H' — H'/J be the canonical hyper epimorphism and define f : H —
H'/J by f =mo f. Since m and f are both hyper epimorphisms of hyper UP-algebras, by
Lemma 1, f is a hyper epimorphism. Observe that

ker f={r € H: f(z)=J}
(v € H:n(f(x) = J}
={r€H:Jpy =J}
={xeH: f(x)e J}
={zeH:zecf1J)}
={reH:xecl}
=1.

Therefore, by the First Hyper Isomorphism Theorem, H/I =4 H'/J. O

Theorem 7. Let f : H — H' be a hyper epimorphism on hyper UP-algebras and let
© and Q be relations on H and H', respectively, defined by 2Oy < f(z)Qf(y) for all
x,y € H. Then © is a reqular congruence relation on H if and only if  is a regular
congruence relation on H'.

Proof. Utilizing the proof of Theorem 6, we only need to show that © is a regular
congruence relation on H implies that € is a regular congruence relation on H’. Suppose
O is a regular congruence relation on H. Let u,v,w € H'. Then there exist z,y,z € H
such that f(x) = u, f(y) = v, and f(z) = w. Since O is an equivalence relation on H, z0x,
thus u = f(2)Qf(x) = v and Q is a reflexive relation on H'. Suppose uQv. Then zOy and
since © is a symmetric relation on H,yOx, so vQu and € is a symmetric relation on H’.
Suppose ufdv and vQw. Then Oy and yOz. Since O is a transitive relation on H, 20z,
that is, uQw. Thus, € is an equivalence relation on H’.

Let b,u,v € H and uQv. Then there exist a,z,y € H such that b = f(a),u = f(z),v =
f(y), and 20y. Since O is a congruence relation on H and a € H,(a ® )O(a ® y) by
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Lemma 3. Hence, f(a) ®' f(z) = f(a®2)Qf(a®y) = f(a) ® f(y), that is, (b® u)Q(b®’
v). Similarly, since © is a congruence relation on H and a € H, (z ® a)O(y ® a). So,
f(@)® fla) = flz®a)Qf(y®a) = f(y) ® f(a), that is, (u®' b)Q(v ® b). Hence, Q is a
congruence relation on H’.

Now, let u,v € H' such that (u ® v)Q{0'} and (v ® u)Q{0'}. Since (u ® v)Q{0'}
and f is a hyper epimorphism, it follows that there exist s,t € H such that f(s) =
u, f(t) = v, f(s®t) = f(s) @ f(t) = (u® v)Q{0'}. Similarly, (v ® u)Q{0'} implies
fit®s)=f(t)® f(s) = (v® u)Q{0'}. Hence, (s®t)O{0} and (¢t ® s)O{0}. Since © is a
regular congruence relation on H, it follows that s©t and u§2v. Therefore, {2 is a regular
congruence relation on H'. O

Remark 1. Let f : H — H' be a hyper epimorphism on hyper UP-algebras and let ©
and Q be the relations on H and H', respectively, as defined in Theorem 7. Then

(i) Q is called the regular congruence relation induced by f and ©, and
(ii) © is called the regular congruence relation induced by f and €.

Theorem 8. Let f : H — H' be a hyper epimorphism on hyper UP-algebras. Then there
is a one-to-one correspondence between the reqular congruence relations on H' and the
reqular congruence relations on H such that ker f is contained in the reqular congruence
class containing 0.

Proof. Let f: H— H’' be a hyper epimorphism of hyper UP-algebras and

A ={0©: 0 is a regular congruence relation on H with ker f C [0]g}

B={Q:Q is aregular congruence relation on H'}.

Define v : A — B by 7(0) = Q, where ) is the regular congruence relation on H' induced
by f and ©. Then Q € B. Let ©1,02 € A such that Q1 = v(©1) = 7(02) = Qo. Then
for all z,y € H,201y & f(2)Q1f(y) & f(x)Qaf(y) & xO2y. Hence, ©1 = Oy and ~ is
well-defined and one-to-one.

Now, let 0 € B and consider the induced regular congruence relation ©® on H. If
x € ker f, then f(x) = f(0.) So, f(x)Q2f(0) implies 00. Thus, ker f C [0]e and so,
© € A. Lastly, we show that v is onto, that is, v(©) = Q. Suppose v(0) = ' for some
Q' € B. Then by the definitions of © and O, for each t € H’,

tV0 <t = f(x) and 200 for some z € H < f(x)Qf(0) & Q0.

Thus, [0']q = [0/]qs and by Theorem 1, Q = Q. Hence, v(0) = Q. Therefore, v is a
bijection. O
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4. Hyper Product of Hyper UP-algebras

Throughout this section, H and K shall mean the hyper UP-algebras (H, ®p,0y) and
(K, ®x,0;) with <z and < as their hyper orders, respectively.

The following introduction of the hyper product of two hyper UP-algebras is influenced
by the construction of the hyper product of two hyper BCK-algebras by Borzooei et al.
[12], as cited in [1].

Suppose H and K are hyper UP-algebras. Then

H x K ={(a,b)la € H and b € K}.
Define the hyperoperation “®” on H x K by
(a,b) ® (¢,d) = (a ®g c,b ®g d)

and hyperorder “ < ” by (a,b) < (¢,d) <= a <y c and b < d for all (a,b), (¢,d) € H x
K. For every (A,B),(C,D) C Hx K, (A, B) < (C, D) if and only if for all (a,b) € (A, B),
there exists (c,d) € (C, D) such that (a,b) < (¢,d). Then (H x K;®, (0g,0x)) is called
the hyper product of H and K.

Theorem 9. [9] Let H and K be hyper UP-algebras. Then H x K is a hyper UP-algebra.

Theorem 10. Let oy : Hi — K1 and as : Ho — Ky be hyper homomorphisms of
hyper UP-algebras. Define o : Hi x Hy — Kj x Ky by a((a,b)) = (a1(a), az(b)) for all
(a,b) € Hy x Hy. Then
(i) « is a hyper homomorphism;
(it) ker o= ker aj X ker ao;
(i) Im o =1Im oy x Im ag; and
)

(iv) « is a hyper monomorphism (respectively, hyper epimorphism) if and only if «; is a
hyper monomorphism (respectively, hyper epimorphism) for each i = 1, 2.

Proof. Define o : Hy x Hy — K; X K3 by a((a,b)) = (a1(a), az(b)) for all (a,b) €
H1 X HQ.

(i) Let (a,b),(c,d) € Hy x Hs such that (a,b) = (¢,d). Then a = ¢ and b = d. Now,
since oy and ag are well-defined maps, it follows that

So, « is a well-defined map. Observe that (0g,,0p,) € H; x Hs. Since ap and ag
are hyper homomorphisms, by (HH1) we have

((0m,,0m,)) = (1 (0m, ), a2(0m,)) = (Ok,, Ok, )
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and by (HH2),

a((a,b) @ (c,d))

a((a®c,b®d))
{a((u,v))|lu€ca®c,v €eb®d}
{(a1(u), a2(v))|lu € a®c,v € b®d}
= (a

= (a

1(a®c), az(b®d))
1(a) ® an(c), az(b) ® az(d))
= afa,b) ® a(e,d).
Hence, « is a hyper homomorphism.

(7i) By definition,

ker a = {(a,b) € H; x Hala((a,b)) = (0k,,0k,)}
— {(a,b) € Hy x Hyl(en(@),a3(8)) = (0rc,,Or,)}
={(a,b) € H; x Hz|ai(a) =0k, and as(b) = Ok, }
={(a,b) € H; x Hzla € ker aq,b € ker as}

= ker a1 X ker as.

(7i1) By definition,

Im o ={a((a,b))|(a,b) € H; x Ha}
= {(c1(a), az2(b))|(a,b) € Hy x Ha}
={(ai1(a),az(b))|ai(a) € Im a1, as(b) € Im as}
=Ima; x Im as.

(1v) Suppose that « is one-to-one. Let a,c € Hy and b,d € Hs such that ay(a) = ai(c)
and as(b) = ag(d). Then

a((a,b)) = (ar(a), az(b)) = (a1(c), az(d)) = a((c, d)).

Since « is one-to-one, (a,b) = (¢,d), that is, a = ¢ and b = d. Thus, a; and ay are
one-to-one maps.

Conversely, assume that a; and g are one-to-one maps. Suppose (a,b), (¢,d) €
H, x Hy such that a((a,b)) = a((¢,d)). Then (a;(a), az(b)) = a((a, b)) = a((c,d)) =
(a1(c), az(d)). This means that «q(a) = ay(c) and as(b) = az(d) and since oy and
ag are both one-to-one, it follows that a = ¢ and b = d. Hence, (a,b) = (c,d).
Therefore, « is one-to-one.

Suppose « is onto. Let z € K1 and y € K. It follows that (z,y) € K1 x K. Since
a is onto, there exists (a,b) € H; x Hy such that (a;(a), az(b)) = a((a,b)) = (z,y),
that is, a1 (a) = x and ag(b) = y for some a € Hy and b € Hy. So, a1 and «g are onto
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maps. Next, suppose o1 and ag are onto maps. Let (z,y) € K7 X Ko. Then x € K3
and y € K. Since o and ap are onto maps, we can pick some elements a € Hy and
b € Hy such that ay(a) = x and ag(b) = y, that is, a((a, b)) = (a1(a), az(b)) = (z,y)
for some (a,b) € Hy x Ha. Therefore, a is onto and (iv) holds. O

Recall that if {Ag : k € Z} is a family of sets, the Cartesian product H Ay is the set

kel
of all functions p : 7 — U Ay such that p(k) € Ag, forallk e Z. If p € H Ay, such that
kel keT

p(i) = a; € A; for all i € Z, then we will denote p as {a;}.

We now extend the hyper product H x K of H and K to the hyper product of an
arbitrary family of hyper UP-algebras.

Let {Hy : k € Z} be a family of hyper UP-algebras. For each k € Z, let ®y, O,
and < be the hyperoperation, the zero element, and the hyperorder of Hy, respectively.
Let G = H Hj, and define the hyperoperation ® as follows: for {zy}, {yx} € G, {zr} ®

kel
{yr} = H(»Tk ® Yk ). Since xp ® Yy # & for each k € Z, the Axiom of Choice ensures us
kel
that H(mk ® yr) # 9, and so ® is indeed a hyperoperation. The zero element of G is

kel
{0}, and under the hyperoperation ®, the hyperorder < is established as follows: for

{1}, {we} € G,

{zr} <A{uyr} = {0} € {yr} ® {21}

= {0} € [J(un @)
ket
< forall k € Z,0; € yp ® .

<~ forall k € I,z <i yi,

and for all H Ay, H By C H Hp,

kel kel kel
H A < H By <= VY{ai} € H Ap, Hbi} € H By, such that {ax} < {b;}
kel kel ke kel

<= Vk € I,Va; € Ay, 3b,. € By, such that ay <} by
<— Vk el A < By.

Then (G, ®, {0k }) is called the hyper product of {Hy, : k € Z}.

Lemma 6. Let {Hy : k € I} be a nonempty family of hyper UP-algebras. Suppose that
Ay, Bi C Hy, for all k € Z. Then for each k € T,
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[TAx® ] Br= ][4 ® B

kel kel kel

Theorem 11. Suppose that {Hy : k € I} is a nonempty family of hyper UP-algebras.

Then (H Hi, ®, {Ok}> 18 a hyper UP-algebra.
kel

Proof. Suppose {Hj : k € I} is a nonempty family of hyper UP-algebras. Let
{ar}, {br}, {ck}. {dx} € J] Hi- Then ag, bk, c,dy € Hy for all k € I. We will show
kel
first that ® is a well-defined hyperoperation on H Hy.

kel
Assume that {ar} = {br} and {cx} = {di}, for all k € Z. Then ay, = by and ¢ = di

for all kK € Z. So,

{ar} ® {ex} = [ [(ar @ cx) = [ ] (0n @1 di) = {1} ® {di}

kel ke

for all k € Z. Thus, ® is a well-defined hyperoperation on H Hy. Let {xk}, {yr}, {2z} €
kel

H Hj. Then zp, yi, 2z, € Hy, for all K € Z. Now, for each k € Z, we have

kel

{zr} @ {ur}) ® (o} @ {2 }) = (H(wk ®r; yk)) ® (H(wk ®p Zk))

keT ker
= (H(ﬂﬁk ®k Yr) ® (T By Zk)) -
ker

Since for each k € Z, (x ®f yg) ® (z ®k 21) <k Yk ®k 2k, it follows that

[1@x @k ui) ® (2r @k 20) < ][ (wr @k 20),
keT kez

that is,
{zr ®yr}) ® {or @ 20}) < {yr} ® {21}

This means that (HUP1) holds on H Hi,.

kel
Since for each k € 7,0 ®j x, = {z1}, it follows that

{0k} ® {ax} = [ [ (O @k ) = [ [ {2}

kel kel
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Thus, (HUP2) holds on [ [ Hy.

kel
Moreover, since for each k € Z, zj, ®j, 0, = {0k}, it follows that

{wx} @ {0c} = [ (ex @k 0k) = JT{0k}-

kel kel

Hence, (HUP3) holds on H Hj,.

kel
Furthermore, suppose {zx} < {yr} and {yr} < {zx} for all k£ € Z. Then x) <j yx

and y, <y o for all k € Z. Hence, x, = yj, for all k € Z and so {x;} = {yx}. This means

that (HUP4) holds on H Hj,. Therefore, (H Hy, ®, {Ok}> is a hyper UP-algebra. [
ke ke
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