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Abstract. A Topological index is a numeric quantity which characterizes the whole structure of a
graph. Adriatic indices are also part of topological indices, mainly it is classified into two namely
extended variables and discrete adriatic indices, especially, discrete adriatic indices are analyzed on
the testing sets provided by the International Academy of Mathematical Chemistry (IAMC) and
it has been shown that they have good presaging substances in many compacts. This contrived
attention to compute some discrete adriatic indices of probabilistic neural network.
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1. Prologue and Provocation

In this work peculiar attention is compensated to Adriatic indices that have been de-
fined by D. Vukicevié and M. Gasperov. Discrete Adriatic indices are the family of 148
bond-additive topological indices defined as follows.

AdT‘(G) = Z ’Yj(‘ﬂi,a(tu)a Soi,a(tv))
weFE(G)

where the variables and functions can take the following values:
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ty € {du, Dy} i€ {1,2,3} j € {1,2,.....,8}

(-1,-3,3.1,2) ifi=2andj€ (1,2,..5)
a=¢(11,2) otherwise and i € (1,2)
(3,2) ifi =3
¢1,0(z) = log*(z)(a > 0); P24(z) = 2%a € R\ 0); ¢3a(z) = a”(a > 0);

Now, the naming convention for the discrete adriatic indices is as follows:

1. 1 corresponds to Randi type; 71 (z,y) = z.y

e Randi type lodeg index: Adr(G) = Z Y1 (p1,1(dw), p1,1(dy))
uweE(G)

e Randi type sdi index: Adr(G) = Z Y11(p2,2(Du), p2,2(Dy))
weE(G)

e Randi type hadi index: Adr(G) = Z (p31/2(Du), ¢31/2(Dy))
weE(G)

2. 79 corresponds to sum; yo(x,y) = = +y

e sum lordeg index: Adr(G) = Z 72(901,1/2(%)7801,1/2(dv))
weFE(G)

3. 73 corresponds to inverse sum;

, fx4+y#0
73 (‘T7 y) = Tty
0, otherwise.

e inverse sum lordeg index: Adr(G) = Z Y3(1,1/2(du), 1,1/2(dw))
weE(G)

e inverse sum indeg index: Adr(G) = Z Y3(p2,—1(du), p2,—1(dv))
weE(G)

4. ~4 corresponds to misbalance; v4(x,y) =| z — y |

e misbalance lodeg index: Adr(G) = Z ~Ya(p1,1(dy), ¢1,1(dy))
weE(G)
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e misbalance losdeg index: Adr(G) = Z Ya(p1,2(dy), p1,2(dy))
weE(G)

misbalance rodeg index: Adr(G) = Z 74(g0271/2(du),@271/2(dv))
weE(G)

e misbalance deg index: Adr(G) = Z Ya(p2,1(dy), p2,1(dy))
weFE(G)

misbalance hadeg index: Adr(G) = Z Ya(p3,1/2(du), 3,1 /2(dv))
weE(G)

. 75 corresponds to inverse misbalance;

1

, itz #y
Y5(z,y) =< [z —y|
0, ifr=y

e misbalance indeg index: Adr(G) = Z V5 (p2,—1(dy), p2,-1(dy))
uweE(G)

e misbalance irdeg index: Adr(G) = Z V5 (p2,~1/2(dw); 2,—1/2(dv))
uweE(G)

e misbalance indi index: Adr(G) = Z Y5(p2,—1(Dy), p2.-1(Dy))
weE(G)

6. 6 corresponds to min-max;

min{z, y} if maz{z,y} #0

Y6(w,y) = § maz{z,y}’
0, if maz{z,y} =0

min-max rodeg index: Adr(G) = Z 76(902,1/2(%),902,1/2(dv))
uweE(G)

min-max sdi index: Adr(G) = Z Y6(p2,2(Dy), 2.2(Dy))
weE(G)

7. 77 corresponds to max-min;

mazx{x,y} .. .
—= it min{z,y} #£0
vr(z,y) = ¢ min{z, y}
0, if min{z,y} =0

e max-min rodeg index: Adr(G) = Z 77(902’1/2((1”),g0271/2(dv))
uweE(G)
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e max-min deg index: Adr(G) = Z Y7(p2,1(dy), p2,1(dy))
weE(G)

e max-min sdeg index: Adr(G) = Z Y7(p2.2(dy), p2.2(dy))
weE(G)

8. g corresponds to symmetric division;

Y tay+£0
@y =qY <
0, otherwise

e symmetric division deg index: Adr(G) = Z Y8 (p2,1(dy), p2,1(dy))
weE(G)

The Probabilistic Neural Network (PNN) gives new directions in the Quantitative
Structure-Activity Relationship (QSAR)/Quantitative Structure-Property Relationship
(QSPR) studies [3]. The PN N methodology is applicable to classification problems and
the basic underlying theory behind these probability-based methods is presented along
with applications of the PN N methodology.

The PN N model presented identifies molecules as potential soluble epoxide hydrolase in-
hibitors using a binary classification scheme. This network inputs consist of a small set of
descriptors that encode structural features at the molecular level (refer [4, 14]).

The topological indices are exploited to hypothesis the physical features related to the
bio-activities, chemical reactivities in certain networks. In this article, we established the
degree-based discrete adriatic indices of the probabilistic neural network.

Recently, [1, 12] exposed the 148 adriatic indices among which Symmetric division deg
(SDD) index is one of the discrete adriatic indices, and it has been proved as a good
predictor for total surface area for polychlorobiphenyls. Newly, Lokesha et. al., [5, 6, §]
worked out for SDD index of unicyclic and bicyclic later it is also extended to tricyclic
and tetracyclic, also they did for graph operations.

Newly, Deepika et al [9], computed the graph structure of 2D-Lattice, nanotube and nan-
otorus exploiting the definitions of SDD and other topological indices via certain graph
operators which gives more attraction towards to this index (also see [2, 10, 13]).

In the last decade the probabilistic neural networks are widely studied in different
classification problems. These are applied to solve the problems related to email security
enhancement and in the intrusion detection systems. The probabilistic neural networks are
also applied in medicine such as for detecting resistivity to antibiotics, for diagnosing hep-
atitis, and for the quantification and segmentation of brain tissues from MR images (also
see [7, 11]). In the present study, we compute the topological indices such as newly defined
adriatic indices to continue the progressive study of the probabilistic neural networks.
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The construction of the probabilistic neural network. we consider the probabilistic
neural network consisting on three layers of nodes.

e The first layer called by input layer has a certain number of nodes, the second layer
called by hidden layer consists on a certain number of classes such that each class
contains a particular number of nodes, and the third layer called by output layer has
a number of nodes equal to the number of classes of the second layer.

e The architecture of a probabilistic neural network, each node of input layer is con-
nected to all the nodes of each class of the hidden layer and all the nodes of each
class of the hidden layer are connected to a unique node of the output layer.

e Assume the input layer has n nodes, the hidden layer consists on k classes such that
each class has m nodes, and the third layer called by output layer has k£ nodes.
Thus, a probabilistic neural network denoted by PNN(n, k,m) is such that |[V(PNN (n, k,m))|
=v=n+k(m+1)and |[E(PNN(n,k,m))| =e=km(n+ 1), where (n,k,m) € N
(set of natural numbers). In Fig. 1, the probabilistic neural network is shown for
n=4,k=2and m=3.

Figure 1: The probabilistic neural network PNN(4, 2, 3)

We define the partitions of the edge set of PN N (n, k, m) with respect to degree of ver-
tices. There are two types of edges with respect to degrees of end vertices in PN N (n, k, m),
namely with degrees of end vertices km,n 4+ 1 and degrees of end vertices n 4+ 1, m. Thus,
we have shown in the following table 1.

Table 1: The edge partition of the edges of PN N (n, k,m) based on degrees of end
vertices

E{d(u),d(v)} Ekm,n—H EnJrl,m
Elawawy | nhm | km

2. Main Results

In this section, we established some results for probabilistic neural networks using
different adriatic indices
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Theorem 1. Let G be the probabilistic neural network PN N (n, k, m) then for (n,k,m) >
1, its misbalance deg index, misbalance indeg index, misbalance rodeg index and misbalance
irdeg index 1s given by

( nkm|km — (n+ 1)| + km|(n+ 1) —m| fora =

nkm|— — ——| + km|—— — —| fora= -1
km n m

MBIa(G) = nkm|Vkm —vn+ 1|+ km|vVn+1—+/m| fora =

fora= —3

1 1 1 1

Proof. Let G be the PNN(n,k,m), for (n,k,m) > 1. The number of vertices and
edges in PN N (n, k,m) are n+k(m+1) and km(n+1) respectively. There are two types of
edges in PN N (n, k,m) based on degrees of end vertices of each edge. Table 1 shows such
an edge partition of PN N (n, k, m). Now by using the definition of Misbalance indices and
table 1 we obtain the required results as follows
We consider the following cases for the possible values of «
Casel: a=1
Applying the formula of Misbalance deg index for @ = 1 and by using edge partition given
in table 1 we get

MBI = ) |dy—dy]
weE(G)
S laalr X dea
U’UGEkm’n_‘_l UUGEn+1,m

= nkm|km—(n+1)|+km|(n+1)—m|
= km[n|km—(n+1)[+|(n+1)—m]]

Case 2 : a = —1, Applying the formula of Misbalance indeg index for & = —1 and by
using edge partition given in table 1 we get

1 1
MBI, = > il
weE(G) v v
1 1 1 1
= 2 gmglt 2 g
uveEkmmA»l v v uveEn+1,m “ v
1 1 1 1
= nkm|— — —— — =
nm|k +1 | +1 m|
1 1 1 1
pr— k —_—— —_——
m[n’km n—l—l’ ’n—l—l m’}
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Case 3: a= %, Edge partition for Misbalance rodeg index whena = % we get

MBI, =Y Vi V|

weE(G)
= Y IVh-Vdil+ Y V-V
u’UEEkm’n_‘_l U'UEEn+1,m

= nkm |[Vkm —vVn+1|+km|vn+1—Vm|
= {\M—\/ﬂ—kﬂ—ﬂ\/n—%l—\/ﬁ@

Case 4 : a = —%, For Misbalance irdeg index when o = —1 using edge partition

2
given in table 1 we get
1 1
P S
’ weE(G) du \/dj

1 1 1 1
D NC AR AR DR ol

uveEk:m,n«l»l uveEn+1,m

1 1 1 1
| vVEm vn+1 | | vn+1 \/m|

B km{n! 11 I+ 11 |]
Vikm  Vn+1 Vn+1 m

Theorem 2. Let G be the probabilistic neural network PN N (n, k, m) then for (n,k,m) >
1, its max-min deg index, max-min sdeg index and max rodeg index is given by

Maz-min deg index = - _]T_ ] (m*nk + (n + 1))

E2m*n 4 (n + 1)
(n+1)%m

Mazx-rodeg index = km [n\/ km + \/n + 1]
n+1 m

Proof. Let G be the PNN(n,k,m), for (n,k,m) > 1. The number of vertices and
edges in PN N (n, k,m) are n+k(m+1) and km(n+1) respectively. There are two types of
edges in PN N (n, k,m) based on degrees of end vertices of each edge. Table 1 shows such
an edge partition of PNN(n,k,m). Now by using the formulas of max-min deg index,
max-min sdeg index, max rodeg index and table 1 we obtain the required results as follows

Mazx-min sdeg index = /{:[

maz(d,, d,
3 ( )

Max-min deg index = min(dy, dy)

weE(G)
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B maz(dy, dv) mazx(dy, dy)
Z min(dy, dy) * Z min(dy, dy)

_ nkm< km )+km<n+1>
n+1 m

_ Kk 2 2
= n+1(m nk+ (n+1)%)

WEFLm ni1 WEEn{1,m

Max-min sdeg index = Z <
uweE(G)

B Z maz(dy, dy) \ > N Z maz(dy, dy) 2
B mm(du, dv) mm(du, dv)
quEkm’nﬁ_l UUGEn+1,m
2 2
= nkm(km) +km<n+1>
n+1 m

_ [k2m4n +(n+ 1)4}

maxz(dy, dy) 2
min(dy, dy)

(n+17%m
dy
Max rodeg index = Z L)
weE (G
— maz(d,, dv) ma(dy, dv)
weine o | min(du,dy) o=\ min(dy, dy)

1
= nkm\/kimij‘m nt
n+1 m
{\/km \/n+1]
= km|n +
n-+1 m

Theorem 3. Let G be the probabilistic neural network PN N (n, k,m) then for (n,k,m) >
1, its min-max rodeg index and min-maz sdi index is given by

/ 1 /
Min-maz rodeg indexr = [ nt
n+1

n(n+1) +k:2
km(n + 1)2

Min-max sdi index

Proof. Let G be the PNN(n,k,m), for (n,k,m) > 1. The number of vertices and
edges in PN N (n, k,m) are n+ k(m+ 1) and km(n + 1) respectively. There are two types
of edges in PNN(n,k,m) based on degrees of end vertices of each edge. Table 1 shows
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such an edge partition of PNN(n,k, m). Now by using the formulas of min-max rodeg
index, min-max sdi index and table 1 we obtain the required results as follows

| . min(dy, dy)
Min-max rodeg index = Z m
weE(G)
B Z min(du, dv) min(du, dv)
= max(dy, dy) maz
WEEpm nt1 UUEEn+1 "
B n—|—1 \/7
n m
= k
mWZ e
in(dy, dy 2
Min-max sdi index = Z (W)
weE(G)
Ly (minlded)) g (min(ddy)
_ maz(du, dy) max(dy, dy)

uveEkm,n+l uveEn+1,m

d
2 2
= nkm<n+1> +km( mn >
km n+1
n(n+1)* + k2m?
km(n + 1)2

Theorem 4. Let G be the probabilistic neural network PN N (n, k,m) then for (n,k,m) >
1, its Inverse sum indeg index and Symmetric division deg index is given by

B E(m+n)2n+ 1)+ (n+1)2
Is1G) = ka[ (m+n+1)(km+n+1) ]
SDD(G) = ni 1 [n(n F1)2 4+ k(m2(1 + kn) + n? + 3)}

Proof. Let G be the PNN(n,k,m), for (n,k,m) > 1. The number of vertices and
edges in PN N (n, k,m) are n+ k(m+ 1) and km(n + 1) respectively. There are two types
of edges in PN N (n, k, m) based on degrees of end vertices of each edge. Table 1 shows
such an edge partition of PNN(n,k,m). Now by using the formulas of ISI, SDD and
table 1 we obtain the required results as follows
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dydy
dy + dy

D

uveEker,n+l

e

DS

UU€E7L+1,m

nkm [

)« (7).

km+1

km

o[ k(m+n)2n+1)+ (n+ 1)2]

(m+n+1)(km+n+1)

Min — mazxsditindex

min(dy, dy) \ >

max(dy, dy)
min(dy, d,)

maz(dy, dy)

2
> —i—km( m
n—+1

n(n + 1)* + k2m?
km(n + 1)2

>

weE(G)

D

WEEkm nt1

n—+1
k
nm<k

m

P>

wEEn+1,m

:

min(dy, dy)
maz(dy, dy)

1158

dyd,

dy, + dy

(n+1)(m)
(n+1)+m

y

Let G be the probabilistic neural network PNN(n,k,m) then for (n,k,m) > 1, its
adriatic indices of PNN of v;(z,y) (j = 1,2, ...8) index is given by

Adr(PNN )y, (zy)

Ad’f‘(PNN),YS(z’y)

Ad’f‘(PNN),m(z’y)

km.log(n + 1).log(k"m™ 1), if p; = 11
2nt + 58k* + 6m* + 60, if 29
597 + o + 39 + 15, if 3.1 /2.

( 1

km(n + 1)y/log(n + 1) + \/log(km) + /log(m)

o nk(n+1)
km+mn+1

n+1

km ,
m+n+1

km[log(k"m"™ 1) — (n — 1)log(n + 1)],
2km[log(k"m™ 1) — (n — 1)log(n + 1)],

nkm | Vkm —vn+ 1| +km | vVn+1—/m|,
nkm |km—(n+1)|+km|(n+1)—m|,

k,m[nQ—km + on+l _ n2—(n+l) _ 2—m]7

Adr(PNN)W(m’y) =km(n + 1)\/l0g(n +1)+ \/log(k:m) + \/log(m), if piq = P1,1/2

1 g = @112

if @2’,1

if pia =11
if 12

if ¥2,1/2

if ¥2.1

if p31/2
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nkm\——n—“]+km|n—+1—%|, if Yia =21
® Adr(PNN)y,(zy) = { nkm | \/% \/Tm | +km | \/m — ﬁ l, if s 12

0, if g027_1

k ot 4 . if e =
o« Adr(PNN) oy =3 n+1 H Pia = 2172

14(71 +k+ m), if ©2.2

PR _

km ny/ 7%11 T/ %1 s i pia = 021/2
[ AdT’(PNN),Y7(x7y) =

n+ (m*nk + (n+1)?), if g2,
|: min+ n—|—1)4:|

ol

if @20

(n+1)2m

o Adr(PNN)guy) = 77 |n(n+1)% + k(m?(1 + kn) +n? + 3) |, if @ia = @21

2000 -- Randic type index
1500

1000

Values of indices

500

0 N \..._.—-/\._._ _./\ -

Cli (Ii é 1'2 1'5 1'8 2'1 2'4
Order of graph
Figure 2: The probabilistic neural network PNN(n, n, 1)

3. Conclusion

We compare the results of the computed adriatic indices for the probabilistic neural
network PN N (n, k,m) with the help of software package. In the main results the formulae
of all the indices are computed in term of n, k, and m, where n is number of nodes in first
layer, the second layer is consisting on k classes such that each class has m nodes and the
third layer contains k nodes. Moreover, the total number of vertices in the probabilistic
neural network PNN(n,k,m) (order of PNN(n,k,m)) is |V(PNN(n,k,m))| = v =
n+ k(m +1). If we assume k = n and m = 1, then the probabilistic neural network
becomes PN N (n,n, 1) with order v = 3n, where n is a natural number.

In Fig. 2, along the horizontal line the values of v for the probabilistic neural network
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PNN(n,n,1) are taken and along the vertical line the computed values of the indices
are shown. Among them the Randic type index is dominant. Moreover, all the adriatic
indices remain constant approximately with increasing values of v. In this paper, the
adriatic indices of the probabilistic neural network are studied and the analytical closed
formulas are determined that will help to understand the underlying topologies related to
the physical features of this network.
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