EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 13, No. 3, 2020, 459-471 ISSN 1307-5543 – www.ejpam.com Published by New York Business Global

Fuzzy duplex UP-algebras[†]

Aiyared Iampan¹, Metawee Songsaeng¹, G. Muhiuddin^{2,*}

- ¹ Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand
- ² Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia

Abstract. Using the concept of a neutrosophic quadruple number to a fuzzy duplex number, we introduce the concept of a fuzzy duplex UP-algebra, and investigate some related properties. Also, we find the necessary condition for a fuzzy duplex UP-set to be a fuzzy duplex UP-algebra. Furthermore, we study the relationship between special subsets of a UP-algebra and special subsets of a fuzzy duplex UP-set.

2020 Mathematics Subject Classifications: 03G25, 08A72

Key Words and Phrases: UP-algebra, UP-subalgebra, near UP-filter, UP-filter, UP-ideal, strong UP-ideal, fuzzy duplex UP-set, fuzzy duplex UP-algebra

1. Introduction

The type of the logical algebra, a UP-algebra was introduced by Iampan [9], and it is known that the class of KU-algebras is a proper subclass of the class of UP-algebras. Later Somjanta et al. [29] studied fuzzy UP-subalgebras, fuzzy UP-ideals and fuzzy UP-filters of UP-algebras. Guntasow et al. [7] studied fuzzy translations of a fuzzy set in UP-algebras. Kesorn et al. [16] studied intuitionistic fuzzy sets in UP-algebras. Kaijae et al. [15] studied anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. Tanamoon et al. [35] and Sripaeng et al. [34] introduced the concept of Q-fuzzy sets in UP-algebras, and studied anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras. Dokkhamdang et al. [6] introduced the concept of fuzzy UP-subalgebras (fuzzy UP-filters, fuzzy UP-ideals, fuzzy strong UP-ideals) with thresholds of UP-algebras.

Ansari et al. [3] introduced the concept of graphs associated with commutative UP-algebras and defined a graph of equivalence classes of commutative UP-algebras. Songsaeng and Iampan [31–33] studied \mathcal{N} -fuzzy sets, fuzzy proper UP-filters, and neutrosophic sets in UP-algebras. Senapati et al. [26, 27] studies applied cubic set and interval-valued intuitionistic fuzzy structure in UP-algebras.

DOI: https://doi.org/10.29020/nybg.ejpam.v13i3.3752

Email addresses: chishtygm@gmail.com (G. Muhiuddin),

metawee.faith@gmail.com (M. Songsaeng) aiyared.ia@up.ac.th (A. Iampan)

 $^{^{\}dagger}$ This work was supported by the Unit of Excellence, University of Phayao.

^{*}Corresponding author.

More concepts on UP-algebras are discussed in [4, 5, 17].

A fuzzy set f in a nonempty set S is a function from S to the closed interval [0,1]. The concept of a fuzzy set in a nonempty set was first considered by Zadeh [36] in 1965. The fuzzy set theories developed by Zadeh and others have found many applications in the domain of mathematics and elsewhere.

The concept of a neutrosophic set was introduced by Smarandache [28] in 1999. Neutrosophic algebraic structures in BCK/BCI-algebras are discussed in [11, 12, 19, 21, 30]. Neutrosophic quadruple algebraic structures and hyperstructure are discussed in [1, 2]. Neutrosophic quadruple algebraic structures in BCK/BCI-algebras are discussed in [13, 14, 18, 20, 22].

In this paper, we apply the concept of a neutrosophic quadruple number to a fuzzy duplex number, introduce the concept of a fuzzy duplex set base on a UP-algebra, which is called a fuzzy duplex UP-set, and investigate some related properties. We find the necessary conditions that a fuzzy duplex UP-set form a UP-algebra, which is called a fuzzy duplex UP-algebra. Furthermore, we study the relationship between special subsets of a UP-algebra and the same special subsets of a fuzzy duplex UP-set.

2. Basic concepts and preliminary notes on UP-algebras

Before we begin our study, we will give the definition and useful properties of UP-algebras.

Definition 1. [9] An algebra $X = (X, \cdot, 0)$ of type (2,0) is called a UP-algebra, where X is a nonempty set, \cdot is a binary operation on X, and 0 is a fixed element of X (i.e., a nullary operation) if it satisfies the following axioms:

(UP-1)
$$(\forall x, y, z \in X)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0),$$

(UP-2)
$$(\forall x \in X)(0 \cdot x = x),$$

(UP-3)
$$(\forall x \in X)(x \cdot 0 = 0)$$
, and

(UP-4)
$$(\forall x, y \in X)(x \cdot y = 0, y \cdot x = 0 \Rightarrow x = y).$$

From [9], we know that the concept of UP-algebras is a generalization of KU-algebras (see [23]).

For more examples of UP-algebras, see [6, 10, 24–27].

In a UP-algebra $X = (X, \cdot, 0)$, the following assertions are valid (see [9, 10]).

$$(\forall x \in X)(x \cdot x = 0),\tag{1}$$

$$(\forall x, y, z \in X)(x \cdot y = 0, y \cdot z = 0 \Rightarrow x \cdot z = 0), \tag{2}$$

$$(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow (z \cdot x) \cdot (z \cdot y) = 0), \tag{3}$$

$$(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow (y \cdot z) \cdot (x \cdot z) = 0), \tag{4}$$

$$(\forall x, y \in X)(x \cdot (y \cdot x) = 0),\tag{5}$$

A. Iampan, M. Songsaeng, G. Muhiuddin / Eur. J. Pure Appl. Math, 13 (3) (2020), 459-471

$$(\forall x, y \in X)((y \cdot x) \cdot x = 0 \Leftrightarrow x = y \cdot x), \tag{6}$$

461

$$(\forall x, y \in X)(x \cdot (y \cdot y) = 0), \tag{7}$$

$$(\forall a, x, y, z \in X)((x \cdot (y \cdot z)) \cdot (x \cdot ((a \cdot y) \cdot (a \cdot z))) = 0), \tag{8}$$

$$(\forall a, x, y, z \in X)((((a \cdot x) \cdot (a \cdot y)) \cdot z) \cdot ((x \cdot y) \cdot z) = 0), \tag{9}$$

$$(\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot (y \cdot z) = 0), \tag{10}$$

$$(\forall x, y, z \in X)(x \cdot y = 0 \Rightarrow x \cdot (z \cdot y) = 0), \tag{11}$$

$$(\forall x, y, z \in X)(((x \cdot y) \cdot z) \cdot (x \cdot (y \cdot z)) = 0), \text{ and}$$
(12)

$$(\forall a, x, y, z \in X)(((x \cdot y) \cdot z) \cdot (y \cdot (a \cdot z)) = 0). \tag{13}$$

From [9], the binary relation \leq on a UP-algebra $X = (X, \cdot, 0)$ defined as follows:

$$(\forall x, y \in X)(x \le y \Leftrightarrow x \cdot y = 0). \tag{14}$$

Definition 2. [7–9, 29] A nonempty subset S of a UP-algebra $X = (X, \cdot, 0)$ is called

- (1) a UP-subalgebra of X if $(\forall x, y \in S)(x \cdot y \in S)$.
- (2) a near UP-filter of X if
 - (i) the constant 0 of X is in S, and
 - (ii) $(\forall x, y \in X)(y \in S \Rightarrow x \cdot y \in S)$.
- (3) a UP-filter of X if
 - (i) the constant 0 of X is in S, and
 - (ii) $(\forall x, y \in X)(x \cdot y \in S, x \in S \Rightarrow y \in S)$.
- (4) a UP-ideal of X if
 - (i) the constant 0 of X is in S, and
 - (ii) $(\forall x, y, z \in X)(x \cdot (y \cdot z) \in S, y \in S \Rightarrow x \cdot z \in S)$.
- (5) a strong UP-ideal (renamed from a strongly UP-ideal) of X if
 - (i) the constant 0 of X is in S, and
 - (ii) $(\forall x, y, z \in X)((z \cdot y) \cdot (z \cdot x) \in S, y \in S \Rightarrow x \in S).$

Guntasow et al. [7] and Iampan [8] proved that the concept of UP-subalgebras is a generalization of near UP-filters, near UP-filters is a generalization of UP-filters, UP-filters is a generalization of UP-ideals, and UP-ideals is a generalization of strong UP-ideals. Furthermore, they proved that the only strong UP-ideal of a UP-algebra X is X.

3. Fuzzy duplex UP-algebras

In this section, we introduce the concepts of fuzzy duplex UP-numbers and fuzzy duplex UP-sets, and investigate some properties. We find the necessary conditions that a fuzzy duplex UP-set form a UP-algebra. Furthermore, we study the relationship between special subsets of a UP-algebra and the same special subsets of a fuzzy duplex UP-set.

Definition 3. Let X and Y be nonempty sets and $T: X \to Y$ be a function. A fuzzy duplex X-number is an ordered pair (x,yT), where $x,y \in X$, and T(y) denoted by yT. The Cartesian product $X \times \operatorname{Im}(T)$ is called the fuzzy duplex set based on X. If X is a UP-algebra, a fuzzy duplex X-number is called a fuzzy duplex UP-number and we say that $X \times \operatorname{Im}(T)$ is the fuzzy duplex UP-set. For any two nonempty subsets A and B of X, we see that $A \times T(B)$ is a nonempty subset of $X \times \operatorname{Im}(T)$. If $(a, yT) \in A \times T(B)$, then $(x, yT) \in A \times T(B)$ for all $x \in A$.

In what follows, X will denote a UP-algebra $(X, \cdot, 0)$, Y will denote a nonempty set, and $T: X \to Y$ will be a function.

We define the binary operation \odot on the fuzzy duplex UP-set $X \times \text{Im}(T)$ by

$$(\forall (a, xT), (b, yT) \in X \times \operatorname{Im}(T))((a, xT) \odot (b, yT) = (a \cdot b, (x \cdot y)T)). \tag{15}$$

If the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra, then it is called the *fuzzy duplex UP-algebra*. We denote by \tilde{a} the fuzzy duplex UP-number, that is, $\tilde{a} = (a_1, a_2T)$ for some $a_1, a_2 \in X$, and the zero fuzzy duplex UP-number (0, 0T) is denoted by $\tilde{0}$. We define the binary relation \ll and the equality $\dot{=}$ on $X \times \operatorname{Im}(T)$ as follows:

$$(\forall (a,xT),(b,yT) \in X \times \operatorname{Im}(T)) \begin{pmatrix} (a,xT) \ll (b,yT) \Leftrightarrow a \leq b, x \leq y \\ (a,xT) \doteq (b,yT) \Leftrightarrow (a,xT) \ll (b,yT), (b,yT) \ll (a,xT) \end{pmatrix}.$$

Then we can easily prove that the binary relation \ll is an order relation on $X \times \text{Im}(T)$ and

$$(\forall (a,xT),(b,yT) \in X \times \operatorname{Im}(T)) \begin{pmatrix} (a,xT) \ll (b,yT) \Leftrightarrow (a,xT) \odot (b,yT) = \tilde{0} \\ (a,xT) \doteq (b,yT) \Leftrightarrow a = b, x = y \end{pmatrix}.$$

Hence, $\doteq \subseteq =$ on $X \times \text{Im}(T)$.

Example 1. Let $X = \{0, a, b, c\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

Let $T: X \to \{0.5, 1\}$ be a function defined by

$$0T = aT = bT = 0.5, cT = 1.$$

Then the axiom (UP-4) is not satisfied. Indeed, there are $(0, aT), (0, cT) \in X \times \{0.5, 1\}$ such that $(0, aT) = (0, 0.5) \neq (0, 1) = (0, cT)$ but

$$(0, aT) \odot (0, cT) = (0 \cdot 0, (a \cdot c)T) = (0, bT) = (0, 0T) = \tilde{0}$$

and

$$(0, cT) \odot (0, aT) = (0 \cdot 0, (c \cdot a)T) = (0, aT) = (0, 0T) = \tilde{0}.$$

Hence, the algebra $(X \times \{0.5, 1\}, \odot, \tilde{0})$ is not a UP-algebra.

Theorem 1. The algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ satisfies the axioms (UP-1), (UP-2), and (UP-3).

Proof. (UP-1) Let $\tilde{x}, \tilde{y}, \tilde{z} \in X \times \text{Im}(T)$ where $\tilde{x} = (x_1, x_2T), \tilde{y} = (y_1, y_2T)$, and $\tilde{z} = (z_1, z_2T)$. Then

$$\begin{split} &(\tilde{y}\odot\tilde{z})\odot((\tilde{x}\odot\tilde{y})\odot(\tilde{x}\odot\tilde{z}))\\ &=((y_{1},y_{2}T)\odot(z_{1},z_{2}T))\odot(((x_{1},x_{2}T)\odot(y_{1},y_{2}T))\odot((x_{1},x_{2}T)\odot(z_{1},z_{2}T)))\\ &=(y_{1}\cdot z_{1},(y_{2}\cdot z_{2})T)\odot((x_{1}\cdot y_{1},(x_{2}\cdot y_{2})T)\odot(x_{1}\cdot z_{1},(x_{2}\cdot z_{2})T))\\ &=(y_{1}\cdot z_{1},(y_{2}\cdot z_{2})T)\odot((x_{1}\cdot y_{1})\cdot(x_{1}\cdot z_{1}),((x_{2}\cdot y_{2})\cdot(x_{2}\cdot z_{2}))T)\\ &=((y_{1}\cdot z_{1})\cdot((x_{1}\cdot y_{1})\cdot(x_{1}\cdot z_{1})),((y_{2}\cdot z_{2})\cdot((x_{2}\cdot y_{2})\cdot(x_{2}\cdot z_{2})))T)\\ &=(0,0T)\\ &=\tilde{0}. \end{split} \tag{UP-1}$$

(UP-2) Let $\tilde{x} \in X \times \text{Im}(T)$ where $\tilde{x} = (x_1, x_2T)$. Then

$$\tilde{0} \odot \tilde{x} = (0, 0T) \odot (x_1, x_2T)$$

$$= (0 \cdot x_1, (0 \cdot x_2)T)$$

$$= (x_1, x_2T)$$

$$= \tilde{x}.$$
((UP-2))

(UP-3) Let $\tilde{x} \in X \times \text{Im}(T)$ where $\tilde{x} = (x_1, x_2T)$. Then

$$\tilde{x} \odot \tilde{0} = (x_1, x_2 T) \odot (0, 0T)$$

$$= (x_1 \cdot 0, (x_2 \cdot 0)T)$$

$$= (0, 0T)$$

$$= \tilde{0}.$$
((UP-3))

Hence, (UP-1), (UP-2), and (UP-3) are valid.

Proposition 1. The algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ satisfies the following properties:

- (1) $(\forall \tilde{a} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{a}),$
- (2) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T))(\tilde{a} \ll \tilde{b}, \tilde{b} \ll \tilde{c} \Rightarrow \tilde{a} \ll \tilde{c}),$
- $(3) \ (\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \Rightarrow \tilde{c} \odot \tilde{a} \ll \tilde{c} \odot \tilde{b}),$
- (4) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T))(\tilde{a} \ll \tilde{b} \Rightarrow \tilde{b} \odot \tilde{c} \ll \tilde{a} \odot \tilde{c}),$
- (5) $(\forall \tilde{a}, \tilde{b} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \odot \tilde{a}),$
- (6) $(\forall \tilde{a}, \tilde{b} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \odot \tilde{b}),$
- $(7) \ (\forall \tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(\tilde{a} \odot (\tilde{b} \odot \tilde{c}) \ll \tilde{a} \odot ((\tilde{x} \odot \tilde{b}) \odot (\tilde{x} \odot \tilde{c}))),$
- $(8) \ (\forall \tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(((\tilde{x} \odot \tilde{a}) \odot (\tilde{x} \odot \tilde{b})) \odot \tilde{c} \ll (\tilde{a} \odot \tilde{b}) \odot \tilde{c}),$
- (9) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))((\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot \tilde{c}),$
- (10) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))(\tilde{a} \ll \tilde{b} \Rightarrow \tilde{a} \ll \tilde{c} \odot \tilde{b}),$
- (11) $(\forall \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))((\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{a} \odot (\tilde{b} \odot \tilde{c})), \text{ and }$
- $(12) \ (\forall \tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \operatorname{Im}(T))((\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot (\tilde{x} \odot \tilde{c})).$

Proof. By Theorem 1, the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ satisfies the axioms (UP-1), (UP-2), and (UP-3).

(1) Let $\tilde{a} \in X \times \text{Im}(T)$. Then

$$\tilde{0} = (\tilde{0} \odot \tilde{a}) \odot ((\tilde{0} \odot \tilde{0}) \odot (\tilde{0} \odot \tilde{a})) \tag{(UP-1)}$$

$$= (\tilde{0} \odot \tilde{a}) \odot (\tilde{0} \odot \tilde{a}) \tag{(UP-2)}$$

$$= \tilde{a} \odot \tilde{a}.$$
 ((UP-2))

Hence, $\tilde{a} \ll \tilde{a}$.

(2) Let $\tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T)$ be such that $\tilde{a} \ll \tilde{b}$ and $\tilde{b} \ll \tilde{c}$. Then $\tilde{a} \odot \tilde{b} = \tilde{0}$ and $\tilde{b} \odot \tilde{c} = \tilde{0}$. Thus

$$\tilde{a} \odot \tilde{c} = \tilde{0} \odot (\tilde{0} \odot (\tilde{a} \odot \tilde{c})) \tag{(UP-2)}$$

$$= (\tilde{b} \odot \tilde{c}) \odot ((\tilde{a} \odot \tilde{b}) \odot (\tilde{a} \odot \tilde{c}))$$

$$= \tilde{0}. \tag{(UP-1)}$$

Hence, $\tilde{a} \ll \tilde{c}$.

(3) Let $\tilde{a}, \tilde{b} \in X \times \text{Im}(T)$ be such that $\tilde{a} \ll \tilde{b}$. Then $\tilde{a} \odot \tilde{b} = \tilde{0}$.

$$(\tilde{c}\odot\tilde{a})\odot(\tilde{c}\odot\tilde{b})=\tilde{0}\odot((\tilde{c}\odot\tilde{a})\odot(\tilde{c}\odot\tilde{b})) \tag{(UP-2)}$$

$$= (\tilde{a} \odot \tilde{b}) \odot ((\tilde{c} \odot \tilde{a}) \odot (\tilde{c} \odot \tilde{b}))$$

= $\tilde{0}$. ((UP-1))

Hence, $\tilde{c} \odot \tilde{a} \ll \tilde{c} \odot \tilde{b}$.

(4) Let $\tilde{a}, \tilde{b} \in X \times \text{Im}(T)$ be such that $\tilde{a} \ll \tilde{b}$. Then $\tilde{a} \odot \tilde{b} = \tilde{0}$.

$$(\tilde{b} \odot \tilde{c}) \odot (\tilde{a} \odot \tilde{c}) = (\tilde{b} \odot \tilde{c}) \odot (\tilde{0} \odot (\tilde{a} \odot \tilde{c}))$$

$$= (\tilde{b} \odot \tilde{c}) \odot ((\tilde{a} \odot \tilde{b}) \odot (\tilde{a} \odot \tilde{c}))$$

$$= \tilde{0}.$$

$$((UP-2))$$

Hence, $\tilde{b} \odot \tilde{c} \ll \tilde{a} \odot \tilde{c}$.

(5) Let $\tilde{a}, \tilde{b} \in X \times \text{Im}(T)$. Then

$$\tilde{a} \odot (\tilde{b} \odot \tilde{a}) = (\tilde{0} \odot \tilde{a}) \odot (\tilde{0} \odot (\tilde{b} \odot \tilde{a})) \tag{(UP-2)}$$

$$= (\tilde{0} \odot \tilde{a}) \odot ((\tilde{b} \odot \tilde{0}) \odot (\tilde{b} \odot \tilde{a})) \tag{(UP-3)}$$

$$= \tilde{0}. \tag{(UP-1)}$$

Hence, $\tilde{a} \ll \tilde{b} \odot \tilde{a}$.

- (6) Let $\tilde{a}, \tilde{b} \in X \times \text{Im}(T)$. By (UP-3) and (1), we have $\tilde{a} \odot (\tilde{b} \odot \tilde{b}) = \tilde{a} \odot \tilde{0} = \tilde{0}$. Hence, $\tilde{a} \ll \tilde{b} \odot \tilde{b}$.
- (7) Let $\tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T)$. By (UP-1), we have $(\tilde{b} \odot \tilde{c}) \odot ((\tilde{x} \odot \tilde{b}) \odot (\tilde{x} \odot \tilde{c})) = \tilde{0}$. Thus $\tilde{b} \odot \tilde{c} \ll (\tilde{x} \odot \tilde{b}) \odot (\tilde{x} \odot \tilde{c})$. By (3), we have $\tilde{a} \odot (\tilde{b} \odot \tilde{c}) \ll \tilde{a} \odot ((\tilde{x} \odot \tilde{b}) \odot (\tilde{x} \odot \tilde{c}))$.
- (8) Let $\tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T)$. By (UP-1), we have $(\tilde{a} \odot \tilde{b}) \odot ((\tilde{x} \odot \tilde{a}) \odot (\tilde{x} \odot \tilde{b})) = \tilde{0}$. Thus $\tilde{a} \odot \tilde{b} \ll (\tilde{x} \odot \tilde{a}) \odot (\tilde{x} \odot \tilde{b})$. By (4), we have $((\tilde{x} \odot \tilde{a}) \odot (\tilde{x} \odot \tilde{b})) \odot \tilde{c} \ll (\tilde{a} \odot \tilde{b}) \odot \tilde{c}$.
 - (9) Let $\tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T)$. Then

$$\tilde{0} = (((\tilde{a} \odot \tilde{0}) \odot (\tilde{a} \odot \tilde{b})) \odot \tilde{c}) \odot ((\tilde{0} \odot \tilde{b}) \odot \tilde{c}) \qquad ((8))$$

$$= ((\tilde{0} \odot (\tilde{a} \odot \tilde{b})) \odot \tilde{c}) \odot (\tilde{b} \odot \tilde{c}) \qquad ((UP-2), (UP-3))$$

$$= ((\tilde{a} \odot \tilde{b}) \odot \tilde{c}) \odot (\tilde{b} \odot \tilde{c}). \qquad ((UP-2), (UP-3))$$

Hence, $(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot \tilde{c}$.

(10) Let $\tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T)$ be such that $\tilde{a} \ll \tilde{b}$. By (3), we have $(\tilde{c} \odot \tilde{a}) \odot (\tilde{c} \odot \tilde{b}) = \tilde{0}$. Thus

$$\tilde{a} \odot (\tilde{c} \odot \tilde{b}) = \tilde{0} \odot (\tilde{a} \odot (\tilde{c} \odot \tilde{b}))$$

$$= ((\tilde{c} \odot \tilde{a}) \odot (\tilde{c} \odot \tilde{b})) \odot (\tilde{a} \odot (\tilde{c} \odot \tilde{b}))$$

$$= \tilde{0}.$$

$$((UP-2))$$

$$= \tilde{0}.$$

$$((9))$$

Hence, $\tilde{a} \ll \tilde{c} \odot \tilde{b}$.

- (11) Let $\tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T)$. By (9), we have $(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot \tilde{c}$. By (5), we have $\tilde{b} \odot \tilde{c} \ll \tilde{a} \odot (\tilde{b} \odot \tilde{c})$. It follows from (2) that $(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{a} \odot (\tilde{b} \odot \tilde{c})$.
- (12) Let $\tilde{x}, \tilde{a}, \tilde{b}, \tilde{c} \in X \times \text{Im}(T)$. By (5), we have $\tilde{b} \ll \tilde{a} \odot \tilde{b}$ and $\tilde{a} \odot \tilde{b} \ll \tilde{x} \odot (\tilde{a} \odot \tilde{b})$. By (2), we have $\tilde{b} \ll \tilde{x} \odot (\tilde{a} \odot \tilde{b})$. By (4), we have

$$(\tilde{x} \odot (\tilde{a} \odot \tilde{b})) \odot (\tilde{x} \odot \tilde{c}) \ll \tilde{b} \odot (\tilde{x} \odot \tilde{c}).$$

By (UP-1), we have $((\tilde{a} \odot \tilde{b}) \odot \tilde{c}) \odot ((\tilde{x} \odot (\tilde{a} \odot \tilde{b})) \odot (\tilde{x} \odot \tilde{c})) = \tilde{0}$. Then

$$(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll (\tilde{x} \odot (\tilde{a} \odot \tilde{b})) \odot (\tilde{x} \odot \tilde{c}).$$

It follows from (2) that $(\tilde{a} \odot \tilde{b}) \odot \tilde{c} \ll \tilde{b} \odot (\tilde{x} \odot \tilde{c})$.

Theorem 2. If $T: X \to Y$ is a constant function, that is, the inverse image $T^{-1}(\{0T\}) = X$, then the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra which is UP-isomorphic to X.

Proof. (UP-4) Let $\tilde{x}, \tilde{y} \in X \times \text{Im}(T)$ be such that $\tilde{x} \odot \tilde{y} = \tilde{0}$ and $\tilde{y} \odot \tilde{x} = \tilde{0}$ where $\tilde{x} = (x_1, x_2T), \tilde{y} = (y_1, y_2T)$. Then

$$(x_1 \cdot y_1, (x_2 \cdot y_2)T) = (x_1, x_2T) \odot (y_1, y_2T) = (0, 0T)$$

and

$$(y_1 \cdot x_1, (y_2 \cdot x_2)T) = (y_1, y_2T) \odot (x_1, x_2T) = (0, 0T).$$

It follows that $x_1 \cdot y_1 = 0$ and $y_1 \cdot x_1 = 0$. By (UP-4), we have $x_1 = y_1$. Since T is constant, we have $x_2T = y_2T$. Thus $\tilde{x} = (x_1, x_2T) = (y_1, y_2T) = \tilde{y}$, (UP-4) holding. By Theorem 1, we have $(X \times \text{Im}(T), \odot, \tilde{0})$ is a UP-algebra. Finally, X and $X \times \text{Im}(T)$ are UP-isomorphic under the UP-isomorphism sending $x \mapsto (x, 0T)$.

Corollary 1. If Y is a singleton set, then the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Proof. If Y is a singleton set, then $T: X \to Y$ is a constant function. By Theorem 2, we have the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Theorem 3. If $T: X \to Y$ is a function with the inverse image $T^{-1}(\{0T\}) = \{0\}$, then the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Proof. (UP-4) Let $\tilde{x}, \tilde{y} \in X \times \text{Im}(T)$ be such that $\tilde{x} \odot \tilde{y} = \tilde{0}$ and $\tilde{y} \odot \tilde{x} = \tilde{0}$ where $\tilde{x} = (x_1, x_2T), \tilde{y} = (y_1, y_2T)$. Then

$$(x_1 \cdot y_1, (x_2 \cdot y_2)T) = (x_1, x_2T) \odot (y_1, y_2T) = (0, 0T)$$

and

$$(y_1 \cdot x_1, (y_2 \cdot x_2)T) = (y_1, y_2T) \odot (x_1, x_2T) = (0, 0T).$$

It follows that $x_1 \cdot y_1 = 0$ and $y_1 \cdot x_1 = 0$, and $x_2 \cdot y_2, y_2 \cdot x_2 \in T^{-1}(\{0T\}) = \{0\}$, that is, $x_2 \cdot y_2 = 0$ and $y_2 \cdot x_2 = 0$. By (UP-4), we have $x_1 = y_1$ and $x_2 = y_2$. Thus $x_2T = y_2T$ and so $\tilde{x} = (x_1, x_2T) = (y_1, y_2T) = \tilde{y}$, (UP-4) holding. By Theorem 1, we have $(X \times \text{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Corollary 2. If $T: X \to Y$ is an injective function, then the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Proof. If $T: X \to Y$ is an injective function, then the inverse image $T^{-1}(\{0T\}) = \{0\}$. By Theorem 3, we have the algebra $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ is a UP-algebra.

Theorem 4. Let A and B be nonempty subsets of a UP-algebra X and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra.

- (1) If A and B are UP-subalgebras of X, then $A \times T(B)$ is a UP-subalgebra of $X \times \text{Im}(T)$.
- (2) If $A \times T(B)$ is a UP-subalgebra of $X \times \text{Im}(T)$, then A is a UP-subalgebra of X.
- *Proof.* (1) Assume that A and B are UP-subalgebras of X and let $\tilde{x}, \tilde{y} \in A \times T(B)$ where $\tilde{x} = (a_1, b_1 T)$ and $\tilde{y} = (a_2, b_2 T)$. Then $a_1 \cdot a_2 \in A$ and $b_1 \cdot b_2 \in B$. Thus $\tilde{x} \odot \tilde{y} = (a_1, b_1 T) \odot (a_2, b_2 T) = (a_1 \cdot a_2, (b_1 \cdot b_2) T) \in A \times T(B)$. Hence, $A \times T(B)$ is a UP-subalgebra of $X \times \text{Im}(T)$.
- (2) Assume that $A \times T(B)$ is a UP-subalgebra of $X \times \operatorname{Im}(T)$. Let $x, y \in A$. Since $(0,0T) \in A \times T(B)$, we have Then $(x,0T),(y,0T) \in A \times T(B)$. Thus $(x \cdot y,0T) = (x \cdot y,(0 \cdot 0)T) = (x,0T) \odot (y,0T) \in A \times T(B)$, so $x \cdot y \in A$. Hence, A is a UP-subalgebra of X.

Theorem 5. Let A and B be nonempty subsets of a UP-algebra X and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra.

- (1) If A and B are near UP-filters of X, then $A \times T(B)$ is a near UP-filter of $X \times \text{Im}(T)$.
- (2) If $A \times T(B)$ is a near UP-filter of $X \times \text{Im}(T)$, then A is a near UP-filter of X.
- *Proof.* (1) Assume that A and B are near UP-filters of X. Since $0 \in A$ and $0 \in B$, we have $\tilde{0} = (0,0T) \in A \times T(B)$. Let $\tilde{x} \in X \times \operatorname{Im}(T)$ and $\tilde{y} \in A \times T(B)$ where $\tilde{x} = (x_1,x_2T)$ and $\tilde{y} = (a,bT)$. Thus $x_1 \cdot a \in A$ and $x_2 \cdot b \in B$, so $\tilde{x} \odot \tilde{y} = (x_1,x_2T) \odot (a,bT) = (x_1 \cdot a, (x_2 \cdot b)T) \in A \times T(B)$. Hence, $A \times T(B)$ is a near UP-filter of $X \times \operatorname{Im}(T)$.
- (2) Assume that $A \times T(B)$ is a near UP-filter of $X \times \operatorname{Im}(T)$. Since $\tilde{0} = (0,0T) \in A \times T(B)$, we have $0 \in A$. Let $x \in X$ and $a \in A$. Then $(x,0T) \in X \times \operatorname{Im}(T)$ and $(a,0T) \in A \times T(B)$. Thus $(x \cdot a,0T) = (x \cdot a,(0 \cdot 0)T) = (x,0T) \odot (a,0T) \in A \times T(B)$, so $x \cdot a \in A$. Hence, A is a near UP-filter of X.

Theorem 6. Let A and B be nonempty subsets of a UP-algebra X and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra. If $A \times T(B)$ is a UP-filter of $X \times \operatorname{Im}(T)$, then A is a UP-filter of X.

Proof. Assume that $A \times T(B)$ is a UP-filter of $X \times \text{Im}(T)$. Since $0 = (0, 0T) \in A \times T(B)$, we have $0 \in A$. Let $x, a \in X$ be such that $a \cdot x \in A$ and $a \in A$. Then $(a, 0T) \odot (x, 0T) = (a \cdot x, (0 \cdot 0)T) = (a \cdot x, 0T) \in A \times T(B)$ and $(a, 0T) \in A \times T(B)$. Thus $(x, 0T) \in A \times T(B)$, so $x \in A$. Hence, A is a UP-filter of X.

Theorem 7. Let A and B be nonempty subsets of a UP-algebra X and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra. If $A \times T(B)$ is a UP-ideal of $X \times \operatorname{Im}(T)$, then A is a UP-ideal of X.

Proof. Assume that $A \times T(B)$ is a UP-ideal of $X \times \operatorname{Im}(T)$. Since $\tilde{0} = (0,0T) \in A \times T(B)$, we have $0 \in A$. Let $x,y,z \in X$ be such that $x \cdot (y \cdot z) \in A$ and $y \in A$. Then $(x,0T) \odot ((y,0T) \odot (z,0T)) = (x \cdot (y \cdot z),(0 \cdot (0 \cdot 0))T) = (x \cdot (y \cdot z),0T) \in A \times T(B)$ and $(y,0T) \in A \times T(B)$. Thus $(x \cdot z,0T) = (x \cdot z,(0 \cdot 0)T) = (x,0T) \odot (z,0T) \in A \times T(B)$, so $x \cdot z \in A$. Hence, A is a UP-ideal of X.

The following example shows that the sentence "if A and B are UP-filters (resp., UP-ideals) of X, then $A \times T(B)$ is a UP-filter (resp., UP-ideal) of $X \times \text{Im}(T)$ " does not hold in general.

Example 2. Let $X = \{0, a, b, c\}$ be a UP-algebra with a fixed element 0 and a binary operation \cdot defined by the following Cayley table:

Let $T: X \to \{0.5, 0.7, 1\}$ be a function defined by

$$0T = 0.5, aT = bT = 0.7, cT = 1.$$

Let $A = \{0, a\}$. Then A is a UP-ideal (also a UP-filter) of X and

$$A \times T(A) = \{(0,0T), (0,aT), (a,0T), (a,aT)\}.$$

Since $(0, aT) \odot (0, cT) = (0, bT) = (0, aT) \in A \times T(A)$ and $(0, aT) \in A \times T(A)$ but $(0, cT) \notin A \times T(A)$. Hence, $A \times T(A)$ is not a UP-filter (also not a UP-ideal) of X.

Theorem 8. Let A and B be nonempty subsets of a UP-algebra X and $(X \times \operatorname{Im}(T), \odot, \tilde{0})$ be a fuzzy duplex UP-algebra.

- (1) If A and B are strong UP-ideals of X, then $A \times T(B)$ is a strong UP-ideal of $X \times \text{Im}(T)$.
- (2) If $A \times T(B)$ is a strong UP-ideal of $X \times \text{Im}(T)$, then A is a strong UP-ideal of X.
- *Proof.* (1) Assume that A and B are strong UP-ideals of X. Then A = B = X, so $A \times T(B) = X \times \text{Im}(T)$. Hence, $A \times T(B)$ is a strong UP-ideal of $X \times \text{Im}(T)$.
- (2) Assume that $A \times T(B)$ is a strong UP-ideal of $X \times \text{Im}(T)$. Then $A \times T(B) = X \times \text{Im}(T)$, so A = X. Hence, A is a strong UP-ideal of X.

REFERENCES 469

4. Conclusions

In this paper, we have introduced the concept of a fuzzy duplex set base on a UP-algebra, which is called a fuzzy duplex UP-set, and investigated some related properties. We have found the necessary conditions that a fuzzy duplex UP-set form a UP-algebra, which is called a fuzzy duplex UP-algebra. Furthermore, we have studied the relationship between special subsets of a UP-algebra and the same special subsets of a fuzzy duplex UP-set and have presented conflicting examples for certain relationships.

Acknowledgements

The authors would also like to thank the anonymous referee for giving many helpful suggestion on the revision of present paper.

References

- [1] A. A. A. Agboola, B. Davvaz, and F. Smarandache. Neutrosophic quadruple algebraic hyperstructures. *Ann. Fuzzy Math. Inform.*, 14(1):29–42, 2017.
- [2] S. A. Akinleye, F. Smarandache, and A. A. A. Agboola. On neutrosophic quadruple algebraic structures. *Neutrosophic Sets Syst.*, 12:122–126, 2016.
- [3] M. A. Ansari, A. Haidar, and A. N. A. Koam. On a graph associated to UP-algebras. *Math. Comput. Appl.*, 23(4):61, 2018.
- [4] M. A. Ansari, A. N. A. Koam, and A. Haider. Rough set theory applied to UP-algebras. *Ital. J. Pure Appl. Math.*, 42:388–402, 2019.
- [5] M. A. Ansari, A. N. A. Koam, and A. Haider. On binary block codes associated to UP-algebras. Manuscript accepted for publication in Ital. J. Pure Appl. Math., February 2020.
- [6] N. Dokkhamdang, A. Kesorn, and A. Iampan. Generalized fuzzy sets in UP-algebras. *Ann. Fuzzy Math. Inform.*, 16(2):171–190, 2018.
- [7] T. Guntasow, S. Sajak, A. Jomkham, and A. Iampan. Fuzzy translations of a fuzzy set in UP-algebras. *J. Indones. Math. Soc.*, 23(2):1–19, 2017.
- [8] A. Iampan. Multipliers and near UP-filters of UP-algebras. J. Discrete Math. Sci. Cryptography, page to appear.
- [9] A. Iampan. A new branch of the logical algebra: UP-algebras. J. Algebra Relat. Top., 5(1):35–54, 2017.
- [10] A. Iampan. Introducing fully UP-semigroups. Discuss. Math., Gen. Algebra Appl., 38(2):297–306, 2018.

REFERENCES 470

[11] Y. B. Jun, F. Smarandache, and H. Bordbar. Neutrosophic \mathcal{N} -structures applied to BCK/BCI-algebras. *Inform.*, 8(4):128, 2017.

- [12] Y. B. Jun, F. Smarandache, S.-Z. Song, and M. Khan. Neutrosophic positive implicative \mathcal{N} -ideals in BCK-algebras. *Axioms*, 7(1):3, 2018.
- [13] Y. B. Jun, S. Z. Song, and S. J. Kim. Neutrosophic quadruple BCI-positive implicative ideals. *Mathematics*, 7(5):385, 2019.
- [14] Y. B. Jun, S. Z. Song, F. Smarandache, and H. Bordbar. Neutrosophic quadruple BCK/BCI-algebras. *Axioms*, 7(2):41, 2018.
- [15] W. Kaijae, P. Poungsumpao, S. Arayarangsi, and A. Iampan. UP-algebras characterized by their anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. *Ital. J. Pure Appl. Math.*, 36:667–692, 2016.
- [16] B. Kesorn, K. Maimun, W. Ratbandan, and A. Iampan. Intuitionistic fuzzy sets in UP-algebras. *Ital. J. Pure Appl. Math.*, 34:339–364, 2015.
- [17] A. N. A. Koam, M. A. Ansari, and A. Haidar. n-ary block codes related to KU-algebras. J. Taibah Univ. Sci., 14(1):172–176, 2020.
- [18] G. Muhiuddin, A. N. Al-Kenani, E. H. Roh, and Y. B. Jun. Implicative neutrosophic quadruple BCK-algebras and ideals. *Symmetry*, 11(2):277, 2019.
- [19] G. Muhiuddin, H. Bordbar, F. Smarandache, and Y. B. Jun. Further results on (\in, \in) -neutrosophic subalgebras and ideals in BCK/BCI-algebras. *Neutrosophic Sets Syst.*, 20:36–43, 2018.
- [20] G. Muhiuddin and Y. B. Jun. p-semisimple neutrosophic quadruple BCI-algebras and neutrosophic quadruple p-ideals. Ann. Commun. Math., 1(1):26–37, 2018.
- [21] G. Muhiuddin, S. J. Kim, and Y. B. Jun. Implicative \mathcal{N} -ideals of BCK-algebras based on neutrosophic \mathcal{N} -structures. Discrete Math. Algorithms Appl., 11(1):1950011, 2019.
- [22] G. Muhiuddin, F. Smarandache, and Y. B. Jun. Neutrosophic quadruple ideals in neutrosophic quadruple BCI-algebras. *Neutrosophic Sets Syst.*, 25:161–173, 2019.
- [23] C. Prabpayak and U. Leerawat. On ideals and congruences in KU-algebras. *Sci. Magna*, 5(1):54–57, 2009.
- [24] A. Satirad, P. Mosrijai, and A. Iampan. Formulas for finding UP-algebras. *Int. J. Math. Comput. Sci.*, 14(2):403–409, 2019.
- [25] A. Satirad, P. Mosrijai, and A. Iampan. Generalized power UP-algebras. *Int. J. Math. Comput. Sci.*, 14(1):17–25, 2019.
- [26] T. Senapati, Y. B. Jun, and K. P. Shum. Cubic set structure applied in UP-algebras. Discrete Math. Algorithms Appl., 10(4):1850049, 2018.

REFERENCES 471

[27] T. Senapati, G. Muhiuddin, and K. P. Shum. Representation of UP-algebras in interval-valued intuitionistic fuzzy environment. *Ital. J. Pure Appl. Math.*, 38:497– 517, 2017.

- [28] F. Smarandache. A Unifying Field in Logic: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.
- [29] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, and A. Iampan. Fuzzy sets in UP-algebras. Ann. Fuzzy Math. Inform., 12(6):739–756, 2016.
- [30] S. Z. Song, F. Smarandache, and Y. B. Jun. Neutrosophic commutative \mathcal{N} -ideals in BCK-algebras. *Inform.*, 8:130, 2017.
- [31] M. Songsaeng and A. Iampan. \mathcal{N} -fuzzy UP-algebras and its level subsets. J. Algebra Relat. Top., 6(1):1-24, 2018.
- [32] M. Songsaeng and A. Iampan. Fuzzy proper UP-filters of UP-algebras. *Honam Math. J.*, 41(3):515–530, 2019.
- [33] M. Songsaeng and A. Iampan. Neutrosophic set theory applied to UP-algebras. Eur. J. Pure Appl. Math., 12(4):1382–1409, 2019.
- [34] S. Sripaeng, K. Tanamoon, and A. Iampan. On anti Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras. J. Inf. Optim. Sci., 39(5):1095–1127, 2018.
- [35] K. Tanamoon, S. Sripaeng, and A. Iampan. Q-fuzzy sets in UP-algebras. Songklanakarin J. Sci. Technol., 40(1):9–29, 2018.
- [36] L. A. Zadeh. Fuzzy sets. Inf. Cont., 8:338–353, 1965.