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Levin conjecture for group equations of length 9
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Abstract. Levin conjecture states that every group equation is solvable over any torsion free
group. The conjecture is shown to hold true for group equation of length seven using weight
test and curvature distribution method. Recently, these methods are used to show that Levin
conjecture is true for some group equations of length eight and nine modulo some exceptional
cases. In this paper, we show that Levin conjecture holds true for a group equation of length nine
modulo 2 exceptional cases. In addition, we allude the list of cases that are still open for two more
equations of length nine.
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1. Introduction:

Let G be a non-trivial group and t an element not in G. A group equation over G is
an equation of the form

s(t) = g1t
l1g2t

l2 ...gnt
ln = 1 (gi ∈ G, li = ±1)

such that li + li+1 = 0 implies gi+1 6= 1 ∈ G (subscripts modulo n). The non-negative
integer n is known as the length of equation s(t) = 1. The equation s(t) = 1 is said to be
solvable over G if s(h) = 1 for some element h of a group H which contain G. Equivalently,

s(t) = 1 is solvable over G if and only if the natural homomorphism from G to G∗(t)
N is

injective, in which N is the normal closure of s(t) = 1 in the free product G∗(t). The
equation s(t) = 1 is called singular if

∑n
i=1 li = 0 and non-singular otherwise.

The study of group equations was initiated by Neumann [17] who solved an equation
t−1g1tg2 = 1 over any torsion free group. Motivated by the solvability of the polynomial
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equations over fields, Levin [16] studied the analogous problem for group equations and
proved that the equation s(t) = 1 (li non-negative and not necessarily 1) is solvable over
any group G, for l1 + l2 + ... + ln = n . These findings of Neumanm and Levin gave the
hope for the conjecture that every equation is solvable over a torsion free group, which is
known as Levin conjecture.

There has been significant work to verify the Levin conjecture [11, 12, 14, 15] for group
equations of length less than or equal to six. Recently, Mairaj and Edjvet [8] proved the
Levin conjecture for all group equations of length seven by using weight test and curvature
distribution method. By employing the methods used in [8], Mairaj et al. [7] have proved
the conjecture for a non-singular equation of length eight modulo one exceptional case.
The authors have done some significant work in [4, 5] using weight test which establishes
the conjecture up to great extent for length eight. The equations of length nine are
considered in [6], where it is proved that there are only three equations of length nine
which are open. More recently, Fazeel et al. [3] have investigated the conjecture for a
non-singular equation of length nine (one of three) given by

s1(t) = atbtctdtetft−1gthtit−1 = 1

by applying these methods. Fazeel et al. [4] solved 41 cases of this equation. In this paper
we have continued our study of exploring the validity of Levin conjecture for the group
equation s1(t) = 1 initiated in [4] and found that the total cases of s1(t) = 1 are 245 in
which 183 cases are solved by weight test, 60 cases are solved by curvature distribution
method and 2 cases are still open. These findings are formulated in the form of the
following Theorem which is the main result of the paper.

Theorem. The group equation s1(t) = 1 is solvable modulo two exceptional cases:

(i) a = g, h = e, d = b, c = b, d = c;

(ii) a = g, e = b, e = c, c = b, e = d, d = b, d = c.

The authors in [2] and [1] have explored the validity of Levin Conjecture by applying
weight test and curvature distribution to the remaining two equations of length nine given
by

s2(t) = atbtct−1dtetft−1gthtit−1 = 1

and
s3(t) = atbtctdtet−1ftgthtit−1 = 1.

They found that Levin conjecture holds true for these equations modulo some exceptional
cases. The authors in [2] have found that the total cases of s2(t) = 1 are 318 in which 147
cases are solved by weight test, 117 cases are solved by curvature distribution method and
55 cases are still open.
The authors in [1] have found that the total cases of s3(t) = 1 are 245 in which 136 cases
are solved by weight test, 70 cases are solved by curvature distribution method and 39
cases are still open.
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2. Methodology:

A presentation is said to be relative (group) presentation P = 〈G, x | r〉 in which r
is a set of words which is cyclically reduced belongs to G. All the definitions concerning
relative presentations can be seen in [9]. In this paper, we will discuss the equation

s1(t) = atbtctdtetft−1gthtit−1 = 1

in detail. It is well known that the group equation s1(t) = atbtctdtetft−1gthtit−1 is
solvable if the natural homomorphism τ : G→ P(G) is injective. The sufficient condition
for the injectivity of natural map from G to P = 〈G, x | r〉 is that the relative presentation
is orientable and aspherical [9]. The notion of asphericity is discussed in detail in [9].
In our case s1(t) = atbtctdtetft−1gthtit−1, therefore r is singleton set. As stated in [9],
if r is singleton then P is always orientable, therefore asphericity of P establishes that
s1(t) = 1 has solution. In order to establish the validity of Levin’s conjecture, it is only
left to prove that the presentation P is aspherical. So, in this paper we apply two tests
for showing asphericity of P: Weight test and curvature distribution method. All the
necessary definitions concerning weight test can be found in [9]. The weight test states
that if the star graph Γ of P admits an aspherical weight function θ, then P is aspherical
[9]. All the definitions related to pictures can be found in [14]. The curvature distribution
asserts that if K is a reduced picture over P then by Euler (or Gauss-Bonnet) formula,
the sum of the curvature of all regions of K is 4π, that is, K contains regions of positive
curvature [14]. Then, if for every region ∆ of K of positive curvature c(∆), there is a
neighbouring region ∆̂, uniquely associated with ∆, like c(∆̂) + c(∆) ≤ 0, then the sum of
the curvature of all regions of K is non-positive, which implies that P is aspherical [6, 8].

Consider a torsion free group G. By applying the transformation u = tb on s1(t) =
atbtctdtetft−1gthtit−1 = 1 it can be assumed that b = 1. Recall that P = 〈G, t | s1(t)〉 in
which

s1(t) = atbtctdtetft−1gthtit−1 (a, f, g, i ∈ G \ {1}, b = 1, c, d, e, h ∈ G).

Moreover, G is not cyclic and G = 〈a, b, c, d, e, f, g, h, i〉 given in [13]. Suppose that K is a
reduced spherical diagram over P. Up to cyclic permutation and inversion, the regions of
K are given by ∆ as shown in Figure 1(i). The star graph Γ of P is shown in Figure 1(ii).

Figure 1: Region ∆ of K and star graph Γ of P
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Looking at closed paths in star graph Γ, using the fact that G is torsion free and
working modulo cyclic permutation and inversion, the possible labels of vertices of degree
2 for a region ∆ of K are

S = {ag, ag−1, fi, fi−1, hb−1, hc−1, hd−1, he−1, eb−1, ec−1, ed−1, dc−1, db−1, cb−1}.

We can work modulo equivalence, that is, modulo t↔ t−1, cyclic permutation, inversion,
and

a↔ f−1, g ↔ i−1, b↔ e−1, c↔ d−1, h↔ h−1.

We will proceed according to the number N of labels in S that are admissible [9] and clas-
sify the cases correspondingly [8]. The following remark substantially reduce the number
of cases to be considered.

Remark 1. The following observations holds trivially.

(i) If all the admissible cycle has length greater than 2 in region ∆ then c(∆) ≤
c(3, 3, 3, 3, 3, 3, 3, 3, 3) = −π.

(ii) If ag and ag−1 are admissible then g2 = 1, a contradiction.

(iii) If fi and fi−1 are admissible then i2 = 1, a contradiction.

(iv) At most two of ag, ag−1, fi, fi−1 are admissible.

(v) If any two of hb−1, hc−1, cb−1 are admissible then so is the third.

(vi) If any two of hb−1, hd−1, db−1 are admissible then so is the third.

(vii) If any two of hb−1, he−1, eb−1 are admissible then so is the third.

(viii) If any two of hc−1, hd−1, dc−1 are admissible then so is the third.

(ix) If any two of hc−1, he−1, ec−1 are admissible then so is the third.

(x) If any two of hd−1, he−1, ed−1 are admissible then so is the third.

(xi) If any two of eb−1, ec−1, cb−1 are admissible then so is the third.

(xii) If any two of eb−1, ed−1, db−1 are admissible then so is the third.

(xiii) If any two of ec−1, ed−1, dc−1 are admissible then so is the third.

(xiv) If any two of dc−1, db−1, cb−1 are admissible then so is the third.

The above remark reduces the number of cases to 245 for the group equation s1(t) = 1.
From these 245 cases, 41 cases are solved in [4] so there remains 204 cases that needs to
be solved. Among these 204 remaining cases, 159 cases are solved by weight test, 43 cases
are solved by curvature distribution method and 2 cases are still open.
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3. Main Results:

A further 159 cases can be straightforwardly solved using the weight test. For example,
consider the case, a = g−1, f = i−1 and h = b. In this case, the relator is s(t) =
at2ctdtetft−1a−1t2f−1t−1. We put x = t−1a−1t to obtain v1 = x−1tctdtetfxtf−1 and
v2 = x−1t−1a−1t.

The presentation P has star graph Γ which is shown in Figure 2 in which µ1 = c,
µ2 = d, µ3 = e, µ4 = 1, µ5 = f , µ6 = f−1, µ7 = 1; and ω1 = a−1, ω2 = 1, ω3 = 1.

Figure 2: Star graph Γ

We define a weight function θ such that θ(µ4) = θ(µ6) = θ(ω1) = θ(ω2) = 0 and
θ(µ1) = θ(µ2) = θ(µ3) = θ(µ5) = θ(µ7) = θ(ω3) = 1. Then Σ(1−θ(µi)) = Σ(1−θ(ωj)) = 2
indicates that the first condition of weight test is fulfilled. Moreover, every cycle in Γ of
weight smaller than 2 has label am, where m ∈ Z \ {0} and a ∈ G \ {1}, which implies a
is torsion element in G, a contradiction, so the second condition of weight test is fulfilled.
Furthermore, since θ assigns non-negative weights to each edge, so the third condition of
weight test is obviously fulfilled.

A further 24 cases are solved in Lemma 1 by an immediate application of curvature
distribution method [10]. In what follows, the vertex labels correspond to the closed paths
in the star graph Γ. From now onward, the label and the degree of a vertex v of region ∆
will be denoted by l∆(v) and d∆(v) respectively. Furthermore, l∆ ∈ {ww1, . . . , wwk} will
be indicated by l∆(v) = {ww1, . . . , wwk}.

Lemma 1. The presentation P = 〈G, t | s1(t)〉 is aspherical if any one of the following
holds:

(i) a = g;

(ii) h = b;

(iii) h = c;
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(iv) e = b;

(v) e = c;

(vi) e = d;

(vii) d = c;

(viii) e = b, d = c;

(ix) a = g, h = c, d = b;

(x) a = g, h = e, d = b;

(xi) a = g, h = d, e = b;

(xii) a = g, h = d, c = b;

(xiii) h = b, h = c, c = b;

(xiv) h = b, h = d, d = b;

(xv) h = b, h = e, e = b;

(xvi) h = c, h = d, d = c;

(xvii) e = b, e = c, c = b;

(xviii) e = c, e = d, d = c;

(xix) a = g, h = c, h = d, d = c;

(xx) a = g, h = e, h = d, e = d;

(xxi) a = g, e = b, d = b, e = d;

(xxii) h = b, h = c, c = b, h = d, d = b, d = c;

(xxiii) h = b, h = d, d = b, h = e, e = b, e = d;

(xxiv) e = b, e = c, c = b, e = d, d = b, d = c.

Proof. Here, ∆ has at most three vertices of degree 2, so has non-positive curvature
for all of these cases. Consider the case,

• e = b, d = c.
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In this case ∆ is given in Figure 3.

Figure 3: Region ∆

Since d(vb) = d(vc) = 2 or d(vc) = d(vd) = 2 or d(vd) = d(ve) = 2 can not occur
together so c(∆) ≤ 0.

A further 19 cases are solved in Lemma 2 by the application of curvature distribution
method [10].

Lemma 2. The presentation P = 〈G, t | s1(t)〉 is aspherical if any one of the following
holds:

(i) a = g, h = c, e = b;

(ii) a = g, h = c, e = d;

(iii) a = g, h = e, c = b;

(iv) a = g, h = e, d = c;

(v) a = g, h = d, e = c;

(vi) a = g, e = b, d = c;

(vii) a = g, e = c, d = b;

(viii) a = g, e = d, c = b;

(ix) a = g, e = b, e = c, c = b;

(x) a = g, e = c, e = d, d = c;

(xi) a = g, h = e, h = c, e = c;

(xii) a = g, d = b, c = b, d = c;

(xiii) a = g, h = c, h = d, d = c, e = b;

(xiv) a = g, h = e, h = d, e = d, c = b;

(xv) a = g, h = e, h = c, e = c, d = b;

(xvi) a = g, h = d, e = b, e = c, c = b;
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(xvii) a = g, h = c, e = b, d = b, e = d;

(xviii) a = g, h = e, h = d, e = d, h = c, e = c, d = c;

(xix) e = b, e = c, c = b, e = d, d = b, d = c, h = b, h = e, h = c, h = d.

Proof.

1. In this case ∆ is given in Figure 4(i).

Figure 4: Region ∆

The subcases which are to be examined are given below:

(a) d∆(va) = d∆(vc) = d∆(ve) = d∆(vg) = 2;

(b) d∆(va) = d∆(vc) = d∆(ve) = d∆(vh) = 2.

(a) Here d∆(va) = d∆(vc) = d∆(ve) = d∆(vg) = 2 which implies l∆(va) = ag−1,
l∆(vc) = ch−1, l(ve) = eb−1, and l∆(vg) = ga−1, as given in Figure 4(ii).
Notice that l∆(vc) = ch−1 and l∆(ve) = eb−1 implies that l∆(vd) = i−1da−1w
in which w ∈ {b−1, c−1, e−1, h−1} which implies d∆(vd) > 3. Similarly notice
that l∆(vg) = ga−1 and l∆(ve) = eb−1 implies that l∆(vf ) = fi−1c−1w in which
w ∈ {b, d, e, h} which implies d∆(vf ) > 3. Since d∆(vd) > 3 and d∆(vf ) > 3 so
c(∆) ≤ 0.

(b) Here d∆(va) = d∆(vc) = d∆(ve) = d∆(vh) = 2 which implies l∆(va) = ag−1,
l∆(vc) = ch−1, l(ve) = eb−1, and l∆(vh) = hc−1, as given in Figure 4(iii).
Notice that l∆(vc) = ch−1 and l∆(ve) = eb−1 implies that l∆(vd) = i−1da−1w
in which w ∈ {b−1, c−1, e−1, h−1} which implies d∆(vd) > 3. Similarly notice
that l∆(va) = ag−1 and l∆(vh) = hc−1 implies that l∆(vi) = if−1d−1w in which
w ∈ {b, c, e, h} which implies d∆(vi) > 3. Since d∆(vd) > 3 and d∆(vi) > 3 so
c(∆) ≤ 0.

2. In this case ∆ is given in Figure 5(i).
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Figure 5: Regions ∆ and ∆̂

The subcases which are to be examined are given below:

(a) d∆(va) = d∆(vc) = d∆(ve) = d∆(vg) = 2;

(b) d∆(va) = d∆(vc) = d∆(ve) = d∆(vh) = 2.

(a) Here d∆(va) = d∆(vc) = d∆(ve) = d∆(vg) = 2 which implies l∆(va) = ag−1,
l∆(vc) = ch−1, l∆(ve) = ed−1, l∆(vg) = ga−1, as shown in Figure 5(ii). Notice
that l∆(vg) = ga−1 and l∆(ve) = ed−1 implies that l∆(vf ) = fi−1e−1w in which

w ∈ {b, c, d, h} which implies d∆(vf ) > 3. Add c(∆) ≤ π

6
to c(∆̂) is given

by Figure 5(iii). Notice that d
∆̂

(va−1) = d
∆̂

(ve−1) = 2. Similarly notice that
either d

∆̂
(vg−1) = 2 or d

∆̂
(vh−1) = 2 otherwise contradiction occur and all other

vertices have degree atleast 3. Therefore c(∆̂) ≤ c(2, 2, 2, 3, 3, 3, 3, 3, 4) =
−π
6

.

(b) Here d∆(va) = d∆(vc) = d∆(ve) = d∆(vh) = 2 which implies l∆(va) = ag−1,
l∆(vc) = ch−1, l∆(ve) = ed−1, l∆(vh) = hc−1, as shown in Figure 5(iv). Notice
that l∆(va) = ag−1 and l∆(vh) = hc−1 implies that l∆(vi) = if−1d−1w in which

w ∈ {b, c, e, h} which implies d∆(vi) > 3. Add c(∆) ≤ π

6
to c(∆̂) is given by

Figure 5(v). Notice that d
∆̂

(vc−1) = d
∆̂

(ve−1) = 2. Similarly notice that either
d

∆̂
(vg−1) = 2 or d

∆̂
(vh−1) = 2 otherwise contradiction occur. Observe that

either d
∆̂

(vb−1) = 3 or d
∆̂

(va−1) = 2 since d
∆̂

(vb−1) = 3 already present so
d

∆̂
(va−1) > 2 otherwise contradiction occur and all other vertices have degree

atleast 3. Therefore c(∆̂) ≤ c(2, 2, 2, 3, 3, 3, 3, 3, 4) =
−π
3

.

3. In this case ∆ is given in Figure 6(i).
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Figure 6: Regions ∆ and ∆̂

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

4. In this case ∆ is given in Figure 7(i).

Figure 7: Regions ∆ and ∆̂

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

5. In this case ∆ is given in Figure 8(i).
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Figure 8: Region ∆

The subcases which are to be examined are given below:

(a) d∆(va) = d∆(vc) = d∆(ve) = d∆(vg) = 2;

(b) d∆(va) = d∆(vc) = d∆(ve) = d∆(vh) = 2.

(a) Here d∆(va) = d∆(vc) = d∆(ve) = d∆(vg) = 2 which implies l∆(va) = ag−1,
l∆(vc) = ce−1, l(ve) = ec−1, and l∆(vg) = ga−1, as shown in Figure 8(ii). Notice
that l∆(va) = ag−1 and l∆(vc) = ce−1 implies that l∆(vb) = bd−1h−1w in which
w ∈ {b, c, d, e} which implies d∆(vb) > 3. Similarly notice that l∆(vg) = ga−1

and l∆(ve) = ec−1 implies that l∆(vf ) = fi−1d−1w in which w ∈ {b, c, e, h}
which implies d∆(vf ) > 3. Since d∆(vb) > 3 and d∆(vf ) > 3 so c(∆) ≤ 0.

(b) Here d∆(va) = d∆(vc) = d∆(ve) = d∆(vh) = 2 which implies l∆(va) = ag−1,
l∆(vc) = ce−1, l(ve) = ec−1, and l∆(vh) = hd−1, as shown in Figure 8(iii). No-
tice that l∆(va) = ag−1 and l∆(vc) = ce−1 implies that l∆(vb) = bd−1h−1w
in which w ∈ {b, c, d, e} which implies d∆(vb) > 3. Similarly notice that
l∆(va) = ag−1 and l∆(vh) = hd−1 implies that l∆(vi) = if−1e−1w in which
w ∈ {b, c, d, h} which implies d∆(vi) > 3. Since d∆(vb) > 3 and d∆(vi) > 3 so
c(∆) ≤ 0.

6. In this case ∆ is given in Figure 9(i).

Figure 9: Region ∆

Here d∆(va) = d∆(vc) = d∆(ve) = d∆(vg) = 2 which implies l∆(va) = ag−1, l∆(vc) =
cd−1, l(ve) = eb−1, and l∆(vg) = ga−1, as shown in Figure 9(ii). Notice that l∆(va) =
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ag−1 and l∆(vc) = cd−1 implies that l∆(vb) = bc−1h−1w in which w ∈ {b, c, d, e}
which implies d∆(vb) > 3. Similarly notice that l∆(vg) = ga−1 and l∆(ve) = eb−1

implies that l∆(vf ) = fi−1c−1w in which w ∈ {b, d, e, h} which implies d∆(vf ) > 3.
Since d∆(vb) > 3 and d∆(vf ) > 3 so c(∆) ≤ 0.

7. In this case ∆ is given in Figure 10(i).

Figure 10: Regions ∆ and ∆̂

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

8. In this case ∆ is given in Figure 11(i).

Figure 11: Region ∆

Here d∆(va) = d∆(vc) = d∆(ve) = d∆(vg) = 2 which implies l∆(va) = ag−1, l∆(vc) =
cb−1, l(ve) = ed−1, and l∆(vg) = ga−1, as shown in Figure 11(ii). Notice that
l∆(ve) = ed−1 and l∆(vc) = cb−1 implies that l∆(vd) = dc−1c−1w in which w ∈
{b, d, e, h} which implies d∆(vd) > 3. Similarly notice that l∆(vg) = ga−1 and
l∆(ve) = ed−1 implies that l∆(vf ) = fi−1e−1w in which w ∈ {b, c, d, h} which
implies d∆(vf ) > 3. Since d∆(vd) > 3 and d∆(vf ) > 3 so c(∆) ≤ 0.

9. In this case ∆ is given in Figure 12(i).
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Figure 12: Regions ∆ and ∆̂

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

10. In this case ∆ is given in Figure 13(i).

Figure 13: Regions ∆ and ∆̂

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.
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11. In this case ∆ is given in Figure 14(i).

Figure 14: Regions ∆ and ∆̂

Figure 15: Regions ∆ and ∆̂

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

12. In this case ∆ is given in Figure 16(i).



Muhammad Saeed Akram, Maira Amjid, Sohail Iqbal / Eur. J. Pure Appl. Math, 13 (4) (2020), 914-938 928

Figure 16: Region ∆

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

13. In this case c(∆) ≤ 0 for all of its subcases as shown in Figure 17.

Figure 17: Region ∆

14. In this case ∆ as given in Figure 18(i).
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Figure 18: Region ∆

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

15. In this case ∆ is given in Figure 19(i).

Figure 19: Regions ∆ and ∆̂
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Figure 20: Regions ∆ and ∆̂

Figure 21: Regions ∆ and ∆̂

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.



Muhammad Saeed Akram, Maira Amjid, Sohail Iqbal / Eur. J. Pure Appl. Math, 13 (4) (2020), 914-938 931

16. In this case c(∆) ≤ 0 for all of its subcases as shown in Figure 22(i).

Figure 22: Region ∆

17. In this case ∆ is given in Figure 23(i).

Figure 23: Region ∆

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

18. In this case ∆ is given in Figure 24(i).
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Figure 24: Region ∆

Figure 25: Region ∆
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Figure 26: Region ∆

Figure 27: Region ∆

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.
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19. In this case ∆ is given in Figure 28(i).

Figure 28: Region ∆

Figure 29: Region ∆
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Figure 30: Region ∆

Figure 31: Region ∆



Muhammad Saeed Akram, Maira Amjid, Sohail Iqbal / Eur. J. Pure Appl. Math, 13 (4) (2020), 914-938 936

Figure 32: Region ∆

Figure 33: Region ∆
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Figure 34: Region ∆

By adding c(∆) to c(∆̂) we get c(∆) ≤ 0.

There remains only 2 cases given in Theorem that still needs to be solved. In fact,
weight test and curvature distribution method can not be applied to these cases. The
weight test can not be applied to these cases as it is not possible to find a weight function
θ that satisfies all the three conditions of weight test simultaneously, whereas curvature
test can not be applied to these cases as it is impossible to find any neighbouring region
∆̂ in the neighbourhood of region ∆ that cancels the curvatures of region ∆.

Remark 2. We remark that the list of exceptional cases given in Theorem in section 1
is open for the equation s1(t). Since weight test and curvature distribution can not be
applied to these cases to prove Levin conjecture, therefore, some new methods needs to
be developed to establish the validity of the remaining cases of Levin conjecture for these
group equations of length 9.
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