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Abstract. In this study, by employing the Ruscheweyh type q-analogue operator we consider a
new family of integral operators on the space of analytic functions. For this family, we demonstrate
some sufficient conditions of univalence criteria on the class of analytical functions.
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1. Introduction

Univalence criteria for certain class of analytic functions has attracted many and some
of their work can be seen widely in the literature. For example, Pascu [21], [22] studied
on the univalence criterion for certain class of functions and improvement of Becker’s
univalence criteria in 1985 and 1987 respectively. Then, Pescar [23] led on the generalised
univalence criteria of Ahlfor’s and Becker’s. Later, Faisal and Darus [13–15] and Al-Refai
and Darus [1] continued to study the same for different operators and classes. Here we
are studying similar criteria for a class generated by a q-analogue of Ruscheweyh.

Let A denote the class of functions of the form:

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z|<1} and satisfy the following
normalized condition:

f(0) = f
′
(0)− 1 = 0.
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Additionally, let S ⊂ A be the family of univalent functions in U . The Hadamard product
for two analytic functions f ∈ A defined in (1) and

g(z) = z +
∞∑
n=2

bnz
n,

is given by

f(z) ∗ g(z) = z +
∞∑
n=2

anbnz
n.

Firstly, we will present the concepts and definitions for q-calculus which will later be

applied (see [5] and [12]). Let n ∈ N, 0<q<1 , the q-integer and q-factorial are defined by

[n]q! =

{
[n]q[n− 1]q......[1]q, n = 1, 2, ...,
1, n = 0,

(2)

[n]q =
1− qn

1− q
.

As q → 1, [n]q → n.
In 2014, Aldweby and Darus [2] defined the Ruscheweyh type q-operator Rυq as follow-

ing:

Definition 1. The q-analogue of Ruscheweyh operator of f ∈ A is denoted by Rυqf(z)
and defined by

Rυqf(z) = z +
∞∑
n=2

[n+ υ − 1]q!

[υ]q![n− 1]q!
anz

n, (3)

where υ > −1 and [n]q! defined by (2).

From the Definition 1, we note that, if q → 1 ,we have

lim
q−→1

Rυqf(z) = z + lim
q−→1

[ ∞∑
n=2

[n+ υ − 1]q!

[υ]q![n− 1]q!
anz

n

]

= z +
∞∑
n=2

(n+ υ − 1)!

(υ)!(n− 1)!
anz

n

= Rυf(z),

where Rυf(z) is Ruscheweyh operator that was presented in [24] and has been examined
by many authors, for instance [19] and [26]. In fact, the q-derivative type of Ruscheweyh
operator has been studied recently by Hussain et.al [17], Aldweby and Darus [3] for dif-
ferent properties. Other type of q-derivative can be seen in [16].
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Definition 2. A function f ∈ A is said to be in the class Bυ(q, ϑ) if it is satisfying the
condition ∣∣∣∣∣z2

(
Rυqf(z)

)′[
Rυqf(z)

]2 − 1

∣∣∣∣∣<ϑ, (z ∈ U, 0 < ϑ ≤ 1), (4)

where Rυqf(z) is the operator defined by (3).

Note that, B0(q → 1, ϑ) = B(ϑ), where the analytic and univalent functions class B(ϑ)
was presented and studied in [11].

Using the operatorRυqf(z), we now introduce the general integral operator as following:

Definition 3. Let m ∈ N ∪ {0}, let γ1, γ2, ..., γn, |q|<1 and % ∈ C \ {0,−1, ...}, then the
integral operator Iγn,%(υ, q, z) : A → A is defined by

Iγn,%(υ, q, z) =

(
%

∫ z

0
t%−1

m∏
n=1

(Rυqfn(t)

t

) 1
γn

dt

) 1
%

, (5)

where fn ∈ A.

Remark 1. Interestingly, the integral operator Iγn,%(υ, q, z) generalizes a number of op-
erators that have been implemented and studied by several authors, for instance

• For υ = 0 and γ1, ..., γm = σ , we get the following operator

Iσ,%(z) =

(
%

∫ z

0
t%−1

m∏
n=1

(
fn(t)

t

) 1
σ

dt

) 1
%

, (6)

that considered by Breaz and Breaz [7].

• For υ = 0,m = 1, γn =
1

σn
, % = 1, σ1 = 1, σ2 = ... = σm = 0 and f1 = f2 =

... = fm = f ∈ S, we have the following integral operator developed and studied by
Alexander [4],

I(z) =

∫ z

0

f(t)

t
dt. (7)

• For υ = 0, % = 1 and γn =
1

σn
, we obtain the following integral operator introduced

by Breaz and Breaz [6],

f(z) =

∫ z

0

[
f1(t)

t

]σ1
...

[
fm(t)

t

]σm
dt. (8)

• For υ = 0, γn =
1

σ − 1
and % = m(σ − 1) + 1, we have the integral operator:

Gm,σ(z) =

(
[m(σ − 1) + 1]

∫ z

o
(f1(t))

σ−1...(fm(t))σ−1dt

) 1
m(σ−1)+1

, (9)

studied by Breaz et al. [9].
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• For υ = 0,m = 1, γn =
1

an
, % = 1, σ1 = σ, σ2 = ... = σm = 0 and f1 = f2 = ... =

fm = f ∈ S, we obtain the integral operator:

Iσ(z) =

∫ z

0

[
f(t)

t

]σ
dt, (10)

introduced by Miller and Mocanu [18].

• For υ = 0, γn =
1

σ − 1
, % = σ and f1 = f2 = ... = fm = f ∈ A where σ ∈ C and

<(σ)>0,we obtain the following operator:

Gσ(z) =

(
σ

∫ z

0
(f(t))σ−1dt

) 1
σ

, (11)

studied and introduced by Pescar [23].

• For υ = 1, q → 1, γn =
1

σ − 1
and % = 1 +m(σ− 1),we get the integral operator that

Selvaraj and Karthikeyan [25] introduced

Gσ(z) =

(
[m(σ − 1) + 1]

∫ z

o
tm(σ−1)

(
f
′
1(t)
)σ−1

...
(
f
′
m(t)

)σ−1
dt

) 1
1+m(σ−1)

. (12)

• For υ = 1, q → 1, γn =
1

σ
and % = 1, we obtain the following integral operator:

Gσ(z) =

∫ z

o

(
f
′
1(t)
)σ
...
(
f
′
m(t)

)σ
dt, (13)

studied and introduced by Breaz and Güney [10].

2. Preliminaries

In order to prove our main results, we need to recall the following.

Lemma 1. (see [21] and [22]) Let % ∈ C with <(%)>0. If f ∈ A satisfies

1− |z|2<(%)

<(%)

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ ≤ 1, z ∈ U,

then the operator

f%(z) =

{
%

∫ z

0
t%−1f

′
(t)dt

} 1
%

,

is belonging to S.
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Lemma 2. (see [23]) Let c ∈ C with |c| ≤ 1, c 6= −1, % ∈ C with <(%)>0. If f ∈ A
satisfies ∣∣∣∣∣c|z|2% + (1− |z|2%)zf

′′
(z)

%f ′(z)

∣∣∣∣∣ ≤ 1, z ∈ U,

then the operator

f%(z) =

{
%

∫ z

0
t%−1f

′
(t)dt

} 1
%

,

is belonging to S.

Lemma 3. (see [20]) (Generalized Schwarz Lemma) Let f ∈ A within UR = {z : |z|<R},
with |f(z)|<N for fixed N . If f(z) has one zero with multiplicity order > m for z = 0,
thus

|f(z)| ≤ N

Rm
|z|m, (z ∈ UR).

Equality can only be achieved if

f(z) = eiθ
(
N

Rm

)
zm,

where θ is constant.

3. Main Results

In this part, by utilizing the above lemmas, we find the univalence of this integral
operator defined by Ruscheweyh type q-analogue.

Theorem 1. Let f1, ..., fm ∈ A and %, γ1, ..., γm ∈ C. Let N ≥ 1 with

1

<(%)

m∑
n=1

[(1 + ϑn)N + 1]

|γn|
≤ 1. (14)

If f1, ..., fm ∈ Bυ(q, ϑn), 0 < ϑn ≤ 1, n = 1, ...,m and

|Rυqfn(z)| ≤ N, (z ∈ U),

then the function Iγn,%(υ, q, z) given by (5) is univalent.

Proof. From the definition of the operator Rυqf(z) we have

Rυqf(z)

z
=

z +
∑∞

n=2
[n+υ−1]q !
[υ]q ![n−1]q !anz

n

z

= 1 +

∞∑
n=2

[n+ υ − 1]q!

[υ]q![n− 1]q!
anz

n−1,
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then
Rυqf(z)

z
6= 0, (z ∈ U),

and for z = 0 and n = 1, ...,m, we have(Rυqf1(z)
z

) 1
γ1

...

(Rυqfm(z)

z

) 1
γm

= 1.

Define the function

f(z) =

∫ z

0

m∏
n=1

(Rυqfn(t)

t

) 1
γn

dt, (15)

then we have f(0) = 0 and f ′(0) = 1. Therefore

f
′
(z) =

m∏
n=1

(Rυqfn(z)

z

) 1
γn

. (16)

The equality (16) implies

ln f
′
(z) =

m∑
n=1

1

γn

(
ln
Rυqfn(z)

z

)
.

Or equivalently

ln f
′
(z) =

m∑
n=1

1

γn

(
lnRυqfn(z)− lnz

)
.

By differentiating the above equality, we have

zf
′′
(z)

f ′(z)
=

m∑
n=1

1

γn

(
z
(
Rυqfn(z)

)′
Rυqfn(z)

− 1

)
. (17)

From (17), we have∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ ≤
m∑
n=1

1

|γn|

(∣∣∣∣∣z
(
Rυqfn(z)

)′
Rυqfn(z)

∣∣∣∣∣+ 1

)
=

m∑
n=1

1

|γn|

(∣∣∣∣∣z2
(
Rυqfn(z)

)′
[Rυqfn(z)]2

∣∣∣∣∣
∣∣∣∣Rυqfn(z)

z

∣∣∣∣+ 1

)
.

(18)
From the hypothesis, we have |Rυqfn(z)| ≤ N , fn ∈ Bυ(q, ϑn), (n = 1, ...,m, z ∈ U), then
by using lemma 3, we get that

|Rυqfn(z)| ≤ N |z| , (n = 1, ...,m, z ∈ U).

From (18), we get∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ ≤
m∑
n=1

1

|γn|

(∣∣∣∣∣z2
(
Rυqfn(z)

)′
[Rυqfn(z)]2

∣∣∣∣∣N + 1

)
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≤
m∑
n=1

1

|γn|

(∣∣∣∣∣z2
(
Rυqfn(z)

)′
[Rυqfn(z)]2

− 1

∣∣∣∣∣N +N + 1

)

≤
m∑
n=1

1

|γn|
(ϑnN +N + 1)

=
m∑
n=1

(1 + ϑn)N + 1

|γn|
,

which easily shows that

1− |z|2<(%)

<(%)

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ =
1− |z|2<(%)

<(%)

∣∣∣∣∣
m∑
n=1

1

γn

(
z
(
Rυqfn(z)

)′
Rυqfn(z)

− 1

)∣∣∣∣∣
≤ 1

<(%)

m∑
n=1

(1 + ϑn)N + 1

|γn|
,

since
1

<(%)

∑m
n=1

[(1 + ϑn)N + 1]

|γn|
≤ 1. Using Lemma 1 , we obtain that the integral

Iγn,%(υ, q, z) given by (5) is univalent.

Setting N = 1, υ = 0, γn =
1

σ − 1
, and % = m(σ − 1) + 1 in Theorem 1, we get

Corollary 1. [8] Let f1, ..., fm ∈ A and σ ∈ C with

|σ − 1| ≤ <(σ)

3m
,

if ∣∣∣∣∣ z2f
′
k(z)

(fn(z))2
− 1

∣∣∣∣∣<1, (z ∈ U),

then the function Gm,σ(z) defined by (9) is univalent.

Setting N = 1, υ = 0, γn =
1

σ − 1
, f1 = ... = fm = f ∈ A and % = σ where σ ∈ C in

Theorem 1, we get

Corollary 2. Let f ∈ A and σ ∈ C with

|σ − 1| ≤ <(σ)

3
,

if ∣∣∣∣∣z2f
′
(z)

(f(z))2
− 1

∣∣∣∣∣<1, (z ∈ U),

then the function Gσ(z) defined by (11) is univalent.
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Next, we prove

Theorem 2. Let f1, ..., fm ∈ A, γ1, ..., γm ∈ C and % ∈ C with <(%) >
∑m

n=1
[(1+ϑn)N+1]

|γn| .
Let c ∈ C and N ≥ 1 with

|c| ≤ 1− 1

<(%)

m∑
n=1

[(1 + ϑn)N + 1]

|γn|
.

If f1, ..., fm ∈ Bυ(q, ϑn), 0 < ϑn ≤ 1, n = 1, ...,m and

|Rυqfn(z)| ≤ N, (z ∈ U),

then the function Iγn,%(υ, q, z) given by (5) is univalent.

Proof. Following the proof of Theorem 1, we get

zf
′′
(z)

f ′(z)
=

m∑
n=1

1

γn

(
z
(
Rυqfn(z)

)′
Rυqfn(z)

− 1

)
.

Then we have∣∣∣∣∣c|z|2% + (1− |z|2%)zf
′′
(z)

%f ′(z)

∣∣∣∣∣ =

∣∣∣∣∣c|z|2% + (1− |z|2%)1

%

m∑
n=1

1

γn

(
z
(
Rυqfn(z)

)′
Rυqfn(z)

− 1

)∣∣∣∣∣
≤ |c|+ 1

|%|

m∑
n=1

1

|γn|

(∣∣∣∣∣z2
(
Rυqfn(z)

)′
[Rυqfn(z)]2

∣∣∣∣∣
∣∣Rυqfn(z)

∣∣
|z|

+ 1

)
.

Now directly from the proof of Theorem 1, we have∣∣∣∣∣c|z|2% + (1− |z|2%)zf
′′
(z)

%f ′(z)

∣∣∣∣∣ ≤ |c|+ 1

|%|

m∑
n=1

[(1 + ϑn)N + 1]

|γn|

≤ |c|+ 1

<(%)

m∑
n=1

[(1 + ϑn)N + 1]

|γn|
,

since |c| ≤ 1− 1

%

∑m
n=1

[(1 + ϑn)N + 1]

|γn|
, thus we have

∣∣∣∣∣c|z|2% + (1− |z|2%)zf
′′
(z)

%f ′(z)

∣∣∣∣∣ ≤ 1, (z ∈ U).

Using Lemma 2 for the function f(z) we obtain that the integral operator Iγn,%(υ, q, z)
given by (5) is univalent.
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Corollary 3. Let f1, ..., fm ∈ A, γ ∈ C and % ∈ C with <(%) > m[(1+ϑn)N+1]
|γ| . Let N ≥ 1

with

|c| ≤ 1− 1

<(%)

m[(1 + ϑn)N + 1]

|γ|
, (c ∈ C).

If for all n = 1, ..,m, fn ∈ Bυ(q, ϑn), 0 < ϑn ≤ 1, and

|Rυqfn(z)| ≤ N, (z ∈ U).

Then the integral operator

Iγn,%(υ, q, z) =

(
%

∫ z

0
t%−1

m∏
n=1

(Rυqfn(t)

t

) 1
γ

dt

) 1
%

,

is univalent.

Proof. In Theorem 2, we consider γ1 = γ2 = ... = γm = γ.

Corollary 4. Let f1, ..., fm ∈ A, γn ∈ C and % ∈ C with <(%) >
∑m

n=1
[ϑn+2]
|γn| . Let c ∈ C

with

|c| ≤ 1− 1

<(%)

m∑
n=1

[ϑn + 2]

|γn|
.

If for all n = 1, ..,m, fn ∈ Bυ(q, ϑn), 0 < ϑn ≤ 1, and

|Rυqfn(z)| ≤ 1, (z ∈ U),

then the function Iγn,%(υ, q, z) given by (5) is univalent.

Proof. In Theorem 2, we consider N = 1.

Setting υ = 0, γn =
1

σ − 1
, and % = m(σ − 1) + 1 where σ ∈ R in Theorem 2, we have

Corollary 5. Let f1, ..., fm ∈ A , σ ∈ R, c ∈ C and N ≥ 1 with

|c| ≤ 1 +

(
1− σ

(σ − 1)m+ 1

)
(2N + 1)m,

and

σ ∈
[
1,

2mN + 1

2mN

]
,

if for all n = 1, ...,m ∣∣∣∣∣ z2f
′
k(z)

(fn(z))2
− 1

∣∣∣∣∣<1, (z ∈ U),

and
|fn(z)| ≤ N, (z ∈ U),

then the function Gm,σ(z) defined by (9) is univalent.
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4. Conclusion

In our present investigation, we have considered a new integral operator Iγn,%(υ, q, z) by
using the Ruscheweyh type q-analogue operator. Additionally, some sufficient conditions
of univalence for this operator are determined.
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