EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 1, 2021, 173-191
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On the Independent Neighborhood Polynomial of the Cartesian Product of Some Special Graphs

Normalah Abdulcarim ${ }^{1, *}$, Susan Dagondon ${ }^{2}$, Emmy Chacon ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Natural Sciences and Mathematics, Mindanao State University Main Campus, 9700 Marawi City, Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center of Graph Theory, Algebra, and Analysis-Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Two vertices x, y of a graph G are adjacent, or neighbors, if $x y$ is an edge of G. A set S of vertices in a graph G is a neighborhood set if $G=\bigcup_{v \in S}\langle N[v]\rangle$ where $\langle N[v]\rangle$ is the subgraph induced by v and all the vertices adjacent to v. If no two of the elements of S are adjacent, then S is called an independent neighborhood set. The independent neighborhood polynomial of G of order m is $N_{i}(G, x)=\sum_{j=\eta_{i}(G)}^{m} n_{i}(G, j) x^{j}$ where $n_{i}(G, j)$ is the number of independent neighborhood set of G of size j and $\eta_{i}(G)$ is the minimum cardinality of an independent neighborhood set of G. This paper investigates the independent neighborhood polynomial of the Cartesian product of some special graphs.

2020 Mathematics Subject Classifications: 05C31, 05C69, 05C76
Key Words and Phrases: Independent Neighborhood Set, Neighborhood Polynomial, Cartesian Product

1. Introduction

The history of graph theory may be specifically traced to 1735 when the Swiss Mathematician Leonhard Euler solve the königberg bridge problem. There are number of applications of graph theory that have been widely studied. A graph polynomial is one of the algebraic reperesentations for graph. In this paper, we study a new type of graph polynomial called the independent neighborhood polynomial [10]. Throughout this paper, we consider only a finite, simple, undirected graphs without loops and multiple edges.

[^0]http://www.ejpam.com
173
(c) 2021 EJPAM All rights reserved.

A graph G is a pair $(V(G), E(G))$ consisting of a nonempty finite set of vertices $V(G)$ and a set of edges $E(G)$ of unordered pairs of elements of $V(G)$. The cardinalities of $V(G)$ and $E(G)$ are called the order and size of G, respectively. We write $x=u v$ and say that u and v are adjacent vertices; vertex u and edge x are incident with each other, so are v and x. The two vertices incident with an edge are its endvertices or ends, and an edge joins its ends. Two vertices of a graph G are said to be neighbors if they are adjacent in G.

The neighborhood of a vertex $v \in V$ is the set $N_{G}(v)=\{w: w \in V$ and $v w \in E(G)\}$. A vertex v is pendant if its neighborhood contains only one vertex; and edge $e=u v$ is pendant if one of its endvertices is a pendant vertex.

A graph H is called a subgraph of G, written $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$. If $H \subseteq G$ and either $V(H)$ is a proper subset of $V(G)$ or $E(H)$ is a proper subset of $E(G)$, then H is a proper subgraph of G. A subgraph F of a graph G is called an induced subgraph of G, denoted by $\langle F\rangle$, if whenever u and v are vertices of F and $u v$ is an edge of G, then $u v$ is an edge of F as well.

A path is a nonempty graph $P=(V, E)$ of the form

$$
V=\left\{v_{1}, \cdots, v_{m}\right\} \quad E=\left\{v_{1} v_{2}, v_{2} v_{3}, \cdots, v_{m-1} v_{m}\right\}
$$

where the v_{i} are all distinct.
In this research, we focused to determine the independent neighborhood sets of the Cartesian product of some special graphs with path and represent them in a graph polynomial called independent neighborhood polynomial. The readers may also read on the following references: $[1],[2],[3],[5],[9],[11]$ and $[6]$.

2. Preliminaries

Definition 1. [7] A graph G is a bipartite graph, denoted by $K_{m, n}$, if $V(G)$ can be partitioned into two subsets V_{m} and V_{n} of order m and n, respectively, called partite sets such that every edge of G joins a vertex of V_{n} and a vertex of V_{m}. If G contains every edges joining V_{n} and V_{m}, then G is called complete bipartite graph. A star is complete bipartite $K_{1, n}$, the vertex in the singleton partition class is called the apex vertex. A star graph $K_{1, n-1}$ is also called an n-star graph.

Figure 1: A star graph $K_{1,4}$ with apex vertex u and pendant vertices $u_{1}, u_{2}, u_{3}, u_{4}$

Definition 2. [6] The bistar graph $B(m, n)$ is constructed by joining the apex vertices of two stars $K_{1, m}$ and $K_{1, n}$ for $m \geq 1$ and $n \geq 1$ with disjoint vertex sets.

Figure 2: A bistar graph $B(4,3)$

Definition 3. [4] The Banana tree graph $B_{m, n}$ is the graph obtained by connecting one leaf of each m copies of an n-star graph with a single root vertex that is distinct for all the stars.

Figure 3: The Banana tree graph $B_{3,5}$

Definition 4. [4] The Firecracker graph $F_{m, n}$ is the graph obtained by the concatenation of $m n$-stars by linking one leaf from each.

Figure 4: The Firecracker graph $F_{3,5}$

Definition 5. [8] The n-centipede graph or simply $C e n_{n}$ is the tree on $2 n$ vertices obtained by joining the bottoms of n copies of the path graph P_{2} laid in a row with edges.

Figure 5: The Centipede graphs Cen_{4} and Cen_{5}

Definition 6. [5] The Cartesian product of two graphs G and H, denoted $G \square H$, is the graph where $V(G \square H)=V(G) \times V(H)$ and $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) \in E(G \square H)$ if and only if either
(i.) $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$ or
(ii.) $h_{1}=h_{2}$ and $g_{1} g_{2} \in E(G)$.

Figure 6: Cartesian product of G and H

Definition 7. [11] A set $S \subseteq V(G)$ is an independent neighborhood set of G, if S is a neighborhood set and no two vertices in S are adjacent.
Definition 8. [11] Let $G=(V, E)$ be a graph with m vertices. Then the independent neighborhood polynomial of G of order m is

$$
N_{i}(G, x)=\sum_{j=\eta_{i}(G)}^{m} n_{i}(G, j) x^{j},
$$

where $n_{i}(G, j)$ is the number of independent neighborhood set of G of size j and $\eta_{i}(G)$ is the minimum cardinality of an independent neighborhood set which is called the independent neighborhood number of G.
Example 1. Consider the graph H below

The only independent neighborhood sets of H are $\left\{v_{2}, v_{4}\right\}$ and $\left\{v_{1}, v_{3}, v_{5}\right\}$. Therefore, the independent neighborhood polynomial of H is $N_{i}(H, x)=x^{2}+x^{3}$.

3. Independent Neighborhood Polynomial of the Cartesian product of Some Special Graphs with Path Graph

In this section, the independent neighborhood sets of the Cartesian product of some special graphs with path are determined and represented in an independent neighborhood polynomial.

Theorem 1. For any path P_{k} and star $K_{1, n}$,

$$
N_{i}\left(P_{k} \square K_{1, n}, x\right)= \begin{cases}x^{\left\lfloor\frac{k}{2}\right\rfloor n+\left\lceil\frac{k}{2}\right\rceil}+x^{\left\lceil\frac{k}{2}\right\rceil n+\left\lfloor\frac{k}{2}\right\rfloor}, & k \text { is odd } \\ 2 x^{\left(\frac{k}{2}\right) n+\left(\frac{k}{2}\right)}, & k \text { is even }\end{cases}
$$

for any $k, n \in \mathbb{Z}^{+}$.
Proof: Label $V\left(P_{k}\right)=\{1,2, \cdots, k\}$ and $V\left(K_{1, n}\right)=\left\{\begin{array}{ll}1, & \text { apex vertex } \\ 2 n & \text { pendant vertices }\end{array}\right.$.

Then

$$
V\left(P_{k} \square K_{1, n}\right)=\{(x, y): x=1,2 \cdots, k, y=1,2,4,6, \cdots, 2 n\}
$$

and

$$
E\left(P_{k} \square K_{1, n}\right)=\left\{(x, y)(w, z): x=w \text { and } y z \in E\left(K_{1, n}\right) \text { or } x w \in E\left(P_{k}\right) \text { and } y=z\right\} .
$$

Observe that for any $(x, y)(w, z) \in E\left(P_{k} \square K_{1, n}\right)$, we have the following cases:
case 1: $\{(x, y),(w, z): x=w$ is odd while y is even and $z=1\}$.
case 2: $\{(x, y),(w, z): x=w$ is even while y is even and $z=1\}$.
case 3: $\{(x, y),(w, z): y=z=1$ while x is even and w is odd $\}$.
case 4: $\{(x, y),(w, z): y=z$ is even while x is even and w is odd $\}$.
Now, let $S=\left\{(p, q) \in V\left(P_{k} \square K_{1, n}\right): p\right.$ and q are both even or p and q are both odd $\}$ and $T=\left\{(r, s) \in V\left(P_{k} \square K_{1, n}\right): r\right.$ is odd and s is even or r is even and s is odd $\}$. We claim that S and T are the independent neighborhood sets of $P_{k} \square K_{1, n}$ that is, we show that
a. no two vertices in S are adjacent and $\bigcup_{u \in S}\langle N[u]\rangle=P_{k} \square K_{1, n}$; and
b. no two vertices in T are adjacent and $\bigcup_{v \in T}\langle N[v]\rangle=P_{k} \square K_{1, n}$.
a. Let $(x, y),(w, z) \in S$. We consider the following cases:

Case 1: If x, y, w, z are all odd, then $(x, y)(w, z) \notin E\left(P_{k} \square K_{1, n}\right)$. Thus, $(x, y),(w, z)$ are not adjacent.

Case 2: If x, y, w, z are all even, then $(x, y)(w, z) \notin E\left(P_{k} \square K_{1, n}\right)$. Thus, $(x, y),(w, z)$ are not adjacent.

Case 3: If x, y are even and w, z are odd, then $(x, y)(w, z) \notin E\left(P_{k} \square K_{1, n}\right)$. Thus, $(x, y),(w, z)$ are not adjacent.

Case 4: If x, y are odd and w, z are even, then $(x, y)(w, z) \notin E\left(P_{k} \square K_{1, n}\right)$. Thus, $(x, y),(w, z)$ are not adjacent.
Hence, in all above cases, none of the vertices of S are adjacent.
Next, we will show that $\bigcup_{u \in S}\langle N[u]\rangle=P_{k} \square K_{1, n}$. Assume to the contrary that $\bigcup_{u \in S}\langle N[u]\rangle \neq$ $P_{k} \square K_{1, n}$. Then there exists $(x, y)(w, z) \in E\left(P_{k} \square K_{1, n}\right)$ such that $(x, y)(w, z) \notin E\left(\bigcup_{u \in S}\langle N[u]\rangle\right)$, particularly, both (x, y) and (w, z) are not in S. It follows that both x and y are not odd or both x and y are not even. Similar case for w and z. Now, if x is odd, y is even, w is odd and z is even, then $(x, y)(w, z) \notin E\left(P_{k} \square K_{1, n}\right)$. This is a contradiction. If we consider x is odd, y is even, w is even and z is odd, then $(x, y)(w, z) \notin E\left(P_{k} \square K_{1, n}\right)$. Similar case when x is even, y is odd, w is odd, z is even and for x is even, y is odd, w is even, z is odd. Hence, in either cases, $(x, y)(w, z) \notin E\left(P_{k} \square K_{1, n}\right)$ which is a contradiction to the assumption. Therefore, $\bigcup_{u \in S}\langle N[u]\rangle=P_{k} \square K_{1, n}$. Consequently, S is an independent neighborhood set of $P_{k} \square K_{1, n}$. Following the same argument in (a) for (b), we can show that T is also an independent neighborhood set of $P_{k} \square K_{1, n}$.

Now, if we let $S_{1}=\{(x, y): x$ and y are odd $\}, S_{2}=\{(x, y): x$ and y are even $\}$, $T_{1}=\{(x, y): x$ is odd and y is even $\}$ and $T_{2}=\{(x, y): x$ is even and y is odd $\}$, then $S_{1} \cup S_{2} \cup T_{1} \cup T_{2}=V\left(P_{k} \square K_{1, n}\right)$ and that $S_{1} \cup S_{2}=S$ and $T=T_{1} \cup T_{2}$. Notice that when k is odd,

$$
\left|S_{1}\right|=\left\lceil\frac{k}{2}\right\rceil,\left|S_{2}\right|=\left\lfloor\frac{k}{2}\right\rfloor n,\left|T_{1}\right|=\left\lceil\frac{k}{2}\right\rceil n,\left|T_{2}\right|=\left\lfloor\frac{k}{2}\right\rfloor .
$$

Hence, $|S|=\left\lfloor\frac{k}{2}\right\rfloor n+\left\lceil\frac{k}{2}\right\rceil$ and $|T|=\left\lceil\frac{k}{2}\right\rceil n+\left\lfloor\frac{k}{2}\right\rfloor$.
Thus, $N_{i}\left(P_{k} \square K_{1, n}, x\right)=x^{\left\lfloor\frac{k}{2}\right\rfloor n+\left\lceil\frac{k}{2}\right\rceil}+x^{\left\lceil\frac{k}{2}\right\rceil n+\left\lfloor\frac{k}{2}\right\rfloor}$ when k is odd. For k is even, observe that $\left\lfloor\frac{k}{2}\right\rfloor=\left(\frac{k}{2}\right)=\left\lceil\frac{k}{2}\right\rceil$. It follows that $|S|=|T|$ and so, $N_{i}\left(P_{k} \square K_{1, n}, x\right)=2 x^{\left(\frac{k}{2}\right) n+\left(\frac{k}{2}\right)}$.

Consequently,

$$
N_{i}\left(P_{k} \square K_{1, n}, x\right)= \begin{cases}x^{\left\lfloor\frac{k}{2}\right\rfloor n+\left\lceil\frac{k}{2}\right\rceil}+x^{\left\lceil\frac{k}{2}\right\rceil n+\left\lfloor\frac{k}{2}\right\rfloor}, & k \text { is odd } \\ 2 x^{\left(\frac{k}{2}\right) n+\left(\frac{k}{2}\right)}, & k \text { is even } .\end{cases}
$$

Theorem 2. For any path P_{k} and Bistar graph $B(m, n)$,

$$
N_{i}\left(P_{k} \square B_{m, n}, x\right)=x^{\left\lceil\frac{k}{2}\right\rceil(m+1)+\left\lfloor\frac{k}{2}\right\rfloor(n+1)}+x^{\left\lfloor\frac{k}{2}\right\rfloor(m+1)+\left\lceil\frac{k}{2}\right\rceil(n+1)}
$$

for any $k, m, n \in \mathbb{Z}^{+}$.
Proof: Label the vertices of $B(m, n)$ as $i_{u}, j_{v}, 0_{u}, 0_{v}, i=1, \cdots, m, j=1, \cdots, n$ where 0_{u} and 0_{v} are the apex vertices.

Then
$V\left(P_{k} \square B(m, n)\right)=\left\{\left(r, i_{a}\right),\left(r, j_{v}\right),\left(r, 0_{u}\right),\left(r, 0_{v}\right): r=1, \cdots, k, i=1, \cdots, m, j=1, \cdots, n\right.$ and $E\left(P_{k} \square B(m, n)\right)=\left\{\left(w, x_{a}\right)\left(y, z_{b}\right): w=y, a=b\right.$ and either $x=0$ or $z=0, w=$ $y+1, a=b$ and $x=z$, and $w=y, a=u, b=v$ and $x=0=z\}$.

Consider the following sets of vertices.

$$
\begin{aligned}
& A_{r}=\left\{\left(r, i_{u}\right): r=1, \cdots, k, i=1 \cdots, m\right\} \cup\left\{\left\{\left(r, 0_{v}\right)\right\}\right. \\
& B_{s}=\left\{\left(s, j_{v}\right): s=1, \cdots, k, j=1 \cdots, n\right\} \cup\left\{\left\{\left(s, 0_{u}\right)\right\} .\right.
\end{aligned}
$$

Let
$S=A_{r} \cup B_{s}$ such that r is odd and s is even and
$T=A_{r} \cup B_{s}$ such that r is even and s is odd.
Then $S=\left\{\begin{array}{ll}\left(r, i_{u}\right): & r \text { is odd, } i=1, \cdots, m \\ \left(s, j_{v}\right): & s \text { is even, } j=1, \cdots, n \\ \left(r, 0_{v}\right): & r \text { is odd } \\ \left(s, 0_{u}\right): & s \text { is even }\end{array}\right.$ and $T= \begin{cases}\left(r, i_{u}\right): & r \text { is even, } i=1, \cdots, m \\ \left(s, j_{v}\right): & s \text { is odd, } j=1, \cdots, n \\ \left(r, 0_{v}\right): & r \text { is even } \\ \left(s, 0_{u}\right): & s \text { is odd }\end{cases}$
We claim that S and T are the independent neighborhood sets of $P_{k} \square B(m, n)$. First, we show that no two vertices in S are adjacent. Observe that for any $\left(r, i_{u}\right),\left(s, 0_{u}\right) \in S$, $\left(r, i_{u}\right)\left(s, 0_{u}\right) \notin E\left(P_{k} \square B(m, n)\right)$ since r is odd in $\left(r, j i_{u}\right)$ and s is even in $\left(s, 0_{u}\right)$. Similarly,

$\left(s, j_{v}\right)\left(r, 0_{v}\right) \notin E\left(P_{k} \square B(m, n)\right)$ for any $\left(s, j_{v}\right),\left(r, 0_{v}\right) \in S$. Hence, none of the vertices of S are adjacent.

Next, we show that $\bigcup_{v \in S}\langle N[v]\rangle=P_{k} \square B(m, n)$. Assume to the contrary that $\bigcup_{v \in S}\langle N[v]\rangle \neq$ $P_{k} \square B(m, n)$. This implies there exists $\left(w, x_{a}\right)\left(y, z_{b}\right) \in E\left(P_{k} \square B(m, n)\right)$ such that $\left(w, x_{a}\right)\left(y, z_{b}\right) \notin$ $E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$. Consider the following cases:
case I. $w=y, a=b$ and either $x=0$ or $y=0$
WLOG, let $z=0$.
i. If $\left(r_{1}, i_{u}\right)\left(r_{2}, 0_{u}\right) \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$, then both $\left(r_{1}, i_{u}\right),\left(r_{2}, 0_{u}\right) \notin S$. It follows that r_{2} is odd and so is r_{1}. But $\left(r_{1}, i_{u}\right) \in S$ for r_{1} odd. This is a contradiction.
ii. If $\left(s_{1}, j_{v}\right)\left(s_{2}, 0_{v}\right) \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$, then both $\left(s_{1}, j_{v}\right),\left(s_{2}, 0_{v}\right) \notin S$. It follows that s_{2} is even and so is s_{1} because $\left(s_{1}, j_{v}\right)\left(s_{2}, 0_{v}\right) \in E\left(P_{k} \square B(m, n)\right)$ when $s_{1}=s_{2}$. But $\left(s_{1}, j_{v}\right) \in S$ for s_{1} even which is a contradiction.
case II. $w=y+1, a=b$ and $x=z$
Assume that $x=z \neq 0$.
i. When $\left(r_{1}, i_{1 u}\right)\left(r_{2}, i_{2 u}\right) \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$, then both $\left(r_{1}, i_{1 u}\right),\left(r_{2}, i_{2 u}\right) \notin S$. This implies r_{1} and r_{2} are odd. But $\left(r_{1}, i_{1 u}\right)\left(r_{2}, i_{2 u}\right) \notin E\left(P_{k} \square B(m, n)\right)$ which is a contradiction.
ii. When $\left(s_{1}, j_{1 u}\right)\left(s_{2}, j_{2 u}\right) \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$, we will arrive contradiction similar to i.
Next, we assume $x=z=0$.
iii. If $\left(r_{1}, 0_{u}\right)\left(r_{2}, 0_{u}\right) \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$, then both $\left(r_{1}, 0_{u}\right),\left(r_{2}, 0_{u}\right) \notin S$. This implies r_{1} is odd and r_{2} is even. But $\left(r_{2}, 0_{u}\right) \in S$, a contradiction.
iv. If $\left(s_{1}, 0_{v}\right)\left(s_{2}, 0_{v}\right) \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$, then both $\left(s_{1}, 0_{v}\right),\left(s_{2}, 0_{v}\right) \notin S$. Note that whenever s_{1} is odd, s_{2} is even. But $\left(s, 0_{v}\right) \in S$ for s even. This is a contradiction.
case III. $w=y, a=u, b=v$ and $x=0=z$
If $\left(r, 0_{u}\right)\left(s, 0_{v}\right) \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$, then $\left(r, 0_{u}\right),\left(s, o_{v}\right) \notin S$. This implies r is odd. But $r=s$ and thus, s is also odd. This is a contradiction.

Hence, in either of the above cases, we arrived at a contradiction. Thus, $\left(w, x_{a}\right)\left(y, z_{b}\right) \in$ $E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$. Consequently, $\bigcup_{v \in S}\langle N[v]\rangle=P_{k} \square B(m, n)$. Hence, S is an independent neighborhood set of $P_{k} \square B(m, n)$. Following the same argument in S, we can also show that T is an independent neighborhood set of $P_{k} \square B(m, n)$

Now, observe that for each A_{i} and $B_{r},\left|A_{i}\right|=m+1$ and $\left|B_{r}\right|=|n+1|$. Thus,

$$
\begin{aligned}
|S| & =\sum_{i \text { is odd }}\left|A_{i}\right|+\sum_{r \text { is even }}\left|B_{r}\right| \\
& =\left\lceil\frac{k}{2}\right\rceil(m+1)+\left\lfloor\frac{k}{2}\right\rfloor(n+1)
\end{aligned}
$$

and

$$
\begin{aligned}
|T| & =\sum_{i \text { is even }}\left|A_{i}\right|+\sum_{r \text { is odd }}\left|B_{r}\right| \\
& =\left\lfloor\frac{k}{2}\right\rfloor(m+1)+\left\lceil\frac{k}{2}\right\rceil(n+1) .
\end{aligned}
$$

Therefore,

$$
N_{i}\left(P_{k} \square B(m, n), x\right)=x^{\left\lceil\frac{k}{2}\right\rceil(m+1)+\left\lfloor\frac{k}{2}\right\rfloor(n+1)}+x^{\left\lfloor\frac{k}{2}\right\rfloor(m+1)+\left\lceil\frac{k}{2}\right\rceil(n+1)} .
$$

Theorem 3. For any path P_{k} and Banana graph $B_{m, n}$,

$$
N_{i}\left(P_{k} \square B_{m, n}, x\right)=x^{\left\lfloor\frac{k}{2}\right\rfloor m(n-1)+\left\lceil\frac{k}{2}\right\rceil(m+1)}+x^{\left\lceil\frac{k}{2}\right\rceil m(n-1)+\left\lfloor\left\lfloor\frac{k}{2}\right\rfloor(m+1)\right.}
$$

for any $k, m, n \in \mathbb{Z}^{+}$.
Proof: Label the vertices of each star in $B_{m, n}$ by $i j, i=1, \cdots, m, j=1, \cdots, n$ and 0 as the root vertex in $B_{m, n}$.

Then $V\left(P_{k} \square B_{m, n}\right)=\{(e, i j),(e, 0): e=1, \cdots, k, i=1, \cdots, m, j=1, \cdots, n\}$ as shown in the figure below:

Observe that
a. $\left(e_{1}, i_{1} j_{1}\right)\left(e_{2}, i_{2} j_{2}\right) \in E\left(P_{k} \square B_{m, n}\right)$ if
i. $e_{1}=e_{2}, i_{1}=i_{2}$ and either $j_{1}=n$ or $j_{2}=n$; or
ii. $e_{1}=e_{2}+1, i_{1}=i_{2}$ and $j_{1}=j_{2}$.
b. $\left(e_{1}, i 1\right)\left(e_{2}, 0\right) \in E\left(P_{k} \square B_{m, n}\right)$ if $e_{1}=e_{2}$, and
c. $\left(e_{1}, 0\right)\left(e_{2}, 0\right) \in E\left(P_{k} \square B_{m, n}\right)$ if $e_{1}=e_{2}+1$.

Consider the following sets:

$$
\begin{aligned}
A_{p} & =\{(e, i j): e \text { is odd, } i=1, \cdots, m, j=1, \cdots, n-1\}, \\
A_{q} & =\{(e, i j): e \text { is even, } i=1, \cdots, m, j=1, \cdots, n-1\}, \\
B_{p} & =\{(e, 0): e \text { is odd }\} \cup\{(e, i n): e \text { is odd, } i=1, \cdots, m\}, \\
B_{q} & =\{(e, 0): e \text { is even }\} \cup\{(e, i n): e \text { is even, } i=1, \cdots, m\} .
\end{aligned}
$$

Let $S=A_{p} \cup B_{q}$ and $T=A_{q} \cup B_{p}$. We claim that S and T are the independent neighborhood sets of $P_{k} \square B_{m, n}$. First, we show that no two vertices in S are adjacent. Observe that for any $\left(e_{1}, i_{1} j_{1}\right),\left(e_{2}, i_{2} j_{2}\right) \in S$ such that $e_{1}=e_{2}$ and $i_{1}=i_{2}$, we have $j_{1} \neq n$ and $j_{2} \neq n$. For the case when either $j_{1}=n$ or $j_{2}=n, e_{1} \neq e_{2}$. Also, for $\left(e_{1}, i_{1} j_{1}\right),\left(e_{2}, i_{2} j_{2}\right) \in S$ such that $e_{1}=e_{2}+1$ and $i_{1}=i_{2}, j_{1} \neq j_{2}$. This implies $\left(e_{1}, i_{1} j_{1}\right)$ and $\left(e_{2}, i_{2} j_{2}\right)$ are non-adjacents. Note that for any $\left(e_{1}, i 1\right),\left(e_{2}, 0\right) \in S, e_{1}$ is odd while e_{2} is even and so, $\left(e_{1}, i 1\right),\left(e_{2}, 0\right)$ are non-adjacents. Hence, none of the vertices in S are adjacent.

Now, we will show that $\bigcup_{v \in S}\langle N[v]\rangle=P_{k} \square B_{m, n}$. Assume to the contrary that $\bigcup_{v \in S}\langle N[v]\rangle \neq$ $P_{k} \square B_{m, n}$. Then there exists $x y \in E\left(P_{k} \square B_{m, n}\right)$ such that $x y \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$.
case I: $x=\left(e_{1}, i_{1} j_{1}\right), y=\left(e_{2}, i_{2} j_{2}\right)$
i. Consider $e_{1}=e_{2}, i_{1}=i_{2}$ and either $j_{1}=n$ or $j_{2}=n$. When $e_{1}=e_{2}$ is even, $(e, i n) \in B_{q} \subseteq S$ while when $e_{1}=e_{2}$ is odd, $(e, i j) \in A_{p} \subseteq S$. This implies either $\left(e_{1}, i_{1} j_{1}\right) \in S$ or $\left(e_{2}, i_{2} j_{2}\right) \in S$ and follows that $\left(e_{1}, i_{1} j_{1}\right)\left(e_{2}, i_{2} j_{2}\right) \in$ $E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$ which is a contradiction.
ii. Consider $e_{1}=e_{2}+1, i_{1}=i_{2}$ and $j_{1}=j_{2}$. Then either e_{1} is odd and e_{2} is even or e_{1} is even and e_{2} is odd. But in either cases, $(e, i j) \in S$ when e is odd and consequently, $\left(e_{1}, i_{1} j_{1}\right)\left(e_{2}, i_{2} j_{2}\right) \in\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$. This is a contradiction.
case II: $x=\left(e_{1}, i_{1}\right), y=\left(e_{2}, 0\right)$

Since $\left(e_{1}, i_{1}\right)\left(e_{2}, 0\right) \in E\left(P_{k} \square B_{m, n}\right), e_{1}=e_{2}$. Then e_{2} must be odd. But $\left(e_{1}, i_{1}\right) \in S$ when e_{1} is odd and so, $\left(e_{1}, i_{1}\right)\left(e_{2}, 0\right) \in E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$ which is a contradiction.
case III: $x=\left(e_{1}, 0\right), y=\left(e_{2}, 0\right)$
Clearly, when e_{1} is odd, e_{2} is even and vice versa. But $(e, 0) \in S$ when e is even. This implies either $\left(e_{1}, 0\right) \in S$ or $\left(e_{2}, 0\right) \in S$. So, $\left(e_{1}, 0\right)\left(e_{2}, 0\right) \in E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$ which is a contradiction.

In either of the above cases, we arrived at a contradiction. Thus, $x y \in E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$. Consequently, $\bigcup_{v \in S}\langle N[v]\rangle=P_{k} \square B_{m, n}$. Following same argument in S, we can easily show that T is also an independent neighborhood set in $P_{k} \square B_{m, n}$.

Now, observe that

$$
\begin{aligned}
\left|A_{p}\right| & =\{(e, i j): e \text { is odd, } i=1, \cdots, m, j=1, \cdots, n-1\} \\
& =\left\lceil\left.\frac{k}{2} \right\rvert\, m(n-1),\right. \\
\left|A_{q}\right| & =\{(e, i j): e \text { is even, } i=1, \cdots, m, j=1, \cdots, n-1\} \\
& \left.=\left\lvert\, \frac{k}{2}\right.\right\rfloor m(n-1), \\
\left|B_{p}\right| & =\{(e, 0): e \text { is odd }\} \cup\{(e, i n): e \text { is odd, } i=1, \cdots, m\} \\
& =\left\lceil\frac{k}{2}\right\rceil+\left\lceil\frac{k}{2}\right\rceil m \\
& =\left\lceil\frac{k}{2}\right\rceil(m+1)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|B_{q}\right| & =\{(e, 0): e \text { is even }\} \cup\{(e, i n): e \text { is even, } i=1, \cdots, m\} \\
& =\left\lfloor\frac{k}{2}\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor m \\
& =\left\lfloor\frac{k}{2}\right\rfloor(m+1) .
\end{aligned}
$$

Thus,

$$
|S|=\left|A_{p}\right|+\left|B_{q}\right|=\left\lceil\frac{k}{2}\right\rceil m(n-1)+\left\lfloor\frac{k}{2}\right\rfloor(m+1)
$$ and

$$
|T|=\left|A_{q}\right|+\left|B_{p}\right|=\left\lfloor\frac { k } { 2 } \left\lfloor m(n-1)+\left\lceil\frac{k}{2}\right\rceil(m+1)\right.\right.
$$

Therefore,

$$
N_{i}\left(P_{m} \square B_{m, n}, x\right)=x^{\left\lfloor\frac{k}{2}\right\rfloor m(n-1)+\left\lceil\frac{k}{2}\right\rceil(m+1)}+x^{\left\lceil\frac{k}{2}\right\rceil m(n-1)+\left\lfloor\frac{k}{2}\right\rfloor(m+1)} .
$$

Theorem 4. For any path P_{k} and Firecracker graph $F_{m, n}$,

$$
\begin{aligned}
N_{i}\left(P_{k} \square F_{m, n}, x\right) & =x^{\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\right)+\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{m}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor(n-1)\right)} \\
& +x^{\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\right)+\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{m}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor(n-1)\right)}
\end{aligned}
$$

for any $k, m, n \in \mathbb{Z}^{n}$.
Proof: Label the vertices of $F_{m, n}$ by $i j, i=1, \cdots, m, j=1, \cdots, n$ as shown in the figure below:

Then $V\left(P_{k} \square F_{m, n}\right)=\{(e, i j): e=1, \cdots, k, i=1, \cdots, m, j=1, \cdots, n\}$ and $E\left(P_{k} \square F_{m, n}\right)=\left\{\left(e_{1}, i_{1} j_{1}\right)\left(e_{2}, i_{2} j_{2}\right): e_{1}=e_{2}\right.$ and $i_{1} j_{1} i_{2} j_{2} \in E\left(F_{m, n}\right)$ or $e_{1} e_{2} \in E\left(P_{k}\right)$ and $i_{1}=$ $\left.i_{2}, j_{1}=j_{2}\right\}$ as shown in the figure below:

Observe that for any $\left(e_{1}, i_{1} j_{1}\right)\left(e_{2}, i_{2} j_{2}\right) \in E\left(P_{k} \square F_{m, n}\right)$, either
i.) $e_{1}=e_{2}, i_{1}=i_{2}, j_{1}=n$ or $j_{2}=n$;
ii.) $e_{1}=e_{2}, i_{1}=i_{2}+1, j_{1}=1=j_{2}$; or
iii.) $e_{1}=e_{2}+1, i_{1}=i_{2}, j_{1}=j_{2}$.

Consider the following sets:
$A_{p}=\{(p, i j): p$ is odd, i is odd, $j=1, \cdots, n-1\}, \quad B_{p}=\{(p, i n): p$ is odd, i is odd $\}$ $A_{q}=\{(q, i j): q$ is even, i is odd, $j=1, \cdots, n-1\}, \quad B_{q}=\{(q, i n): q$ is even, i is odd $\}$ $C_{p}=\{(p, i j): p$ is odd, i is even, $j=1, \cdots, n-1\}, \quad D_{p}=\{(p, i n): p$ is odd, i is even $\}$ $C_{q}=\{(q, i j): q$ is even, i is even, $j=1, \cdots, n-1\}, \quad D_{q}=\{(q, i n): q$ is even, i is even $\}$

Let $S=A_{p} \cup D_{p} \cup B_{q} \cup C_{q}$ and $T=A_{q} \cup D_{q} \cup B_{p} \cup C_{p}$. We claim that S and T are the independent neighborhood sets of $P_{k} \square F_{m, n}$. First, we show that no two vertices in S are adjacent. Since each A_{p} and C_{q} consist of the pendant vertices in each star, A_{p} and C_{q} are independent sets. Also, since each B_{q} and D_{p} consist of apex vertices in each star, B_{q} and D_{p} are independent sets. We note that elements of A_{p} and D_{p} are not adjacent since i is odd in A_{p} and i is even in D_{p}. Similarly, elements of B_{q} and C_{q} are non-adjacent. Hence, the set $A_{p} \cup D_{p} \cup B_{q} \cup C_{q}$ have non-adjacent vertices.

Next, we show that $\bigcup_{v \in S}\langle N[v]\rangle=P_{k} \square F_{m, n}$. Assume to the contrary that $\bigcup_{v \in S}\langle N[v]\rangle \neq$ $P_{k} \square F_{m, n}$. Then there exists $\left(e_{1}, i_{1} j_{1}\right)\left(e_{2}, i_{2} j_{2}\right) \in E\left(P_{k} \square F_{m, n}\right)$ such that $\left(e_{1}, i_{1} j_{1}\right)\left(e_{2}, i_{2} j_{2}\right) \notin$ $E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$. This implies $\left(e_{1}, i_{1} j_{1}\right),\left(e_{2}, i_{2} j_{2}\right) \notin S$.
case 1: $e_{1}=e_{2}, i_{1}=i_{2}$, either $j_{1}=n$ or $j_{2}=n$.
WLOG, we may assume $j_{1}=n$. Since $\left(e_{1}, i_{1} j_{1}\right) \notin S$, either either e_{1} and i_{1} are odd or e_{1} and i_{1} are even. Consider e_{1} and i_{1} are odd. Since $e_{1}=e_{2}$ and $i_{1}=i_{2}, e_{2}$
and i_{2} are odd. But $\left(e_{2}, i_{2} j_{2}\right) \in A_{p} \subseteq S$. This is a contradiction. Similarly, if we consider e_{1} and i_{1} to be even, then $\left(e_{2}, i_{2} j_{2}\right) \in C_{q} \subseteq S$
case 2: $e_{1}=e_{2}, i_{1}=i_{2}+1$ and $j_{1}=1=j_{2}$.
Since $\left(e_{1}, i_{1} j_{1}\right) \notin S$, either e_{1} is odd and i_{1} is even or e_{1} is even and i_{1} is odd. When e_{1} is odd and i_{1} is even, e_{2} and i_{2} are odd. But $\left(e_{2}, i_{2} j_{2}\right) \in A_{p} \subseteq S$. This is a contradiction. Similarly, a contradiction will arrive when e_{1} is even and i_{1} is odd.
case 3: $e_{1}=e_{2}+1, i_{1}=i_{2}$ and $j_{1}=j_{2}$.
Since $\left(e_{1}, i_{1} j_{1}\right) \notin S$, we consider the following cases: For $j=1, \cdots, n-1$, if e_{1} is even, i_{1} is odd, then it follows that e_{2} and i_{2} are odd. But $\left(e_{2}, i_{2} j_{2}\right) \in S$. This is a contradiction. Similarly, when e_{1} is odd and i_{1} is even, then e_{2} and i_{2} are even for which $\left(e_{2} i_{2} j_{2}\right) \in S$, a contradiction. For $j=n$, if e_{1} and i_{1} are even, then e_{2} is odd and i_{1} is even. So, $\left(e_{2}, i_{2} j_{2}\right) \in S$, a contradiction. Also, for if e_{1} and i_{1} are odd, e_{2} is even and i_{2} is odd and that $\left(e_{2}, i_{2} j_{2}\right) \in S$ which is a contradiction.

Thus, in either of the above cases, we arrived a contradiction. Hence, $\left(e_{1}, i_{1} j_{1}\right)\left(e_{2}, i_{2} j_{2}\right) \in$ $E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$. Consequently, $\bigcup_{v \in S}\langle N[v]\rangle=P_{k} \square F_{m, n}$. Following the same argument in S, we can verify that T is also an independent neighborhood set of $P_{k} \square F_{m, n}$.

Finally,

$$
\begin{aligned}
|S| & =\left|A_{p}\right|+\left|D_{p}\right|+\left|B_{q}\right|+\left|C_{q}\right| \\
& =\left\lceil\frac{k}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lceil\frac{k}{2}\right\rceil\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor\left\lceil\frac{m}{2}\right\rceil+\left\lfloor\frac{k}{2}\right\rfloor\left\lfloor\frac{m}{2}\right\rfloor(n-1) \\
& =\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\right)+\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{m}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor(n-1)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
|T| & =\left|A_{q}\right|+\left|D_{q}\right|+\left|B_{p}\right|+\left|C_{p}\right| \\
& =\left\lfloor\frac{k}{2}\right\rfloor\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{k}{2}\right\rfloor\left\lfloor\frac{m}{2}\right\rfloor+\left\lceil\frac{k}{2}\right\rceil\left\lceil\frac{m}{2}\right\rceil+\left\lceil\frac{k}{2}\right\rceil\left\lfloor\frac{m}{2}\right\rfloor(n-1) \\
& =\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\right)+\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{m}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor(n-1)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
N_{i}\left(P_{k} \square F_{m, n}, x\right) & =x^{\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\right)+\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{m}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor(n-1)\right)} \\
& +x^{\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{m}{2}\right\rceil(n-1)+\left\lfloor\frac{m}{2}\right\rfloor\right)+\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{m}{2}\right\rceil+\left\lfloor\frac{m}{2}\right\rfloor(n-1)\right)} .
\end{aligned}
$$

Theorem 5. For any path P_{k} and Centipede graph Cen $_{n}, N_{i}\left(P_{k} \square C e n_{n}, x\right)=2 x^{n k}$ for any $k, n \in \mathbb{Z}^{+}$.

Proof: Label the vertices of $C e n_{n}$ by $j_{a}, j_{b}: j=1, \cdots, n$ and define its edges by $E\left(C e n_{n}\right)=\left\{j_{a} j_{b}: j=1, \cdots, n\right\} \cup\left\{j_{b}(j+1)_{b}: j=1 \cdots, n-1\right\}$ as shown in the figure below:

Then $V\left(P_{k} \square C e n_{n}\right)=\left\{\left(i, j_{a}\right),\left(i, j_{b}\right): i=1, \cdots, k, j=1, \cdots, n\right\}$.

Observe that

- $\left(i_{1}, j_{1 a}\right)\left(i_{2}, j_{2 b}\right) \in E\left(P_{k} \square C e n_{n}\right)$ if $i_{1}=i_{2}$ and $j_{1}=j_{2}$,
- $\left(i_{1}, j_{1 a}\right)\left(i_{2}, j_{2 a}\right) \in E\left(P_{k} \square C e n_{n}\right)$ if $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$ and
- $\left(i_{1}, j_{1 b}\right)\left(i_{2}, j_{2 b}\right) \in E\left(P_{k} \square C e n_{n}\right)$ if either
i.) $i_{1}=i_{2}, j_{1}=j_{2}+1$ or
ii.) $i_{1}=i_{2}+1, j_{1}=j_{2}$.

Consider the following sets:

$$
\begin{aligned}
A_{p} & =\left\{\left(i, j_{a}\right): i \text { and } j \text { are odd }\right\}, & & B_{p}=\left\{\left(i, j_{a}\right): i \text { is odd and } j \text { is even }\right\} \\
A_{q} & =\left\{\left(i, j_{a}\right): i \text { is even and } j \text { is odd }\right\}, & & B_{q}=\left\{\left(i, j_{a}\right): i \text { and } j \text { are even }\right\} \\
c_{p} & =\left\{\left(i, j_{b}\right): i \text { and } j \text { are odd }\right\}, & & D_{p}=\left\{\left(i, j_{b}\right): i \text { is odd and } j \text { is even }\right\} \\
C_{q} & =\left\{\left(i, j_{b}\right): i \text { is even and } j \text { is odd }\right\}, & & D_{q}=\left\{\left(i, j_{b}\right): i \text { and } j \text { are even }\right\} .
\end{aligned}
$$

Let $S=A_{p} \cup D_{p} \cup B_{q} \cup C_{q}$ and $T=A_{q} \cup D_{q} \cup B_{p} \cup C_{p}$, that is, $S=\left\{\begin{array}{ll}\left(i, j_{a}\right): & i \text { and } j \text { are odd } \\ \left(i, j_{a}\right): & i \text { and } j \text { are even } \\ \left(i, j_{b}\right): & i \text { is even and } j \text { is odd } \\ \left(i, j_{b}\right): & i \text { is odd and } j \text { is even }\end{array}\right.$ and $T= \begin{cases}\left(i, j_{a}\right): & i \text { is even and } j \text { is odd } \\ \left(i, j_{a}\right): & i \text { is odd and } j \text { is even } \\ \left(i, j_{b}\right): & i \text { and } j \text { are odd } \\ \left(i, j_{b}\right): & i \text { and } j \text { are even } .\end{cases}$

We claim that S and T are the independent neighborhood sets of $P_{k} \square C e n_{n}$. First, we show that no two vertices in S are adjacent. Observe that for any $\left(i_{1}, j_{1 a}\right),\left(i_{2}, j_{2 a}\right) \in$ $S,\left(i_{1}, j_{1 a}\right)\left(i_{2}, j_{2 a}\right) \notin E\left(P_{k} \square C e n_{n}\right)$ since $j_{1} \neq j_{2}$. Also, for any $\left(i_{1}, j_{1 a}\right),\left(i_{2}, j_{2 b}\right) \in S$, $\left(i_{1}, j_{1 a}\right)\left(i_{2}, j_{2 b}\right) \notin E\left(P_{k} \square C e n_{n}\right)$ since when $i_{1}=i_{2}, j_{1} \neq j_{2}$ and when $j_{1}=j_{2}, i_{1} \neq i_{2}$. Furthermore, any $\left(i_{1}, j_{1 b}\right),\left(i_{2}, j_{2 b}\right) \in S,\left(i_{1}, j_{1 b}\right)\left(i_{2}, j_{2 b}\right) \notin E\left(P_{k} \square C e n_{n}\right)$ since both $i_{1} \neq i_{2}$ and $j_{1} \neq j_{2}$. Hence, no two vertices in S are adjacent.

Next, we will show that $\bigcup_{v \in S}\langle N[v]\rangle=P_{k} \square C e n_{n}$. Assume to the contrary that $\bigcup_{v \in S}\langle N[v]\rangle \neq$ $P_{k} \square C e n_{n}$. Then there exists $x y \in E\left(P_{k} \square C_{n}\right)$ such that $x y \notin E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$. This implies both $x, y \notin S$.
case 1: $x=\left(i_{1}, j_{1 a}\right)$ and $y=\left(i_{2}, j_{2 b}\right)$
Since $\left(i_{1}, j_{1 a}\right) \notin S$, either i_{1} is even and j_{1} is odd or i_{1} is odd and j_{1} is even. If i_{1} is even, j_{1} is odd, then i_{2} is even and j_{2} is odd. But $\left(i_{2}, j_{2 b}\right) \in S$. This is a contradiction. For i_{1} odd and j_{1} even, i_{2} is odd and j_{2} is even. Similarly, $\left(i_{2}, j_{2 b}\right) \in S$ which is a contradiction.
case 2: $x=\left(i_{1}, j_{1 a}\right)$ and $y=\left(i_{2}, j_{2 a}\right)$
When $\left(i_{1}, j_{1 a}\right) \notin S$, it follows that either i_{1} is even and j_{1} is odd or i_{1} is odd and j_{1} is even. Consider i_{1} to be even and j_{1} to be odd. Since $\left(i_{1}, j_{1 a}\right)\left(i_{2}, j_{2 a}\right) \in E\left(P_{k} \square C e n_{n}\right)$
if $i_{1}=i_{2}+1$ and $j_{1}=j_{2}$, it follows that i_{2} and j_{2} are odd and this is a contradiction for $\left(i_{2}, j_{2 a}\right) \in S$. Similarly, when i_{1} is odd and j_{1} is even, i_{2} and j_{2} are even and this is a contradiction since $\left(i_{2}, j_{2 a}\right) \in S$.
case 3: $x=\left(i_{1}, j_{1 b}\right)$ and $y=\left(i_{2}, j_{2 b}\right)$
Since $\left(i_{1}, j_{1 b}\right) \notin S$, either i_{1} and j_{1} are odd or even. Similarly, $\left(i_{2}, j_{2 b}\right) \notin S$ implies i_{2} and j_{2} are odd or even. But if $i_{1}, j_{1}, i_{2}, j_{2}$ are all odd, $\left(i_{1}, j_{1 b}\right)\left(i_{2}, j_{2 b}\right) \notin E\left(P_{k} \square C e n_{n}\right)$. Also, when $i_{1}, i_{2}, j_{1}, j_{2}$ are all even, $\left(i_{1}, j_{1 b}\right)\left(i_{2}, j_{2 b}\right) \notin E\left(P_{k} \square C e n_{n}\right)$. If we consider i_{1}, j_{1} to be odd and i_{2}, j_{2} to be even, clearly, $\left(i_{1}, j_{1 b}\right)\left(i_{2}, j_{2 b}\right) \notin E\left(P_{k} \square C e n_{n}\right)$. Hence, all possibilities yield a contradiction.

Thus, $x y \in E\left(\bigcup_{v \in S}\langle N[v]\rangle\right)$. Consequently, $\bigcup_{v \in S}\langle N[v]\rangle=P_{k} \square C e n_{n}$. Thus, S is an independent neighborhood set of $P_{k} \square C e n_{n}$. We can also verify that T is an independent neighborhood set of $P_{k} \square C e n_{n}$ by following the same argument in S.

Lastly, observe that $\left|A_{p}\right|=\left\lceil\frac{k}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil,\left|D_{p}\right|=\left\lceil\frac{k}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor,\left|B_{q}\right|=\left\lfloor\frac{k}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor,\left|C_{q}\right|=\left\lfloor\frac{k}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor,\left|A_{q}\right|=$ $\left\lfloor\frac{k}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil,\left|D_{q}\right|=\left\lfloor\frac{k}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor,\left|B_{p}\right|=\left\lceil\frac{k}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor$ and $\left|C_{p}\right|=\left\lceil\frac{k}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$. Hence,

$$
\begin{aligned}
|S| & =\left|A_{p}\right|+\left|D_{p}\right|+\left|B_{q}\right|+\left|C_{q}\right| \\
& =\left\lceil\frac{k}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{k}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil \\
& =\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{n}{2}\right\rfloor\right)+\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{n}{2}\right\rfloor\right) \\
& =\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{n}{2}\right\rfloor\right)\left(\left\lceil\frac{k}{2}\right\rceil+\left\lfloor\frac{k}{2}\right\rfloor\right) \\
& =n k
\end{aligned}
$$

and

$$
\begin{aligned}
|T| & =\left|A_{q}\right|+\left|D_{q}\right|+\left|B_{p}\right|+\left|C_{p}\right| \\
& =\left\lfloor\frac{k}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{k}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{k}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{k}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil \\
& =\left(\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{n}{2}\right\rfloor\right)\left(\left\lceil\frac{k}{2}\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor\right) \\
& =n k .
\end{aligned}
$$

Therefore, $N_{i}\left(P_{k} \square C_{n}, x\right)=2 x^{n k}$.
Remark 1. When $m=2$ in Theorem 3.4,

$$
\begin{aligned}
N_{i}\left(P_{k} \square F_{2, n}, x\right) & =x^{\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{2}{2}\right\rceil(n-1)+\left\lfloor\frac{2}{2}\right\rfloor\right)+\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{2}{2}\right\rceil+\left\lfloor\frac{2}{2}\right\rfloor(n-1)\right)}+x^{\left\lfloor\frac{k}{2}\right\rfloor\left(\left\lceil\frac{2}{2}\right\rceil(n-1)+\left\lfloor\frac{2}{2}\right\rfloor\right)+\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{2}{2}\right\rceil+\left\lfloor\frac{2}{2}\right\rfloor(n-1)\right)} \\
& =x^{\left\lceil\frac{k}{2}\right\rceil n+\left\lfloor\frac{k}{2}\right\rfloor n}+x^{\left\lfloor\frac{k}{2}\right\rfloor n+\left\lceil\frac{k}{2}\right\rceil n}
\end{aligned}
$$

$$
\begin{aligned}
& =2 x^{n\left(\left\lceil\frac{k}{2}\right\rfloor+\left\lfloor\frac{k}{2}\right\rfloor\right)} \\
& =2 x^{n k} \\
& =N_{i}\left(P_{k} \square C e n_{n}, x\right) .
\end{aligned}
$$

Acknowledgements

This research is funded by the Department of Science and Technology (DOST), Mindanao State University IIT, Department of Research, Office of the Vice Chancellor for Research and Extension(OVCRE), and Mindanao State University Main Campus (MSU Main).

References

[1] A. Alwardi and P.M. Shivaswamy. On the neighbourhood polynomial of graphs. Bulletin of the Society of Mathematicians Banja Luka, 6:13-24.
[2] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley Series in Mathematics, 1990.
[3] R. Diestel. Graph Theory. Springer Nature, 2017.
[4] M.S. Sardar et.al. Computing topological indices of the line graphs of banana tree graph and firecracker graph. Applied Mathematics and Nonlinear Sciences, 2:83-92, 2017.
[5] R. Hammack et.al. Handbook of Product of Graphs. CRC Press Taylor and Francis Group, London and New York, 2011.
[6] S. Ganesh and R. Revathi. Analysis of some bistar related mmd graphs. International Journal of Pure and Applied Mathematics, 118(10):407-413, 2018.
[7] F. Harary. Graph Theory. Addison-Wesley Publishing Company, 1969.
[8] M. Khasif. Chromatic polynomials and chromaticity of some linear h-hypergraphs. 1969.
[9] V.R. Kulli. The neighborhood graph of a graph. International Journal of Fuzzy Mathematical Archive, 8(2):93-99, 2015.
[10] V. E. Levit and E. Mandrescui. The independence polynomial of a graph-a survey. In Proceedings of the $1^{\text {st }}$ International Conference on Algebraic Informatics, pages 233-254, 2005.
[11] K.B. Murthy and Puttaswamy. On the independent neighbourhood polynomial of graphs. Indian Streams Research Journal, 5(12):1-7, 2015.

[^0]: * Corresponding author.

 DOI: https://doi.org/10.29020/nybg.ejpam.v14i1.3860
 Email addresses: n_abdulcarim@yahoo.com (N. Abdulcarim),
 susan.dagondon@g.msuiit.edu.ph (S. Dagondon), emmy.chacon@g.msuiit.edu.ph (E. Chacon)

