EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 1, 2021, 204-233

ISSN  1307-5543 — ejpam.com
Published by New York Business Global

Radon measure-valued solutions for nonlinear strongly
degenerate parabolic equations with measure data

Quincy Stévene Nkombo!'*, Fengquan Li'

L School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning,
China

Abstract. In this paper, we prove the existence of Radon measure-valued solutions for nonlinear
strongly degenerate parabolic equations with nonnegative bounded Radon measure as initial data.
Moreover, we show the uniqueness of the Radon measure-valued solutions when the Radon measure
as a forcing term is diffuse with respect to the parabolic capacity and the Radon measure as a initial
value is diffuse with respect to the Newtonian capacity. We also deduce that the concentrated part
of the Radon measure-valued solution with respect to the Newtonian capacity depends on time.
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1. Introduction

In this work we address the nonhomogeneous nonlinear strongly degenerate parabolic
equations having the nonnegative bounded Radon measure on the right-hand side with
the nonnegative bounded Radon measure as initial data. This problem is described as
follows

S A =p in Q=0 x (0,7),
u=0 on 09 x (0,7), (P)
u(z,0) = ugp in Q,
where T > 0, 2 € RV(N > 2) is an open bounded domain with smooth boundary 9, the
initial value data ug is a nonnegative bounded Radon measure on €2 and u is a nonnegative

bounded Radon measure on Q.
The nonlinear strongly degenerate parabolic equations (P) is the special case derived
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from the study of quasilinear parabolic equations with degenerate coercivity involving a
quadratic gradient term (see [4, 7]). The general model of the problem (P) is given by

up — div (a(u)Vu) = B(u) | Vu |?> +f(z,t) in Q:=Qx(0,7),
u=0 on 00 x (0,7), (S)
u(x,0) = ug in €,

where a and (8 are real continuous functions, moreover « is positive bounded and may
vanish at £o0, up € L®() and f € L™(Q)(m > 1+ §) (see [4]). For the problem (),
the typical example of functions o and 3 are expressed as follows

1 1
a(s) = N and [(s) = \/ﬁ

In [7], the authors studied the problem (S) with more general assumptions in which (5)
is a nonlinear degenerate parabolic equation. Meanwhile, in [32] Bogelein, Duzaarr and
Gianazza dealt with nonhomogenous porous medium type equations related to Cauchy-
Dirichlet problem in a space-time cylinder @ := Q x (0,7) (see also [13]). Likewise,
Fiorenza, Mercaldo and Rakotoson [1] studied some regularity and uniqueness results of
the evolution N-Laplacian equation with right hand term p € L'((0,7), M(Q)). Further-
more Porzio, Smarrazzo and Tesei [23] introduced the definition of Radon measure-valued
solutions to quasilinear parabolic equations with initial value as measure data. More pre-
cisely, in [23] authors proved the existence, uniqueness and qualitative properties of Radon
measure-valued solutions to the following problem

Ut = AQO(U) in Q?
u=0 on 90 x (0,7), (F)
u(z,0) =up in €,

where ug € M*(Q) is a bounded Radon measure and

1
o6 =7 1= ] (A1)
with v € (0,400), o > 0. Since ¢ increases monotonically to limiting value vy as s — 400.
Therefore, ¢'(s) — 0, thus the problem (F) is strongly degenerate parabolic equation at
infinity.

Another interesting problems similar to the problem (P) has been investigated in [18, 22,
24, 28, 30, 31] in which authors showed the existence and uniqueness of Radon measure
valued solutions to nonlinear parabolic equations.

To obtain the problem (P), we replace the function ¢ by v which is defined by

W(s) = /08 e H"dz (0<m<1) (1.1)
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The function @ increases monotonically to limiting value v as s — 4o00. Therefore, the
problem (P) is nonlinear strongly degenerate parabolic equation at infinity and the func-
tion ¢ is given by Oleinik-Kruzhkov in [26].

The choice of the special function ¢ in (1.1) is motivated by the connection with the
function ¢ in (A.1), such as ' < ¢’ in R4. This comparison leads to the connection of
the problem (P) with the previous study problem (F').

In order to construct the problem (P), we add a Radon measure as a forcing term
€ MH(Q)( a nonnegative bounded Radon measure with respect to the parabolic capac-
ity) to the problem (F).

The first difficulty when studying the problem (P) is due to the presence of a forc-
ing term g and the second difficulty is a lack of coercivity of the differential operator
u — div(y)'(u)Vu).

In the study of degenerate parabolic equations, a physical model may be imagined in
which the degenerate parabolic equations described arise in nonlinear fluid mechanics,
heat transfer or diffusion. Moreover the Radon measures involved as data describe the
distribution of mass in the length area, and volume.

The last decades some authors studied the parabolic and elliptic equations involving mea-
sure data, but the solutions of these equations are not measures (see [2, 17, 25]). Due to
this reason, the main purpose of this paper is to study the degenerate parabolic equations
with measure data which the solutions of such equations are measures as well. This result
is possible because of the definition of weak Radon measure-valued solutions introduced
in [23], hence the main motivation to study of the problem (P).

The unique point of the novelty of this paper is the study of the uniqueness of the Radon
measure-valued solutions when the Radon measure as a forcing term is diffuse with respect
to the parabolic capacity and the Radon measure as initial data is diffuse with respect to
the Newtonian capacity.

To the best of our knowledge there is no existing results of the problem (P) are known in
the literature. Hence, this interesting case will be discussed in this paper.

The plan of this paper is organized as follows. In the next section, we recall some prelimi-
naries about capacity and Radon measures. Then in Section 3, we state the main results,
while in Section 4-6, we prove the main results.

2. Preliminaries

2.1 About capacity and measures

For any Borel set E C 2, the Cs-capacity of E in 2 is defined as

Co(E) = inf {/Q | Vu [2da/u € Zg}

where Zg denotes the set of u belongs to H}(Q) such that 0 < u < 1 almost everywhere
in , and v = 1 almost everywhere in a neighborhood E (see [23]).

Let W = {u € L*((0,T), H}(2)) and w; € L*((0,T), H*(2))} endowed with its natural
norm || w llw=| v llz2(0.1),m2 ) + | v llr2(0,7),5-1(02)) & Banach space. For any open
set U C @, we define the parabolic capacity as

Cap(U) = inf{H ullw Ju € Vg}
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where Vg denotes the set of u belongs to W such that 0 < u < 1 almost everywhere in @,
and u = 1 almost everywhere in a neighborhood U (see [16]). Let M(2) be the space of
bounded Radon measures on €2, and

MT(Q) € M(Q) the cone of nonnegative bounded Radon measures on 2. For any u €
M(Q) a bounded Radon measure on €2, we set

I llmey=l | ()

where | p | stands for the total variation of pu.
The duality map (-, -)q between the space M(€2) and C.(Q2) is defined by

(1, 90>Q=/Qsﬁd/£-

For any p € M() and any Borel set B C €, the restriction uB of p to B is defined by
setting
(ueB)(A) := u(BNA) for every Borel set A C Q.

It is worth observing that (uLB)(0) = 0.
MT () denotes the set of nonnegative measures singular with respect to the Lebesgue
measure, namely

MEQ) :={peMT(Q)/FaBorelset ECQ; | E|=0,u=pB}

we will consider | - | the Lebesgue measure on R”Y. Similarly, M7,(Q) the set of nonnega-
tive measures absolutely continuous with respect to the Lebesque measure, namely

ME(Q) = {p e MT(Q)/u(E) =0, for every Borel set E C Q;| E |=0}.

Recall that MF(Q) N M7.(Q) = {0}. Moreover, by the Lebesgue decomposition and
Radon-Nikodym theorem (see [9]), for any u € M™(Q):

(i) there exists a unique couple pac € M. (), ps € M (Q) such that
M= Hac + s (2.1)

(ii) there exist a unique nonnegative function u, € L*(Q) called the density of the measure
lae such that

tac(E) = / updx, for every Borel set E C . (2.2)
E

Let MjQ(Q) be the set of nonnegative measures on 2 which are concentrated with respect
to the Newtonian capacity

ML (Q) = {u € M*(Q)/Ta Borel set EC Q; p=prE and Co(E) = 0}.
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Notice that M:Q(Q) can be also defined as the set of all measures p in M™(Q) which are
stngular with respect to the Newtonian capacity, i.e.

MjQ(Q) = {pe M (Q)/3aBorel set EC Q; Co(E)=0}.

It is clear to observe that MjQ(Q) C MF(Q) (see [12]).
M;Q(Q) denotes the set of nonnegative measures on {2 which are diffuse with respect to
the Newtonian capacity

MIQ(Q) = {p e MY (Q)/u(E) =0, for every Borel set E C Q;Co(E) =0} .

Due to Co(E) = 0 implies that | E |= 0 (see [9]), we observe that M, (€2) C M1 ().
It is known that a measure pqo € M ,(€) if there exist fo € L'(Q) and Gy € [L*(Q)]
such that

N

Hd2 = fo - diVG(_) in D,(Q) (23)

For any p € M™ (1), if there exists a unique couple f1g2 € M (), pic2 € MjQ(Q) such
that
1= pd,2 + He2- (2.4)

Notice that peo = [p]e2 and pgo = [p]a2.

For the above assertions we can also refer to ([18, 23, 30] and references therein).
Let M(Q) be the space of bounded Radon measures on @, and

MT(Q) € M(Q) the cone of nonnegative bounded Radon measures on Q.

For any p € M(Q), we set

I e llameoy=l 1| (Q)

where | p | denotes the total variation of .
For any diffuse measure pg € MIQ(Q), there exist f € L}(Q), g € L*((0,7), H}(Q)) and
G e [L2Q))"

po = f—divG+g in D'(Q) (2.5)
(see [10, 11, 16]). The rest of statements of M(Q) can be deduce from the properties of
Let E be a Borel subset of Q, for ¢ty € (0,7T) fixed, one has Cap(E x {to}) = 0 if and only
if | E |=0 and for any 0 < ¢ty < t; < T, there holds Cap(E X (to,t1)) = 0 if and only if
Cy(E) =0 (see [16]).
The relationship between parabolic capacity and Newtonian capacity is given in [27] such
that :
(i) There exist positive constants 0 < k1 < kg such that

k1Ca(E) < Cap(E x {to}) < k2C3(E).
(ii) For any 0 < tg < t1, there exist positive constants 0 < [; < [y such that

llcz(E) < Cap(E X (to,tl)) < lQCQ(E).
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Let U C @ an open set and K C @ a compact set with Cap(K) = 0, then there exists
on € CX(U) such that

(iii) 0 < p, < laein Q, (iv) ¢, =1 ae in K, (v) ¢, — 0 in W, (vi) ¢, converges to
zero Cap-quasi continuous (see [27, Proposition 2.2]).

On the other hand, assume that V' C € an open set and K C € a compact set with
Cap(K) = 0, then there exists ¢, € C°(V) such that (vii) 0 < ¢, < 1 a.e in €, (viii)
¢n =1 aein K, (ivx) ¢, — 0 in HZ(Q), (x) ¢n converges to zero Cap-quasi continuous
(see [15, Lemma 4.E.1].

By L*®((0,T), M™(£)), the set of nonnegative Radon measures u € M™*(Q) which satisfy
the following property: For almost every ¢ € (0,T), there exists a measure u(-,t) € M1 ()
such that

(a) for every ¢ € C(Q), the map t — (u(-,t),£(-,t))q is Lebesgue measurable and there
holds

T
m@Q=A<wwmmﬁmw (2.6)

(b) for every Borel set E C 2, the map t + u(-,t)(E?) is Lebesgue measurable and there
holds

T
u(F) = / u(-, t)(EY)dt
0
where E' = {z € Q/(xz,t) € E}
(c) there exists a constant C' > 0 such that

ess sup | u(- 1) [[m@o< C.
te(0,T)

In the following, we will use the notation

Il w | zoe 0,7y, M= ess sup || u(-,t) [ meq) -
te(0,T)

If u e L*®((0,T7), M(Q)), it is easily seen that uge, us € L>((0,7), M(Q2)) as well
and that u, € L*((0,T), L(2)).
Moreover, the inequality (2.6) implies that for every £ € C(Q)

(taer £) = /Q wnédzdt

and

T
<%@Q=A<%«mawmm
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Notice that uge(-,t) = [u(-,t)]ac, ur(-,t) = [u(-, )], and us(-,t) = [u(-, t)]s (see [18, 23, 30]).
Assume that the function ¢ satisfies the following conditions:

(i) ¢ € L®Ry)NC*(Ry), $(0)=0, ¢ >0 in Ry,
(I) (i1) V) € L®(RY), foranyj=1,2,...,n if 0<m <1,
(1i1) (s) — v as s = +o0,

where Ry = [0,400) and v € RY = (0,+00) . By ¢ and ¥») we denote the first and
jth derivative of the function ¢. The assumption (I)-(iii) stems from (I)-(i), hence we
extend the function v in [0, 4+00] defining 1 (+00) = 7.

To prove the well-posedness of (P) (if N > 2) we will need further assumption

There exist v > 0, s < 5 and [y,ls > 0, I; <l such that
() W(s) = el
(i) W'(s) < lpe”"

for any s < s<3.

(/)

where [, 1[5 can be expressed as follows

I = Ien[ill} ¢ (s)ell™ and I = nea[a)g] Y (s)els™ (0<m<1).
3. Statement of main results
Definition 3.1. For any ug € M*(Q) and u € MT(Q), a measure u is called a weak
solution of the problem (P), if u € M™(Q) such that
(i) w e L*((0,T), Mt(£))
(i) ¥ (ur) € L1((0,7), Wy ()
(iii) for every £ € C1([0,T],C(2)), £(-,T) = 0 in Q, u satisfies the identity

T
0 Q Q

where u, is the density of the absolutely continuous part of the Radon-measure with re-
spect to the Lebesgue measure such that 0 < u, € L>((0,T), L*(Q)).

Remark 3.1 In (3.1), we can choose test functions ¢ in C''(Q) which vanish on 99 x [0, T
andt ="1T.

The following theorem gives necessary conditions on the measures p and ug for the ex-
istence of weak solutions to the problem (P) with respect to the parabolic capacity and
Newtonian capacity respectively.

Theorem 3.1. Assume that (I), (J), p € MT(Q) and up € MT(Q) hold. If u is a
weak solution to the problem (P). Then p and uy ® dgi—0y are absolutely continuous
measures with respect to the parabolic capacity.
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Since Newtonian capacity and parabolic capacity are equivalent, then p and up ® dy—gy
are absolutely continuous measures with respect to the Co-capacity as well.

Theorem 3.2. Assume that the hypothesis (I) holds. Let u be a weak solution to
the problem (P). Then there exist a set F' C (0,7) with zero Lebesgue measure and

vt € MT(Q) such that
[ 1) — o], =[], (32)

)

for every t € (0,T) \ F.
Remark 3.2. Theorem 3.2 improves Theorem 2.4 in [23].

To prove the existence of solutions to the problem (P), we will consider the approximating
problems

Unt = A (up) + pp, in Q :=Q x (0,7),
Up =0 on 90 x (0,7), (Pn)
u(z,0) = uopn in Q,

where {ug,} € C3°(Q2) and {u,} C C°(Q) satisty
Ugn = up in MH(Q),
Ugn — Ugr a.e in £, (3.3)

| won (|21 <Il w0 | m+(0) -

And
I i L2 @) <[ llaes @) -
The approximating function v, is such that
1
() = () + - (35)

for every n € IN.

By [3, 20], the approximating problem (P,) has a solution u, in C((0,T), L*(Q))NL>®(Q).
Theorem 3.3. Assume that (1), u € MT(Q) and ug € M*(Q) hold. Then there exists
a weak solution u to the problem (P) obtained as a limiting point of the sequence {uy, }
of solutions to the problem (P,,) such that for every t € (0,7) \ H*, there holds

[ u(t) I+ < C (I 1 @) + 1 o v ) - (3.6)
Moreover, there exists a Radon measure v* € M () such that
[us (-, O < [uos]* + )5 in MF(Q) (3.7)

where C' is positive constant and H* a zero Lebesgue measure set.
To get the uniqueness of the solution to the problem (P), we define the notion of very
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weak solutions as follows.
Definition 3.2. For any p € M1,(Q) and ug € M (), a measure u is called a very
weak solution to the problem (P) if u € L>((0,T), M™*(£2)) such that

T
/ (-, 1), & )yt = — / O(ur) Abdadt — / fdp— (up,€0))a  (3.8)
0 Q Q

for every & € C%1(Q), which vanishes on 99 x [0, T, for t = T.
The notion of very weak solutions adapted to our study can be found in [18, 33].
Definition 3.3. Let ug € M, (Q) and p € M7, (Q) such that

uo = fo—divGo, fo € L) and Go € [L2(Q)]" .
p=f—divG+g , feLXQ), Ge [L*(Q)]" and ge L*(0,T), H}(Q)).

A measure u is called very weak solutions obtained as limit of approzimation, if
Uy — u in MT(Q) (3.9)
where {u,} C L®(Q) N L3((0,T), H}(Q)) is a sequence of weak solutions to the problem
(P,) and satisfy
fn = fo — Fo + gt € C5°(Q),
tuon = fon — Fon € C§°(12),
fo— f in LYQ),
F, — divG in L?*((0,T), H}(Q)), (3.10)
gn =g in L*((0,7), Hy(Q)),
Fon — divGy  in H-Y(Q),
fon = fo in LY(9).

Notice that

fn = in MY(Q) and  ug, —up in MT(Q).
Theorem 3.4. Under assumptions of (I) and (J), then for every pu € M71,(Q) and
ug € MIQ(Q) , there exists a unique very weak solution obtained as limit of approxima-
tion u of the problem (P).

Notice that a very weak solution is also weak solution to the problem (P), therefore the
problem (P) possesses a unique weak solution obtained as limit of approximation.

4. Approximating problems and the persistence

Now we establish some technical statements which will be used in the proof of the exis-
tence solution.

Lemma 4.1. Assume that (I) and (J) are satisfied and w,, is the solution of the approx-
imation problem (FP,). Then there exists a zero Lebesgue measure set F* C (0,7') such
that

Fun (5 8) [l @) <l wo llaer @) + I 1 llae@) (4.1)
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for every t € (0,T) \ F* and n € IN.

Proof. Assuming that any sequence {{2;} of smooth open sets such that

1

QCQ1CcQucQ, Q= U Q; , dist(Q;,0Q) < 5
7j=1

Let {p;} € C(£2) be any function such that

0<p;<1inQ, pj=1in Q;, |Vp; |[<jinQ\Q
Then for any
1

d(z)
where d(x) := dist(z, 0Q) < dist(Q;,09Q) ( see [24])

Let us consider the truncated function n such that for any 0 < t; <to <T

| Vpj |<3j <

0 if 0<s<ty,
1

n(s)

ift1<8<t2,
0 ifsth.

For any fixed j € IN, we choose &j(x,s) = n(s)p;(x) as a test function in the problems
(P,) gives

[t = [ untetnpstarte == [* [ 690t 9oy o)aadst

to
/ / $)p; (@) pn (%) dz.
t1

(4.2)
It is worth observing that

[ V()i (a)da
Q

By letting j to infinity, we deduce that

<IN\ [l VY (un) (2@ -

lim [ V¢(u,)Vp;(x)dzr =0. (4.3)
Jj—00 Q
By the properties of the sequence functions {p;}, we set to = ¢

, t1 = 0 and then combining
together (4.2) with (4.3), there holds

/Qun(az,t)dxg/Quon(x)daz—f-/ot/gdun.

(4.4)
4.1) follows. O

Hence the estimate (

To show the existence of the solutions to the problems (P) we need a priori estimates of
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sequences {¢(up)}.

Proposition 4.1. Under the assumptions of (I) — (J) and u, be the solution of the
approximation problem (P,). Then we obtain

| Vip(un) [|z2(@)< C- (4.5)

| 9 (un) | oo (0.7), 112 () < C- (4.6)

Proof. Since ¥ (u,) >0 in @ and ¥ (u,) =0 on 92 x (0,7) for every
t € (0,T). The fact that u, = ¥(¥ " (uy,)) € CH[0,T], H}(Q)). Take ¥(u,) as a test
function in (P,), we get

/Q V() |? dudt = /Q ( /0 UO”($)¢(s)ds) dz — /Q ( /0 u"(x’T)w(s)ds> do

+ /Q pn ) (uy)dxdt.

It follows that

Uon ()
/Q | Vib(uy,) |? dedt < /Q (/0 1/J(8)d8> dx —i—/Q,unw(un)dacdt.

By (I)-(i) and the assumption (3.3), there exists a positive constant C such that (4.5)
holds.
Assume that {7;} a sequence such that || 7; [|1()< C and 7; 564, (t) in MT(0,T).

Suppose that &(x,t) = (up)(T — ) ftTnj(s)ds 1<T—-t<7,a>1)as a test
function in the approximating problem (P, ), there holds

_/Q (/Ouon(x) ¢(5>d8> e /O " s)ds+
+/Q (/Oun(‘”’t) ?,Z)(S)ds) {(T — ) /OT ni(s)ds + /oT ni(s)(T — t)o‘dt} _

1 T t
i Lrvse) P ([ neoneas) @-or [ motu@-o [ s
14+« 0 0 Q T
(4.7)
This leads to the following result

T
</O nj(S)X(o,T)(S)d8> /Q | Vp(un) * dz < C ([ uo L) + I 1 s+ (@)
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Letting j — 400 the assertion (4.6) holds true. [
Proposition 4.2. Suppose that (/) — (J) and (1.1) hold. Let u, be the solution of the
problem (P,) and ¢ € C*(IRy) be the function defined by

o) = [ (e (4.8)

Then the sequence [¢(T)(¢(uy))]¢ is bounded in L2((0,T), H~1(Q)) + LY(Q). Where
Tk (s) = min{s, k}.

Proof. We choose 1(uy )¢ as a test function in (P,), with ¢ € C>*(Q), there holds
[&(Th (% (un)))e=div [(Ti (4 (wn))) V(T ($(un) )] + | VO(Ti((un))) 1*= (Ti (4 (1)) -

It follows that
| {o(Th (W (un) e 220,151 (@) +L1 (@)

< (T (¥ (un) ) VO (Ti (W (1)) N2y + | V(T (un))) 1210y + I (T (un))) pin 21 -

By the condition (1), we obtain the sequence {[¢(Tk (1) (uy))]¢} is bounded in L2((0,T), H=(Q))+
1'(Q). O

Proof of Theorem 38.1. This proof is similar to ([21, Theorem 1.1]). As in ([27, Propo-
sition 3.1]), it is enough to show that for any compact K C @ such that p=(K) = 0,
(ugy ® g1=0}) (K) = 0 and Cap(K) = 0, then p*(K) = 0 and (uf @ bg—0y) (K) = 0.
By the equivalence of the capacity, we have Cap(E x {t = 0}) = 0, where E a com-
pact set of © with u, (EF) = 0. Let ¢ > 0 and we choose an open set U such that
(J |+ luo | ®p—gy) (U\K) < e and K C U C Q. Then there exists a sequence
{en} € C§°(Q) such that

(i) 0<¢, <1 in @, ¢,=1 in K.

(i) [ Agn [[r1@@— 0 as n— oo.

In particular, ¢, — 0 in W, indeed

Vo, | dedt = — n A drdt < Ao, | dzdt.
7 PnAp P
Q Q Q

Let us consider ¢y, as a test function in (P), there holds

/Qcpndu—i-/gwn(O)duoz —/Qw(uT)Agondxdt. (4.9)

On the other hand, we get

[ udnt [ on@duo = 15 () + (uf @ Bumey) ()
Q 0
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— (I |+ uo | @=0y) (U\ K).
It follows that

| endict [ onOuo 2 () + (0 ) () (4.10)
Combining (4.11) with (4.12), we obtain that
pH(K) + (ug @ 0p—oy) (K) <l 9 [l (@)l An [lL1(g) +e
Letting n to infinity, we infer that
() = (uf ©6gey) () =0, D

Proof of Theorem 3.2. Let K C Q be any compact set such that Co(K) = 0, there exists
a sequence {¢,} C C(Q) satisfying (iv) and (viii) as stated in preliminaries, Section 2.
Furthermore, py € C2°(V) be any smooth function such that

(iii)) 0<py<1 in Q, py=1 in K

By standard regularization argument, we consider ¢,(z,s) = p(x)n,(s) as a test function
in (3.8), where

if 0<s<t,
(t+71—5) if t<s<t+r,

if s>t+T,

nr(s) =

S 3= =

for any p € C2(Q2) and 7 > 0. There holds

1 /:JFT (u(s), p)q ds — (uo, p)g = /OT UT(S)dS/Szw(UT)Ade + /OT TIT(S)/deM'

T

Since nr(s) — x(0, for every s € (0,7)) as 7 — 0 and we replace the test function p by

Pn(2)pv (2)-

Then we infer that

(U1 2), v ) — (10, drpy g = / /Q D) A(upy)dads + / /Q (bnpv)dp.

By ([14, Theorem 8, p.85]), the measure u € M™(Q) can be decomposed as A € M™(0,T')
and v' € MT () such that for ¢, py € C(Q), there holds

(1 SV ) g = /(OT) aA(s) /Q bupydvt

with A(s) := d(o,1)(s), where 6oy a Dirac measure on (0,T). Therefore,

([u; Dles dnpv)g + ([ul- Dlaz, dnpv)g =
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_/0 /§2¢<uT)A(¢nIoV)d$d8+<[Vt]c,2a¢np\/>9+

+ ([V"]a2: dnpv ) + ([Uole,2: Dnpv)g + ([Uold2: dnpv)g - (4.11)

By the assumptions stated above, we infer that

n—oo

t
lim /0 /Qw(ur)A(qﬁnpv)dafds:O.

Moreover, since [u(-,t)]a2, [¥]a2 ; [uo]a2 belong to L' (Q)+ H () and ¢, = 0 in L®(Q)
, & — 0in H}() so that

nll_{go ([u-, )]z bnpv)g = 7}1_{{)10 ([Vaz2, dnpv)g = nh_{glo ([uola,2, Pnpv)g = 0.

It follows that (4.11) can be rewritten as

([u(-,)]e2, dnpv)g = ([Ve2, dnpv ) + ([U0le2, Pnpv)g - (4.12)

Since K is a subset compact of 2, then

[u(-,t) — uo]c,2 (K) <limsup ([u(-,t) — uole,2, dnpv ) = limsup <[Vt]c’2, ¢npv>Q < [yt] 02 (K).

n—oo n—oo

On the other hand, we get

[Z/t] 2 (K) < limsup <[Vt]c72, ¢npv>ﬂ = limsup ([u(.,t) — uoe2, gzban}Q < [u(.,t) — uo]C’2 (K).

n—o0 n—oo

The above inequality implies that

[u(-,t) — ugl, 5 (K) < inf { V], (V) KCV, Open} =[], (K).

gl

Similarly, we have
1], () < inf {[u(1) = o)z (V) | K € V; open} = [u(.,#) = uol, 5 (K).
Whence, the following statement
[1'] 45 (K) = [u(-,1) — uo]..» (K) (4.13)

holds true. According to the arbitrariness of K, (4.13) is satisfied for every Borel set
E C Q with Cy(F) = 0. By the definition of concentrated measure with respect to the
Newtonian capacity, we have for any t € (0,7) \ F,

[, )]en = [l Olea e Ba(t) , [V'],, = [V']LBa(t) and  [uo],o = [uo]., A

)

for some Borel sets By (t), B2(t), and A is a zero Newtonian capacity, then (4.13) yields

[u(, )] e (B1(t) U Ba(t) \ A) = [v'] ., (Bi(t) U Ba(t)) \ A) =
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= [uo]ez (B1(t) U Ba(t)) \ A) = 0.

Therefore for every t € (0,T)\ F, [u(-,1)].5 ('] c9 » [U0]. o are concentrated measures on
the set B*(t) such that B*(t) = (B1(t) N A) U (B2(t) N A). Therefore, for every set £ C

and t € (0,7) \ F, there holds
(e t) — ol (B) = ([u(-11) — o), p . B(1)) (E) = [t ) — gl L(B* (1) N E) =

= [V],uB W E) = ([V],

Hence, the proof is achieved. [

)

5. Existence results

We prove the existence result of the problem (P).

Proposition 5.1. Assume that (I) and (J) hold. Let u,, be the solution to the approxima-
tion problem (P,), then there exist a subsequence {un, } € {u,} andv € L*((0,T), Hj(2))N
L>=((0,T), H}(2)) N L>®(Q) with 0 < v < in @ such that

Y(un,) Syin L®(Q). (5.1)
Vip(un,) = Vo in [L2(Q)]" . (5.2)
Y(up;) — v aein Q. (5.3)

Proof. By the assumption (I)-(ii), the sequence {t(uy)} is uniformly bounded in L*>(Q),
then from [5] there exists a function v € L>°(Q) such that the convergence in (5.1) holds
true. Furthermore, the convergence (5.2) stems from estimate (4.5).

By (4.6), we have

| V(T (¥ (un))) [=| V(¥ (un)) || (Th (1 (un))) |

< VI((un)) |- (5.4)
It follows that,

1
2
[ oo st < 1Q1 | |1 9T () P ]
Since Ty (1 (un)) € L2((0,T), HL(Q)) then there exists a positive constant C' such that

/Q | V(T (un)) | dadi < C. (5.5)

By Proposition 4.2, the sequence [¢(Tx(¢(uy)))]: is bounded in
L2((0,T7), H () + L}(Q). According to the compactness theorem in [29], then there
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exists a subsequence denoted again {¢(Unj)} (possibly for k > 0, T ((un)) = Y (uy,) and
| ¥(un,;) |< k) and a function © € L((0,T), WOM(Q)) N LY(Q) such that
d(Y(up,)) v aein Q. (5.6)

Therefore, we get

V(up,) > ¢~ (V) aein Q. (5.7)
Combining (5.6) with (5.1) gives ¢~1(v) = v, this proves (5.3). O
We recall the following sclicing property of the bounded Radon measure

u € M(Q). The proof is omitted since it follows from the more general result in ([14,
Theorem 8, p.35]).

Proposition 5.2. Assume that 4 € M™(Q). Then there exists a measure A € M*(0,7T)
and for A almost everywhere ¢ € (0,7, there exists a probability v! € M™(Q) with the
following properties

(i) for any Borel set E C Q

W(E) = [ AEDa (5.8)
(0,7)
where E' = {z € Q/(z,t) € E}
(ii) for every & € C(Q)
(1€ = / A(D) / £(z, H)dv (). (5.9)
(0,T) Q

Proposition 5.3. Let {unj} and v as in Proposition 5.1. Then the following assertions

hold
(i) ¥~ (un,) € LYQ) and we have

U, (z,t) — [ (W)](x,t) ae (x,t) € Q. (5.10)

(ii) There exist A1, Ag € L*°((0,T), MT(Q2))) and we can extract a subsequence still de-
noted {un]} such that

wh 2T @)+ in MT(Q), (5.11)
wy, ST A i ME(Q), (5.12)

Un, > W )]+ A in MT(Q), (5.13)

where A := A\ — Xy in L=((0,T), M+ (Q))
Proof. From (5.3), (4.1) and ¢! (up,) € L'(Q), then by Fatou’s Lemma, we get

/ [ (v)](x, t)dxdt < lim inf U, (7, t)dxdt. (5.14)
Q

J—00 Q
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By (5.3) the convergence (5.11) is satisfied.
Since the sequence {uy,} is uniformly bounded in L'(Q) and by (4.6), there exist a
subsequence {unj} which still denote {unj} and Radon-measures
u, u € MT(Q) such that
ut = in MT(Q). (5.15)

w, 27U in MY(Q). (5.16)

Let us prove that w , u € L>®((0,T), M (€Q)). To prove this, we consider \; € MT(0,T)
and \i-a.e t € (0,7). Let v} € MT(Q) be the measure given by Proposition 5.2 in
correspondence with each % , 4. Let us show that the measures \; € M™1(0,T) are
absolutely continuous with respect to the Lebesgue measure over (0,7). In this direction,
fix arbitrarily ¢ € (0,T) and choose r, s > 0 such that J, s = (t—r—2s,t+r+2s) C (0,7).
Then for every function 7, s € CL(0,T) such that

Ms=1in [t—r—2s,t+r+2s], 0<n.s<1, suppnysC Jps.

By the estimate (4.1), we have
/Qufj?]ns(t)dﬂjdt < 2(7’ + 28) H 1% ”M“'(Q) +2(T + 28) || uo ||M+(Q) . (5.17)

By (5.15), (5.16) and (5.17), there holds

k—o0

/ dni(t) < / VH(Q)dNi(t) < lim inf / E (2, s (t) dad.
[t—rt+r7] (t—r—2s,t+7r+2s) Q '’

Thus

i ]d)\i(t) <2(r +28) || i |+ ) +2(r +28) || uo |+ (e) -
t—rt+r

Noting s is arbitrary, thus we divide both sides of the above inequality by 2r, we obtain

1

o [ dd@) sl + o o) -
[t—rt+r]

Therefore there exists h; € L1(0,T), h; > 0 such that d);(t) = h;(t)dt, this means that
the Radon-measure M*(0,T) is regular (e.g, [9]).
Since U, u € M™(Q) are nonnegative Radon-measures, letting 7 — 0 in the previous
inequality yields

0<hi(t) <C (Il 1 llm+@ + |l wo lla+(e)

for almost every ¢t € (0,7). Finally, defining
u(t) = hi(t)v} and w(t) = ho(t)v for almost everywhere ¢t € (0, 7).

From (5.7) and (5.8) we obtain that uw, u € L>=((0,T), MT(Q)).

Since uy,, — ¢! (v) almost everywhere in @Q, then uffj — [~ (v)]* almost everywhere in
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Q.
By (5.14) and (5.16), then we infer from Fatou’s Lemma

/ [~ ()] ¢ (e, t)dwdt <liminf | w! &(x,t)dedt < (U,€) .
Q

J—00 Q

Similarly, we have

/Q [~ ()] €(z, t)dadt < 11}2 inf /Q Uy, & (@, t)dadt < (U, €) g
for every £ € C.(Q), £ > 0, thus defining

M=a- [T ()T and N=a—[vT ()]
Hence, A1 , A2 € L=((0,T), MT(Q)) hods true. [J

Proposition 5.4. Let uw and v be in Proposition 5.3 and Proposition 5.1. Then for
almost every ¢t € (0,7, we have

Un, (8) = [0 (0)](1)  aein 9. (5.18)
uj{j(t)i W) T (1) + A1, t) in MT(Q). (5.19)
U (1) = [0 )75 1) + Mg, 1) in MF(Q). (5.20)
U, () = [N O)C, 1) + A, t) in MT(Q). (5.21)

Proof. This proof is similar to that given in [18, 24]. Let us recall the statement of the
function F which belongs to C?(R.) (see [18, Proposition 4.3]. Let u, be the solution of
the problem (P,), and F € C?(R.), then for any p € C}(Q), p(x) > 0 and there exists a
zero Lebesgue measure set H such that (0,7) \ H, the following identity is satisfied

[ Funwtp@ds — [ Flun)w,0)p(e)ds -
Q Q

S A R R LR A CAAE A v

T
+/ / pnF (up) pdadt. (5.22)
0 Q

The convergence (5.18) immediately follows from (5.3). Next let us fix J > 1 and we
consider the functions F; , R; € C?(R.) defined as follows

0 if 0<s<J,
Fi(s)=<Ks—J if J<s<J+1,
s—J if s>J+1,
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and Ry (s) = s — Fy(s) (s € Ry) and Ry (s)x(s>s4+13 = J-
Let us consider the function H,, belongs to C*(R,) by setting

t) :/ij(un(x,t))p(az)dx.

By (4.1), there exists a positive constant C' such that

T T
A\meMﬁﬂpmﬂmégéﬁm@Mﬁsc

where C = C [T ]| p || (q), || uo ||M+ yo 1 )] > 0.
Thus Hy, € L1(0,T) for every p € C} (Q) Furthermore by (5.22) yields

T
J
f’//
/ / o ] Vi (un) |2 pdxdt—i—/ / pnF (up) pdadt. (5.23)
By properties of sequence {.7: 7(un)} -, mentioned above and p € C}(2), there exists a

positive constant
C = C Il p ey Il llacrc@y: | 1 lLags ] > O such that

T
/
Thus the family Hy, , is uniformly bounded in W1(0,T).

Hence there exist a subsequence {Hn; ,} € {Hn,} and a function
H, € L'(0,T) such that

dHn,p(t)

T
'wé/'/fw%nvw%nﬂWMMﬁ+
dt o Ja

dt < C.

dHn, (1)
dt

Hu,p — Hp in L'(0,T). (5.24)

By the properties of the function Fj, the function R ; is continuous and bounded in R4,
then the convergence (5.10) and the dominated convergence theorem imply that

Ry(un;,) = Ry (¥~ (v)) in LYQ). (5.25)
By (5.10), (5.11) and the definition of R 7, we have

Frun;) = b =Ry (un,) = N [1/;*1(@)]*“1—7%] (v~ '(v) =Fs (¥~ (v)+ 1 in MT(Q).

(5.26)
In view of (5.24) and (5.26), for any h € C.(0,T) and p € C1(Q) we get
T T
/ H,(t)h(t)dt = lim Ho, p(O)R(t)dt = lim [ Fj(un,;)p(x)h(t)dzdt =
0 j—00 0 j—00 Q

T
= [ O F T E0) + 0t
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Then by the above equality, we deduce that

Ho(t) = (F5 (07 ) (5) + (1), p)g
for almost every t € (0,7) and
Hj,p — <~7:J (lb_l(v)(',t)) + )\1('7t)7p>Q in Ll(O,T)
for any p € CH(Q). O

Proof of Theorem 3.3. Let us show that for every p € CX(Q), p > 0 and for almost
every 7 € (0,7T), there exists a Radon measure v € M™(Q) such that

(A7), p)g < ([wos] ™ + V217, 0) g, (5.27)

(Aa(7), p)gy < (luos]™ + [V] 7. p)g - (5.28)

We prove the first inequality (5.27) and the second one follows by similar argument. Fix
any p € CL(2), p > 0 and we consider the sequence {F;(u,)} as mentioned above and we
use it in (5.22), then we obtain for every 7 € (0,7")

/.FJ(un)(x,T)p(x)dm—/.FJ(uon)(x)p(x)dx
Q Q

_/0 /Q}i/](un)vw(un)v,odxdt+/o /ﬂun]{’](un)pdxdt. (5.29)

Let us consider {un]} the sequence given in Proposition 5.1 and Proposition 5.2 and let
us take the limit as j tends to infinity in (5.29) (with n = n;). By (5.2), (5.3) and the fact
that {F/(un,)} is bounded in L>®(Q), there holds

lim/ /f}(unj)vw(unj)Vpdmdt—/ /.7-"] v)) VoV pdzdt.
Q

In view of the definition of the sequence {}' g(unj)}, yields

0< f}(unj) <1, ]:f](unj) —0as J— ooand 11)_1(11) € LI(Q).
It follows that
lim lim / / Fh(p™ (v))VuVpdzdt = 0. (5.30)

J—o00 j—00

On the other hand, by (5.26) one has

lim ]-"J(un (x,7))p(x)dx = /Q}'J(w_l(v))(x,r)dm—l— (AM(7),p)q -

]A)OO QO
Referring to the definition of the sequence {F;(un)} ;-,, we infer that

0 < Fylun;) <1, Fy(un;) — 0as J — oo and v (w) € LYQ).
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Then we obtain

lim Tim /fJ tn())p(@)dz = (M (1), p)g, . (5.31)

J—00 j—00

Let us consider the sequence {ug,(z)} satisfies (3.3), then
Fi(ton;) = [uon,;]" — Ry(uon,;) < [worn,]™ + [tosn] ™ — R (ton;).

Since ugyn; — uor in L'(Q) and the sequence {R J (u()mj)} is bounded in L>° (), we obtain
[worn, ]t — R (ton,) = [uor] ™ — Ry(uoy) = Frluor) in L'(Q)

which leads to
hm hmsup/ Fi(uon,)p(x)dz < ([uos]™, p), - (5.32)

J=00 i

Let us now consider the function 7, ; constructs from the function 7, s given in Proposition
5.2 as follows

t
M,(t) = / nrs(0)dd  for every 6 € (0,T)
’ t+r+2s

we deduce that

/ /MnJ]:J Up, ) pdzdt = / /Mn] — Ty )) f}(unj)pd:cdt—i—

b [ s ) F an, Y. (5.33)
0 Q

Since { un].} is a nonnegative bounded Radon-measure, and the function
1 -7, 4(t) is bounded in R, there holds

hmsup/ / pny (1 =77, ))ff;(unﬂpdwdtﬁ/OTW’PEW1<v>> (1= 177,.5(t))) dt.

Jj—o0

Letting J to infinity, we obtain

lim hmsup/ /,un] —7,.5(t)) Fj(un, ) pdadt = 0. (5.34)

J—=oo  j 00

By [11, Theorem 8, p.85], there exist v/}, € M*(Q) and 6y € MT(0,T) for p,, € MH(Q)
such that (5.33), becomes

L e o015 syt < 71, 0) [ 7,y s < o +25) [ 07, Fo, o
0

Setting r = g and s % then

| [ s ypade < | it pdn+ [ 71 Fotun o
0
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Therefore,

lim hmsup/ /un Fli(un,)pdadt < ([VI]F, p)q, - (5.35)

J—=00 00

Combining (5.30), (5.31), (5.32), (5.34) and (5.35) together. Hence (5.27) holds true. OJ
Remark 5.1. By the assumptlons (I ) and (J), it has been proved that
(i) the set _
S =A{(x,t) € Q/¢p(ur)(2,t) =~}

has zero Lebesgue measure (see [23, Proposition 5.2]).
(ii) There hold N N

supp(u(x,t)) €S and u, = '(v) aein Q\ S
(see [30, Proposition 4.1]).
6. Monotonicity and Uniqueness Results

Lemma 6.1. Under assumption (I). If u is a weak solution of the problem (P). Then
(i) there exist a zero Lebesgue measure set D C (0,7") and a positive constant ¢ such that

ess lim [ u(-,t)dr =c (6.1)
t—0t Jo
(ii) for any p € CZ(£2), p > 0, there holds
ess lim <U(,t),p>9 = <u07p>Q (62)
t—0t

for almost every t € (0,7") \ D.
Proof. Let us consider for every 7 > 0, the smooth function n, € C3(0,T), 0 < n, <1
such that

0 if 0<t<t)—r,
Lt+r-t) if t)—7<t<ty,
n(t) =41 if ¢y <t <t
L—t+7+1t) fto<t<ty+r,
0 if to+7<t<T.

Let us choose pj(z)n,(t) as a test function in (P), there holds

T T
| [ A uns@nt, ) = wtune 80,0} dodt = [ [ pp(omele)dadt.
0 Q 0 Q

It is worth observing that the first term of the left hand side of the above equality becomes

T 1 t1 1 to+T1
/ /—upj(x)n;(t)dxdt— —/ /u(a;,t),oj(a?)dxdt—i—/ /u(x,t)pj(a;)dxdt.
0 Q T t1—7 JQ T to Q

Let us consider a zero Lebesgue measure set D; in (0,7") such that for any t;, t» €
(0,T)\ Dj, one has

lim / ' /Q —up; (@), ) drdt = — /Q (e, t1)p; (x)da + /Q (s ta)p; () dz.

T—0 0
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We use a sequence {p;(z)},cy of test functions in 2 such that

pi(x) € C§(), 0 < pj(x) < 1, pj(x) — 1in Q and —Ap;(z) > 0 (for instance, p;(z) =
1—(1 — ¢)’, where ¢ is the first eigenfunction of —A in H} (), with normalization max ¢ =
1)(see [6] reference therein). For every s € (0,T') \ Dj, there holds

[ utens@in = [ vdpednds = [ pladut [ g

Q: t
Let j goes to infinity, then we get that

DEUD]

JEN

/u(:n,t)dxg/ d,u—i—/duo.
Q t Q

Now let us consider {¢} be a sequence of Cp(€2) functions such that
0§¢j§1,¢k—>1asj—>oo.
By [12, Lemma 5.1}, the following statement hold

which leads to

1 1
/ ¢jdug < ~ and pidp < =
Q J Q¢ J

then

/tdp+/52du0/52u(x,t)dx:/t(lqu)dqu/thZ)jdqu/Q(l¢j)duo+/g¢jduo

—/Qu(:L',t)<Z>jd:B + /Q u(z,t) (¢; — 1) du.

Since ¢; < 1 yields

/tdu—l—/gduo—/gu(m,t)dxg/cgt (1—¢j)du+/ﬂ(l—gbj)duo—/gu(x,t)quda:+j.

Since u(x,t) converges to J,, we get

[ o= [ wtetyis

Let j to infinity, there exists a positive constant ¢ such that (6.1) holds. Using the same
method as the previous, it is obvious that for every p € CZ(9)

lim sup
t—0+

2

esstl_1>r51+ <U(:Z‘,t),p>Q = <u07p>Q :
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Hence (6.2) is satisfied. OJ
For every g € C1(R)

G(s) = /0 g (2))d=. (6.3)

Assuming (I) holds. Let us state the following definition.
Definition 6.1. For any p € M1,(Q) and ug € M ,(), a measure u is called a weak

entropy solution, if u is a weak solution of (P) such that for every g € C'(R), ¢’ > 0,
g(y) = 0, the inequality holds

/Q {6/ @0()) | V() [2 6 + g () Vib(ur) V' — Glup)o } dadt

< /Q ()i -+ [ Gluar)o0)da (6.4)

for every ¢ € C1([0,T],C}(Q)), ¢(.,T) =0 in Q and ¢ > 0.

By the Definition 6.1, the existence of weak entropy solutions of problem (P) is the same
as stated in [23, Theorem 2.8]. For that we use entropy inequality to prove the mono-
tonicity of solutions given by the following proposition.

Proposition 6.1. Suppose that the assumption (I) holds. Let u be a weak entropy
solution to the problem (P).
For any p € H}(2), p > 0, then

(us(-1t2), plg < (us(, 1), Pl < (uos; P)g (6.5)

hols, for almost every t1,t2 € (0,T); t1 < ta.
Proof. Let G; be the function given in (6.3) and we take g = g; for any j € IN. By the
Definition 6.1, we obtain

/Q {95 (ur)) | Vi (ur) 12 ¢+ g; (4 (ur)) Vi (ur) Vo — Gj(ur) dr } dvdt

< [ aitwtmodn+ [ Gituoro)is (6.6)
for every ¢ € C1([0,T],C¢(Q)), ¢(-,T) =0 in Q and ¢ > 0, where

1 if s <vy—1,
gi(s) =qi(s—v) ify-;<s<y,

if s >7.

To avoid repeating the same calculation we refer to the proof of [23, Theorem 2.9].
Then by letting j to infinity, we get

/Q{urd)t — Vi (u,)Vo} dedt < —/Q¢>d,u — /QU07=¢(0)d1‘- (6.7)
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Combining (6.7) with (3.1), we have

T
- / (a1 1), i)yt < (110, S(0)) (6.8)
0
For any fix 0 < t; <ty <T. We consider

Lt—t1+%) if th —L<t<ti+5,
1 ifti+L<t<ty—1L,

Xr(t) = 1 T : z z
—2(t—to—5%) fto—L<t<tr+3,
0 otherwise,

where 0 < 7 <ty — t1, such that [t; — §,t2 + 5] C (0,T) (see [30, Theorem 2.5]. For any
¢ € CH(), p > 0 we choose ¢(x,t) = p(z)x-(t) as a test function in (6.8), one has

1 [hits 1 [tz

_/ (us(t),p>th+/t (us(t), p)g dt <0

T tl_% T 2_%
for almost every 0 < t; < to < 1" and letting r — 0 in the above inequality, there holds

{us(5t2), p)g < {us(, 1), P)g -

Similarly, let us consider for every fixed t; € (0,7

1 if 0<t<ty,
xr(t) =9 -(@t—-ti—r) it <t<ti+r
0 if t>t+r.

Therefore, we can deduce that

1 t147r
/ <us(7t)7p>ﬂdt S <u087p>ﬂ .

T Jy

Hence the estimate (6.5) holds true. [J

Proof of Theorem 3.4. Let uy , us be two very weak solutions obtained as limit of ap-
prozimation of (P) with initial data wgi, and wge, respectively . Let {uin}, {u2,} C
L>=(Q) N L3((0,T), Hi()) be two approximating sequences of solutions to the approxi-

mation problem (P,) and satisfying the assumption (3.9).
For every ¢ € C*!(Q) vanishing on 9 x (0,T) and £(-,T) = 0 in ©, there holds

/ (U1, — ugp) Edxdt = —/ (Y(urp) — ¥(ugy)) Aldxdt—
Q Q

—/ (t1n — pon) Edxdt — / (uo1n — uo2n) &(x, 0)dx, (6.9)
Q Q
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where {pin}, {pon}, {voin}, and {up2,} are approximating Radon measures satisfying
(3.10).
For almost every (x,t) € @, we consider the function a,(x,t) defined by

{ Y(uin (2,t)) = (uon (z,t)) if uln(xa t) 75 UQn(I‘, t),

Uln (zyt)*u2n (I7t)

. (6.10)
V' (urn(z, t)) if wip(z,t) = uop(z,t).

an(z,t) =

Obviously a,, € L*>(Q) and for every n € IN there exists a positive constant C,, such that

ess inf ap(z,t) > C, > 0.
(@,t)eQ

This ensures that for every z € C2(Q), the problem

&t +an A&, +2=0 in Q

& =0 on 09 x (0,7) (6.11)
é-n('a T) =0 in Q
has a unique solution &, € L*°((0,T), H%(Q)) N L((0,T), Hi(Q)) with & € L?(Q) (see
[8, 19]).
Moreover, it can be seen that

[ &n(z,0) [S (T = 1) || 2 [[L=(q) - (6.12)

Let us consider the function 7 such that for any t; + 1 < t3 and 1 , t2 € (0,7))

n(t): t—11 if t1 <t <tog,
to — 11 if t > to.

Choosing nA&, as a test function in (6.11), then we obtain

/fntn(t)Afndazdt—f-/ n(t)an(x,t)[Afn]2dxdt—|—/ z2n(t) A&y dxdt = 0. (6.13)
Q Q Q

It follows that

1
2/@ | V&, |? dadt —i—/Qan(x,t) [AE,2dxdt < Co(T, 2) (6.14)

holds, for some constant Cy(7', z) independent on n.
From (6.12) and (6.14), there exists a constant C (7, z) such that

| &n 12201, m1 ) T | VanA&n || 22(g)< C1(T, 2). (6.15)

On the other hand, multiplying (6.11) by A&, we obtain

_ /Q VeV + /Q an| A& ddt = — /Q EnAzdadt
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which leads to

1
2/Q | Vén |? (:z,O)da:—k/Qan[Agn]dedtg Co(T, 2), (6.16)
where Cy(T, 2) =|| &n [lL=(q)ll 2 [|c2(g)- Therefore, we get
16n(5,0) I ) + | VanAén [lr2@)< Co(T 2). (6.17)

By standard density argument and for £ = &, a test function in (6.9). Moreover, by
recalling (6.10) and (6.9), there holds

/ (u1p, — ugp) zdzdt = / (p1n — pon) E(z, t)dxdt + / (up1n — uo2n) &(x,0)dx.  (6.18)
Q Q 9)

Letting n to infinity in (6.18). Then it is enough to observe from (6.15), there exists &, €
L>®((0,T), H?(2)) N L?((0,T), H}(2)) which is obtained by extracting the subsequence of
the sequence {&,}, such that

En(z,t) 2 E(z,t) in L2(Q). (6.19)
Vé(x,t) = VE(z,t) in [L2(Q)]V. (6.20)
Since &t € L2(Q), as stated in [19], we deduce that
Eni(z,t) = &(2,t) in L2(Q), (6.21)
En(z,t) = &(x,t) a.ein Q. (6.22)

On one hand, it is enough to observe that from (6.17), there exists
£(-,0) € L°°(Q) N HY(Q) such that the following statements

&n(x,0) L5(31:,0) in L>=(Q), (6.23)
En(z,0) — £(z,0) in HY(Q), (6.24)

holds true.
Combining (6.18)-(6.24) and (3.10), there holds

lim [ (u1p — ugn) zdxdt = ILm (fin — fon) &(z, t)dxdt+
n—oo Q

n—oo Q

+ lim (F1p — Fop) &(z, t)dxdt — lim (g1n — 92n) & (x, t)dzdt+
Q

n—oo Q n—oo

+ lim / (g(]ln — g(]zn) f(l‘, O)da:dt + lim / (F01n — F(]Qn) f(l‘, O)d$ = 0.
Therefore the following equality holds
(ur —u2,2)g = 0.
As we stated above in the previous proof
Ulp — up  in MT(Q) and wusay, X us in MT(Q).

Thus we can deduce u; = uq holds. J
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