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Abstract. The translated logarithmic Lambert function is defined and basic analytic properties
of the function are obtained including the derivative, real branches and asymptotic approximation
of the function. Moreover, the probability distribution of the three-parameter entropy is derived
which is expressed in terms of the translated logarithmic Lambert function.
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1. Introduction

The first definition of entropy that appeared in the literature is in the context of ther-
modynamics. Being commonly understood as a measure of disorder, entropy is defined in
thermodynamics viewpoint as a measure of the number of specific ways in which a ther-
modynamic system may be arranged. However, the microscopic details of a system are not
considered in this context. The definition of entropy in the statistical mechanics point of
view appeared later along with other thermodynamic properties. In this context, entropy
is considered as an extensive property of a thermodynamic system wherein thermody-
namic properties are defined in terms of the statistics of the motions of the microscopic
constituents of a system.

It is known that the entropy of an isolated system never decreases, which is the essence
of the second law of thermodynamics. Such a system will spontaneously proceed towards
thermodynamic equilibrium, the configuration with maximum entropy [6]. There are
three macroscopic variables that describe a system in thermodynamic equilibrium which
correspond to thermal, mechanical and the chemical equilibrium. To each value of these
macroscopic variables, there exist several possible microscopic configurations. These will
then entail different systems and the collection of these systems is called an ensemble.
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One of the popular ensembles is the canonical ensemble, which is statistical in nature that
represents the possible states of a mechanical system in thermal equilibrium with a heat
bath at a fixed temperature.

Some of the physical systems cannot be described by Boltzmann-Gibbs(BG) statistical
mechanics [1, 2, 9, 11–14]. However, Tsallis [8] has overcome some of these difficulties by
introducing the following q-entropy

Sq = k

ω∑
i=1

pi lnq
1

pi
, (1)

where k is a positive constant and ω is the total number of microscopic states. For any
real number x and q > 0, lnq x called the q-logarithm is defined by

lnq x =
x1−q − 1

1− q
, ln1 x = lnx. (2)

The inverse function of the q-logarithm is called q-exponential and is given by

expq x = [1 + (1− q)x]
1

1−q , exp1 x = expx. (3)

In the case of equiprobability, BG is recovered in the limit q → 1.

A two-parameter entropy Sq,q′ that recovered the q-entropy Sq in the limit q′ → 1 was
defined in [7] as

Sq,q′ ≡
ω∑
i=1

pi lnq,q′
1

pi
=

1

1− q′
ω∑
i=1

pi

[
exp

(
1− q′

1− q
(pq−1i − 1)

)
− 1

]
. (4)

Applications of Sq to a class of energy based ensembles were done in [4] while applications
of Sq,q′ to adiabatic ensembles were done in [3]. Results in the applications of Sq,q′ involved
the well-known Lambert W function.

A three-parameter entropy Sq,q′,r that recovers Sq, q′ in the limit r → 1 was defined
in [5] as

Sq,q′,r ≡ k
w∑
i=1

pi lnq,q′,r
1

pi
, (5)

where k is a positive constant and

lnq,q′,r x ≡
1

1− r

(
exp

(
1− r
1− q′

(
e(1−q

′) lnq x − 1
)
− 1

))
. (6)

The three-parameter entropic function (5) was shown to be analytic (hence, Lesche-stable),
concave and convex in specified ranges of the parameters (see [5]).

In this paper another variation of Lambert W function called the translated logarithmic
Lambert function will be introduced. Moreover, the probability distribution of the three-
parameter entropy is derived and expressed in terms of the translated logarithmic Lambert
function.
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2. Translated Logarithmic Lambert Function

The generalization of the Lambert W function introduced here is the translated loga-
rithmic Lambert function denoted by WLT (x) and is defined as follows:

Definition 2.1. For any real number x and constant B, the translated logarithmic Lam-
bert function WLT (x) is defined to be the solution to the equation

(Ay ln(By) + y + C)ey = x. (7)

Observe that y cannot be zero. Moreover, By must be positive. By Definition 2.1,
y = WLT (x). The derivative of WLT (x) with respect to x can be readily determined as
the following theorem shows.

Theorem 2.2. The derivative of the translated logarithmic Lambert function is given by

dWLT (x)

dx
=

e−WLT (x)

[WLT (x) + 1]A lnBWLT (x) +WLT (x) +A+ C + 1
. (8)

Proof. Taking the derivative of both sides of (7) gives

(Ay ln(By) + y + C)ey
dy

dx
+ (A+A ln(By) + 1) ey

dy

dx
= 1,

from which
dy

dx
=

1

[Ay ln(By) + y + C +A+A ln(By) + 1] ey
. (9)

With y = WLT (x), (9) reduces to (8).

The integral of the translated logarithmic Lambert function is given in the next theo-
rem.

Theorem 2.3. The integral of WLT (x) is∫
WLT (x) dx = eWLT (x)

[(
W 2
LT (x)−WLT (x) + 1

)
A ln (BWLT (x)) +W 2

LT (x)

+(C − 1)WLT (x) + 1 +A− C]− 2Ei (WLT (x)) + C ′, (10)

where Ei(x) is the exponential integral given by

Ei(x) =

∫
ex

x
dx.

Proof. From (7),

dx = [Ay ln(By) + y + C +A+A ln(By) + 1] ey dy.
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Thus, ∫
y dx =

∫
y [Ay ln(By) + y + C +A+A ln(By) + 1] ey dy

= A

∫
y2ey ln(By) dy +A

∫
yey ln(By) dy +

∫
y2ey dy

+ (C +A+ 1)

∫
yeydy. (11)

These integrals can be computed using integration by parts to obtain

(A+ C + 1)

∫
yey dy = (A+ C + 1)(y − 1)ey + C1, (12)∫

y2ey dy = (y2 − 2y + 2)ey + C2, (13)

A

∫
yey ln(By) dy = Aey ((y − 1) ln(By)− 1) + Ei(y) + C3, (14)

A

∫
y2ey ln(By) dy = Aey

[
(y2 − 2y + 2) ln(By)− y + 3

]
− 2Ei(y) + C4, (15)

where C1, C2, C3 are constants. Substitution of (12), (13), (15) and (14) to (11) with
C ′ = C1 + C2 + C3 + C4, and writing WLT (x) for y will give (10).

The next theorem contains the Taylor series expansion of WLT (x).

Theorem 2.4. Few terms of the Taylor series of WLT (x) about 0 are given below:

WLT (x) =
1

B
e
W

(
−BCe1/A

A

)
− 1
A

+
e
−1
B
e
W

(
−BCe1/A

A

)
− 1
A

A
[
W
(
−BCe1/A

A

)
+ 1
] x+ · · · (16)

where W (x) is the classical Lambert W function.

Proof. Being the inverse of the function defined by x = y ln(By)ey, the Lagrange
inversion theorem is the key to obtain the Taylor series of the function WLT (x).

Let f(y) = (Ay ln(By) + y + C)ey. The function f is analytic for By > 0. Moreover,
f ′(y) = [A(y + 1) ln(By) + y +A+ C + 1] ey,

f ′

(
1

B
e
W

(
−BCe1/A

A

)
− 1
A

)
= Ae

1
B
e
W

(
−BCe1/A

A

)
− 1
A

[
W

(
−BCe1/A

A

)
+ 1

]
6= 0,

where W
(
−BCe1/A

A

)
6= −1 (A 6= 0), and for finite B,

f

(
1

B
e
W

(
−BCe1/A

A

)
− 1
A

)
= 0.
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By the Lagrange Inversion Theorem, taking a = 1
B e

W

(
−BCe1/A

A

)
− 1
A

, we have

WLT (x) =
1

B
e
W

(
−BCe1/A

A

)
− 1
A

+

∞∑
n=1

gn
xn

n!
, (17)

where

gn = lim
y→a

dn−1

dyn−1

y − 1
B e

W

(
−BCe1/A

A

)
− 1
A

f(y)


n

. (18)

That is, when n = 1,

g1 =
e
−1
B
e
W

(
−BCe1/A

A

)
− 1
A

A
[
W
(
−BCe1/A

A

)
+ 1
] .

Substituting to (17) will yield (16).

An approximation formula for WLT (x) expressed in terms of the classical Lambert W
function is proved in the next theorem.

Theorem 2.5. For large x,

WLT (x) ∼W

(
xe

C
A+1

A+ 1

)
− ln

{(
e

C
A+1

A+ 1

)[
A ln

(
BW

(
xe

C
A+1

A+ 1

))
+ 1

]

+
C

x
e
W

(
xe

C
A+1

A+1

)− C

A+ 1
. (19)

where W (x) denotes the Lambert W function.

Proof. From (7), y = WLT (x) satisfies

x = [Ay(lnBy) + y + C]ey ∼ [(A+ 1)y + C]ey.

Then

y = W

(
xe

C
A+1

A+ 1

)
− C

A+ 1
+ u(x) (20)

= W

(
xe

C
A+1

A+ 1

)1−
C
A+1

W

(
xe

C
A+1

A+1

) +
u(x)

W

(
xe

C
A+1

A+1

)
 , (21)
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where u(x) is a function to be determined. Substituting (21) to (7) yieldsAW
(
xe

C
A+1

A+ 1

)1−
C
A+1

W

(
xe

C
A+1

A+1

) +
u(x)

W

(
xe

C
A+1

A+1

)
×

ln

BW
(
xe

C
A+1

A+ 1

)1−
C
A+1

W

(
xe

C
A+1

A+1

) +
u(x)

W

(
xe

C
A+1

A+1

)

+

W

(
xe

C
A+1

A+ 1

)1−
C
A+1

W

(
xe

C
A+1

A+1

) +
u(x)

W

(
xe

C
A+1

A+1

)
+ C

×

e
W

(
xe

C
A+1

A+1

)
· eu(x) = x. (22)

With C
A+1 , u(x) << W

(
xe

C
A+1

A+1

)
, (22) becomes

AW
(
xe

C
A+1

A+ 1

)
e
W

(
xe

C
A+1

A+1

)
ln

(
BW

(
xe

C
A+1

A+ 1

))
+

[
W

(
xe

C
A+1

A+ 1

)
+ C

]
e
W

(
xe

C
A+1

A+1

) eu(x) = x.


(
xe

C
A+1

A+ 1

)A ln

(
BW

(
xe

C
A+1

A+ 1

)
+ 1

]
+ Ce

W

(
xe

C
A+1

A+1

)
 eu(x) = x.


(
e

C
A+1

A+ 1

)A ln

(
BW

(
xe

C
A+1

A+ 1

)
+ 1

]
+
C

x
e
W

(
xe

C
A+1

A+1

)
 eu(x) = 1.

Thus,

u(x) = − ln


(
e

C
A+1

A+ 1

)[
A ln

(
BW

(
xe

C
A+1

A+ 1

))
+ 1

]
+
C

x
e
W

(
xe

C
A+1

A+1

) .
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Substituting this to (20) yields (19).

The table below illustrates the accuracy of the approximation formula in (19) with
A = B = C = 1.

x WLT (x) Approximate Relative Error
Value

3575.7472 4 3.3121 1.71987× 10−1

2084.7878 5 4.3301 1.33982× 10−1

7161.0857 6 5.3453 1.09116× 10−1

23710.7124 7 6.3581 9.16961× 10−2

76418.4449 8 7.3690 7.88738× 10−2

241269.4957 9 8.3783 6.90741× 10−2

749469.2416 10 9.3864 6.13602× 10−2

The next theorem describes the branches of the translated logarithmic Lambert func-
tion.

Theorem 2.6. Let x = f(y) = [Ay ln(By)+y+C]ey. Then the branches of the translated
logarithmic Lambert function y = WLT (x) can be described as follows:

(i) When B > 0, A > 0, the branches are

• W 0
LT (x) : [f(δ), f(0))→ (0, δ] is strictly decreasing;

• W 1
LT (x) : [f(δ),+∞)→ [δ,+∞) is strictly increasing,

(ii) When B > 0, A < 0, the branches are

• W 0
LT (x) : [f(0), f(δ))→ (0, δ] is strictly increasing;

• W 1
LT (x) : (−∞, f(δ)]→ [δ,+∞) is strictly decreasing,

where δ is the unique solution to

Ay ln(By) + y + C +A+A ln(By) = −1. (23)

(iii) When B < 0, A > 0, |C| ≤ A, the branches are

• W 0
LT ,<(x) : (f(0), f(δ1)]→ [δ1, 0) is strictly decreasing;
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• W 1
LT ,<(x) : [f(δ2), f(δ1)]→ [δ2, δ1] is strictly increasing,

• W 2
LT ,<(x) : [f(δ2), 0)→ (−∞, δ2] is strictly decreasing,

(iv) When B < 0, A < 0, C ≤ |A|, the branches are

• W 0
LT ,<(x) : [f(δ1), f(0)]→ [δ1, 0) is strictly increasing;

• W 1
LT ,<(x) : [f(δ1), f(δ2)]→ [δ2, δ1] is strictly decreasing,

• W 2
LT ,<(x) : (0, f(δ2)]→ (−∞, δ2] is strictly increasing,

where δ1 and δ2 are the two solutions to (23) with

δ2 <
1

B
e
W

(
−BCe1/A

A

)
− 1
A
< δ1 < 0.

Proof. Consider the case when B > 0, A > 0. Let x = f(y) = [Ay ln(By) + y + C]ey.
From equation (8), the derivative of y = WLT (x) is not defined when y satisfies (23). The
solution y = δ to (23) can be viewed as the intersection of the functions

g(y) =
−y − C −A− 1

y + 1
and h(y) = A ln(By).

Clearly, the solution is unique. Thus, the derivative dWLT (x)
dx is not defined for x = f(δ) =

[Aδ ln(Bδ) + δ + C]eδ. The value of f(δ) can then be used to determine the branches of
WLT (x). To explicitly identify the said branches, the following information are important:

(i) the value of y must always be positive, otherwise, ln(By) is undefined;

(ii) the function y = WLT (x) has only one y-intercept, i.e., y = 1
B ;

(iii) if y < δ, A(y + 1) ln(By) + y +A+ C + 1 > 0 which gives dy
dx > 0;

(iv) if y > δ, A(y + 1) ln(By) + y +A+ C + 1 < 0 which gives dy
dx < 0;

(v) if y = δ, A(y + 1) ln(By) + y +A+ C + 1 = 0 and dy
dx does not exist

These imply that

(i) when y < δ, the function y = WLT (x) is increasing in the domain [f(δ), 0) with
range (0, δ] and the function crosses the y-axis only at

y =
1

B
e
W

(
−BCe1/A

A

)
− 1
A

;
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(ii) when y > δ, the function y = WLT (x) is decreasing, the domain is [f(δ),+∞) and
the range is [δ,+∞) because this part of the graph does not cross the x-axis and
y-axis;

(iii) when y = δ, the line tangent to the curve at the point (f(δ), δ) is a vertical line.

These proved the case when B > 0, A > 0. The case where B > 0, A < 0 can be proved
similarly. For the case B < 0, A > 0, |C| ≤ A, the solution to (23) can be viewed as the
intersection of the functions

g(y) =
−y − C −A− 1

y + 1
and h(y) = A ln(By).

These graphs intersect at two points δ1 and δ2. Thus, the derivative dWLT (x)
dx is not defined

for

x1 = f(δ1) = [Aδ1 ln(Bδ1) + δ1 + C]eδ1 ,

x2 = f(δ2) = [Aδ2 ln(Bδ2) + δ2 + C]eδ2 .

Note that

(i) the value of y must always be negative, otherwise, ln(By) is undefined;

(ii) the function y = WLT (x) has only one y-intercept, i.e.,

y =
1

B
e
W

(
−BCe1/A

A

)
− 1
A

;

(iii) g(y) is not defined at y = −1.

The desired branches are completely determined as follows:

(i) If δ1 < y < 0, then A(y+1) ln(By)+y+A+C+1 < 0. This gives dy
dx < 0. Thus, the

function y = WLT (x) is a decreasing function with domain [f(0), f(δ1)] with range
[δ1, 0];

(ii) If δ2 ≤ y ≤ δ1, then A(y + 1) ln(By) + y +A+ C + 1 > 0. This gives dy
dx > 0. Thus,

the function y = WLT (x) is increasing function with domain [f(δ2), f(δ1)] and range
[δ2, δ1];

(iii) If −∞ < y < δ2, then A(y+ 1) ln(By) + y+A+C + 1 < 0. This gives dy
dx < 0. Thus

y = WLT (x) is a decreasing function with domain [f(δ2), 0) and range (−∞, δ2].

The case where B < 0, A < 0, C ≤ |A| can be proved similarly.

Figures 1 and 2 depict the graphs of the translated logarithmic Lambert function (red
color graphs) when B = 1 and B = −1. The y-coordinates of the points of intersection of
the blue and black colored graphs correspond to the value of δ, δ1 and δ2.
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Figure 1. Graph of translated logarithmic Lambert Function with B = 1, A = 2, C = 1.

The graphs with red, blue and black colors are the graphs of

x = f(y), x = g(y) and x = h(y), respectively.

Figure 2. Graph of translated logarithmic Lambert Function with B = −1, A = −2, C = 1.

The graphs with red, blue and black colors are the graphs of

x = f(y), x = g(y) and x = h(y), respectively.

3. Applications to Entropy

In this section, application of the translated logarithmic Lambert function to en-
tropy in canonical ensemble is derived. Parallel to the two-parameter entropy in (4),
the three-parameter entropy, denoted by Sq,q′,r, can also be constructed based on the
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three-parameter logarithm as follows:

Sq,q′,r = k
ω∑
i=1

pi lnq,q′,r
1

pi
(24)

= k
ω∑
i=1

pi
1

1− r

(
exp

(
1− r
1− q′

(
e(1−q

′) lnq x − 1
)
− 1

))
(25)

where x = 1
pi

. In maximizing Sq,q′,r, the following constraints are to be considered:

ω∑
i=1

pi − 1 = 0 (26)

ω∑
i=1

piεi − E = 0. (27)

Now, we construct the three-parameter entropic functional, denoted by Φq,q′,r, by adding
the above constraints (26) and (27) to the entropy Sq,q′,r with Lagrange multipliers. That
is,

Φq,q′,r(pi, α, β) =
1

k
Sq,q′,r + α

(
ω∑
i=1

pi − 1

)
+ β

(
ω∑
i=1

piεi − E

)
. (28)

The entropic functional Φq,q′,r should be maximized in order to reach the equilibrium
state. Hence,

∂Φq,q′,r(pi, α, β)

∂pi
=

1

k

∂Sq,q′,r
∂pi

+ α+ βεi = 0. (29)

Note that
1

k

∂Sq,q′,r
∂pi

= pi
∂ lnq,q′,r

1
pi

∂pi
+ lnq,q′,r

1

pi
(30)

with

∂ lnq,q′,r
1
pi

∂pi
=

1

1− r
exp

(
1− r
1− q′

(
exp

(
1− q′

1− q

(
pq−1i − 1

))
− 1

))
×

1− r
1− q′

exp

(
1− q′

1− q

(
pq−1i − 1

)) 1− q′

1− q
(q − 1)pq−2i

= e−
1

1−r exp

(
1− r
1− q′

exp

(
1− q′

1− q

(
pq−1i − 1

)))
×

exp

(
1− q′

1− q

(
pq−1i − 1

))
(−pq−2i ).

Letting

u = exp

(
1− q′

1− q

(
pq−1i − 1

))
(31)
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yields

∂ lnq,q′,r
1
pi

∂pi
= e
− 1−r

1−q′ e
1−r
1−q′ uu(−pq−2i ).

Then

∂Φq,q′,r(pi, α, β)

∂pi
= −pq−1i e

− 1−r
1−q′ e

1−r
1−q′ uu+

1

1− r

[
e
− 1−r

1−q′ e
1−r
1−q′ u − 1

]
+ α+ βεi = 0.

−pq−1i e
− 1−r

1−q′ e
1−r
1−q′ uu+

1

1− r
e
− 1−r

1−q′ e
1−r
1−q′ u − 1

1− r
+ α+ βεi = 0.

But equation (31) can be written as

lnu =
1− q′

1− q

(
pq−1i − 1

)
pq−1i = 1 +

1− q
1− q′

lnu.

Hence,

−
(

1 +
1− q
1− q′

lnu

)
e

1−r
1−q′ uu+

1

1− r
e

1−r
1−q′ u +

(
− 1

1− r
+ α+ βεi

)
e
− 1−r

1−q′ = 0

e
1−r
1−q′ uu+

1− q
1− q′

u(lnu)e
1−r
1−q′ u − 1

1− r
e

1−r
1−q′ u =

(
− 1

1− r
+ α+ βεi

)
e
− 1−r

1−q′

1− r
1− q′

ue
1−r
1−q′ u +

1− q
1− q′

1− r
1− q′

u(lnu)e
1−r
1−q′ u − 1− r

1− q′
1

1− r
e

1−r
1−q′ u

=

(
− 1

1− r
+ α+ βεi

)
1− r
1− q′

e
− 1−r

1−q′ .

By taking y = 1−r
1−q′u, we obtain

yey +
1− q
1− q′

y ln

(
1− q′

1− r
y

)
ey − 1

1− q′
ey = x

where

x =

(
− 1

1− r
+ α+ βεi

)
1− r
1− q′

e
− 1−r

1−q′ . (32)

Thus, (
1− q
1− q′

y ln

(
1− q′

1− r
y

)
+ y − 1

1− q′

)
ey = x.

With

A =
1− q
1− q′

, B =
1− q′

1− r
, C = − 1

1− q′
, (33)
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it follows that
(Ay ln (By) + y + C) ey = x.

This implies that

y = WLT (x)

1− r
1− q′

u = WLT (x)

u =
1− q′

1− r
WLT (x)

Using equation (31)

exp

(
1− q′

1− q

(
pq−1i − 1

))
=

1− q′

1− r
WLT (x)

1− q′

1− q

(
pq−1i − 1

)
= ln

(
1− q′

1− r
WLT (x)

)
.

Therefore, the probability distribution is given by

pi =
1

Zq,q′,r

{
1− q
1− q′

ln

(
1− q′

1− r
WLT (x)

)
+ 1

} 1
q−1

(34)

where

Zq,q′,r =
ω∑
i=1

{
1− q
1− q′

ln

(
1− q′

1− r
WLT (x)

)
+ 1

} 1
q−1

.

x = (1− α(1− r)− β(1− r)εi)
1

q′ − 1
e
− 1−r

1−q′

=
1

q′ − 1
e
− 1−r

1−q′ (1− α(1− r))
(

1− β(1− r)
1− α(1− r)

εi

)
=

1

q′ − 1
e
− 1−r

1−q′ (1− α(1− r)) (1− βr(1− r)εi)

=
1

q′ − 1
e
− 1−r

1−q′ (1− α(1− r)) [expr(−βrεi)]
1−r ,

where βr may be defined as the inverse of the pseudo-temperature

βr ≡
1

krTr
=

β

1− α(1− r)
,

pi =
1

Zq,q′,r

1 + (1− q) ln

(
1− q′

1− r
WLT

(
e

1−r
q′−1 (1− α(1− r))e−βrεi(1−r)r

q′ − 1

)) 1
1−q′


1
q−1
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=
1

Zq,q′,r

expq

ln

(
1− q′

1− r
WLT

(
e

1−r
q′−1 (1− α(1− r))e−βrεi(1−r)r

q′ − 1

)) 1
1−q′


−1

.

We can assume the energy level, εi, as a quadratic function of the variable xi. The
continuous normalized probability distribution of x can then be rewritten as

p(x) =

1 + (1− q) ln

(
1−q′
1−rWLT

(
e

1−r
q′−1 (1−α(1−r))e−βrx

2(1−r)
r

q′−1

)) 1
1−q′


1
q−1

∫∞
−∞

1 + (1− q) ln

(
1−q′
1−rWLT

(
e

1−r
q′−1 (1−α(1−r))e−βrx

2(1−r)
r

q′−1

)) 1
1−q′


1
q−1

dx

.

4. Conclusion

In this paper, a special set of three-parameter entropies [5] were maximized in the
canonical ensemble by the energy constraint

ω∑
i=1

piεi = E.

It is expected that the probability distribution, pi(εi), can be expressed in terms of the
generalized three-parameter exponential defined in [5]. However, an interesting form of
the solution of the related equation is obtained expressing the solution in terms of the
translated logarithmic Lambert function which is a generalization of the classical Lambert
W function.
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