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1. Introduction

Let X be a Banach space and I = [0, 1]. Let C(I) be the Banach space of all real
valued continuous functions defined on I under the sup-norm. Let C(I,X) be the Banach
space of all continuous function defined on I with values in X.
A classical and important differential equation is the so called abstract Cauchy problem.
One form such equation is

Bu
′

= Au(t) + f(t)z

u(0) = x0

Here u ∈ C1(I,X) and A,B are densely defined linear operators on the codomain of u.
If f = 0 or z = 0, then the equation is homogeneous otherwise it is called non-homogeneous.
Now in the non-homogeneous problem we have two cases. The first type if u is unknown
and f is given and this is called the direct problem, the second type u and f are unknown
and it is called the inverse problem.
If B is not invertible, then the equation is called degenerate otherwise it is called non-
degenerate.
In this paper we will look for certain solutions called finite rank solutions for the fractional
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abstract Cauchy problem, using the tensor product technique.
First let us present some basic facts on conformable fractional derivative.
For f : [0;∞)→ R and 0 < α ≤ 1, the conformable fractional derivative of f of order α is
defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0, if f is α differentiable on (0, b) where b > 0 and limt→0+ f
(α)(t) exists, then

define f (α)(0) = limt→0+ f (α)(t).
We denote f (α)(t) for Tα(f)(t) and we say f is α differentiable if the conformable fractional
derivative of f of order α exists.
For 0 < α ≤ 1 and f, g be α differentiable at a point t > 0, we have the following properties:
(1) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.
(2) Tα(tp) = ptp−α, for all p ∈ R.
(3) Tα(fg) = fTα(g) + gTα(f).

(4) Tα(fg ) = gTα(f)−fTα(g)
g2

.

(5) Tα(λ) = 0, for all λ is constant function.
(6) if f is differentiable, then Tα(f)(t) = t1−α dfdt (t).
The α fractional integral of a function f starting from a ≥ 0 is:

Iaα(f(t)) = Ia1 (tα−1f(t)) =

∫ t

a

f(s)

s1−α
ds

For more on conformable fractional derivative we refer to [1], [6]-[18], [20] and [21].

2. Basic Facts of the Tensor Product of Banach Space

Let X and Y be Banach spaces, X∗ denotes the dual of X. For x ∈ X and y ∈ Y
define the map x⊗ y : X∗ → Y as: x⊗ y(x∗) = 〈x, x∗〉y, for all x∗ ∈ X∗.
Cleaarly, x⊗ y is a bounded linear operator and ‖ x⊗ y ‖=‖ x ‖‖ y ‖[2]. Such an operator
x⊗ y is called an atom. The set X ⊗ Y = span{x⊗ y : x ∈ X and y ∈ Y } is a subspace
of L(X∗, Y ). The following lemma, [5], is needed in our paper.

Lemma 1. Let x1 ⊗ y1 and x2 ⊗ y2 be two nonzero atoms in X ⊗ Y such that

x1 ⊗ y1 + x2 ⊗ y2 = x3 ⊗ y3.

Then either x1, x2 or y1, y2 are linearly dependent.

We can define many norms on X ⊗ Y . The most important one is: the injective norm
For T =

∑n
i=1 xi ⊗ yi ∈ X ⊗ Y define

‖ T ‖∨= sup{|
n∑
i=1

〈xi, x∗〉〈yi, y∗〉 |: x∗ ∈ B1(X
∗) and y∗ ∈ B1(Y

∗)}.
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So, ‖ . ‖∨ is just the operator norm on L(X∗, Y ). This called the injective norm of T .

The space (X ⊗ Y, ‖ . ‖∨) need not be complete. Let X
∨
⊗Y denote the completion of

(X⊗Y, ‖ . ‖∨) and it is called the completed injective tensor product of X with Y . A nice
result that is used in theory of differential equations is:

Theorem 1. For any compact Housdorff space K, and any Banach space X , C(K,X)

is isometrically isomorphic to C(K)
∨
⊗X.

In particular, for any two compact metric spaces I and J , one has C(I×J) = C(I)
∨
⊗C(J).

3. Main results

3.1. Direct Problem

Let u be an α-differentiable on I = [0, 1] with values in the Hilbert space X = `2,
where `2 = {(xn) :

∑∞
n=1 | xn |2< ∞}. The natural basis of `2 is denotes by {δ1, δ2, ...}.

In `2 we write [x1, x2, ..., xn] to denote the span of {x1, x2, ..., xn}.
Let A : Dom(A) ⊆ `2 → `2, B : Dom(B) ⊆ `2 → `2 be two densely defined linear opera-
tors on `2, where domains of A and B contain the elements of the natural basis of `2.

The homogeneous degenerate fractional abstract Cauchy problem is{
Bu(α)(t) = Au(t)

u(0) = x0
(1)

The nonhomogeneous degenerate fractional abstract Cauchy problem is{
Bu(α)(t) = Au(t) + f(t)z

u(0) = x0
(2)

Where u(t) ∈ Dom(A) ∩Dom(B), u(α)(t) ∈ Dom(B), f ∈ C(I) and z ∈ `2 .
In this section we look for a solution to problems (1) and (2) among finite rank function

of the form u(t) =
∑n

i=1 ui(t)δi, where u
(α)
i ∈ C(I), i = 1, 2, ...n.

Theorem 2. In problem (P1), let u(t) =
∑n

i=1 ui(t)δi, where u
(α)
i ∈ C(I), i = 1, 2, ...n

and assume B = I, then the problem (1) has a unique solution.

Proof. We have, u(t) =
∑n

i=1 ui(t)δi, then u(α)(t) =
∑n

i=1 u
(α)
i (t)δi, thus

n∑
i=1

u
(α)
i (t)δi =

n∑
i=1

ui(t)Aδi. (3)

So, Au(t) ∈ [δ1, δ2, ..., δn], since u(α)(t) is linear combination of δ1, δ2, ..., δn. Hence
[δ1, δ2, ..., δn] is invariant subspace of A.
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Let Â = A |[δ1,δ2,...,δn] be the restriction of A on [δ1, δ2, ..., δn] and so Â has a matrix rep-

resentation which is Â = [aij ], such that aij = 〈Aδj , δi〉.
Taking the inner product of δj with both sides of equation (3), we get

n∑
i=1

u
(α)
i (t)〈δi, δj〉 =

n∑
i=1

ui(t)〈Aδi, δj〉.

Since {δi}ni=1 is orthonormal, we obtain

u
(α)
j (t) =

n∑
i=1

ui(t)〈Aδi, δj〉. (4)

Which is a homogeneous linear system of differential equations

U (α)(t) = ÂU(t), where U(t) = (u1(t), u2(t), ..., un(t))T .

This is system has a unique solution of the form

U(t) = φ(t)c.

Here φ(t) is the fundamental matrix, which is invertible. By the initial condition, we have

ci = 〈φ−1(0)x0, δi〉, i = 1, ..., n.

Consequently, the problem (1) has a unique solution.

Theorem 3. In problem (2), let u(t) =
∑n

i=1 ui(t)δi, where u
(α)
i ∈ C(I), i = 1, 2, ...n and

assume B = I and z ∈ [δ1, ..., δn], then the problem (2) has a unique solution.

Proof. We have, u(t) =
∑n

i=1 ui(t)δi, then u(α)(t) =
∑n

i=1 u
(α)
i (t)δi, thus

n∑
i=1

u
(α)
i (t)δi =

n∑
i=1

ui(t)Aδi + f(t)z. (5)

Let Â = A |[δ1,δ2,...,δn] the restriction of A on [δ1, δ2, ..., δn] and so Â has a matrix repre-

sentation which is Â = [aij ], such that aij = 〈Aδj , δi〉.
Taking the inner product of δj with both sides of equation (5), we get

n∑
i=1

u
(α)
i (t)〈δi, δj〉 =

n∑
i=1

ui(t)〈Aδi, δj〉+ f(t)〈z, δj〉.

Since {δi}ni=1 is orthonormal, we obtain

u
(α)
j (t) =

n∑
i=1

ui(t)〈Aδi, δj〉+ f(t)〈z, δj〉. (6)



F. Seddiki, M. Al Horani, R. Khalil / Eur. J. Pure Appl. Math, 14 (2) (2021), 493-505 497

We set, U(t) = (u1(t), ..., un(t))T and F (t) = f(t)(〈z, δ1〉, ..., 〈z, δn〉)T , so equation (6) can
be written in the form

U (α)(t) = ÂU(t) + F (t).

This system has a unique solution of the form

U(t) = φ(t)c+ φ(t)

∫ t

0

φ−1(s)F (s)

s1−α
ds.

Where φ(t) is the fundamental matrix. This is an invertible matrix. Now we use the initial
condition to find the constant c. Consequently, the problem (2) has a unique solution.

Now, let B 6= I and u(t) is finite rank function. In addition assume that [δ1, δ2, ..., δn] is
invariant under both A and B and let An, Bn be the restriction of A and B to [δ1, δ2, ..., δn].

Theorem 4. In problem (1), let Bn be orthogonally diagonalizable linear operator such
that An |Ker(Bn) is invertible. Then problem (1) has a unique solution.

Proof. Let {θ1, θ2, ..., θn} be an orthonormal basis such that the matrix representation
of Bn with respect this basis is D̃ = diag(λ1, ..., λn), when λ1, ..., λn the corresponding
eigenvalues of Bn. Now, if λi 6= 0 for all i = 1, 2, ...n, then problem (1) becomes u(α)(t) =
B−1n Anu(t) and hence has a unique solution by theorem 3.1.
Suppose λi 6= 0 for i = 1, 2, ...r, and λi = 0 for i = r+1, r+2, ...n. Let u(t) =

∑n
i=1 vi(t)θi:

Then
n∑
i=1

v
(α)
i (t)Bnθi =

n∑
i=1

vi(t)Anθi. (7)

Taking the inner product of θj with both sides of (7), we obtain

n∑
i=1

v
(α)
i (t)〈Bnθi, θj〉 =

n∑
i=1

vi(t)〈Anθi, θj〉.

So, we get the following system

[
D 0
0 0

]

v
(α)
1 (t)
.
.
.

v
(α)
n (t)

 =

[
A1 A2

A3 Ã

]
v1(t)
.
.
.

vn(t)

 . (8)

where D = diag(λ1, ., ., ., λr) and Ã = An |Ker(Bn)= [〈Anθj , θi〉]i,j=r+1,...,n.

Multiplying (8) by

[
I 0

0 Ã−1

]
, we obtain

[
D 0
0 0

]

v
(α)
1 (t)
.
.
.

v
(α)
n (t)

 =

[
A1 A2

Ã−1A3 In−r

]
v1(t)
.
.
.

vn(t)

 .
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Thus, we get

D


v
(α)
1 (t)
.
.
.

v
(α)
r (t)

 = A1


v1(t)
.
.
.

vr(t)

+A2


vr+1(t)

.

.

.
vn(t)

 , (9)

and

Ã−1A3


v1(t)
.
.
.

vr(t)

+ In−r


vr+1(t)

.

.

.
vn(t)

 = 0. (10)

From equation (10), we have 
vr+1(t)

.

.

.
vn(t)

 = −Ã−1A3


v1(t)
.
.
.

vr(t)

 . (11)

Substitute (11) in equation (9), to get
v
(α)
1 (t)
.
.
.

v
(α)
r (t)

 = D−1(A1 −A2Ã
−1A3)


v1(t)
.
.
.

vr(t)

 .

We put, U1(t) =


v1(t)
.
.
.

vr(t)

, U2(t) =


vr+1(t)

.

.

.
vn(t)

 and M = D−1(A1 −A2Ã
−1A3).

We get the system, U
(α)
1 (t) = MU1(t), which has a unique solution U1(t) = φ(t)c, where

φ(t) is the fundamental matrix. So we have U2(t) = −Ã−1A3U1(t). Therefore u(t) =

[
U1(t)
U2(t)

]T

θ1
.
.
.
θn

 .

We conclude the problem (1) has a unique solution.
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Theorem 5. In problem (2), let Bn be orthogonally diagonalizable linear operator such
that An |Ker(Bn) is invertible. Then problem (2) has a unique solution.

Proof. Let {θ1, θ2, ..., θn} be an orthonormal basis such that the matrix representation
of Bn with respect this basis is D̃ = diag(λ1, ..., λn), when λ1, ..., λn the corresponding
eigenvalues of Bn. Now, if λi 6= 0, for all i = 1, 2, ...n, then the problem (2) becomes

u(α)(t) = B−1n Anu(t) + f(t)B−1n z.

Hence has a unique solution by theorem 3.2.
Suppose λi 6= 0, for i = 1, 2, ...r, and λi = 0, for i = r+1, r+2, ...n. Let u(t) =

∑n
i=1 vi(t)θi:

Then
n∑
i=1

v
(α)
i (t)Bnθi =

n∑
i=1

vi(t)Anθi + f(t)z. (12)

Taking the inner product of θj with both sides of equation (12), we obtain

n∑
i=1

v
(α)
i (t)〈Bnθi, θj〉 =

n∑
i=1

vi(t)〈Anθi, θj〉+ f(t)〈z, θj〉.

So, we get the following system

[
D 0
0 0

]

v
(α)
1 (t)
.
.
.

v
(α)
n (t)

 =

[
A1 A2

A3 Ã

]
v1(t)
.
.
.

vn(t)

+ f(t)


〈z, θ1〉
.
.
.

〈z, θn〉

 . (13)

where D = diag(λ1, ., ., ., λr) and Ã = An |Ker(Bn)= [〈Anθj , θi〉]i,j=r+1,...,n.

Multiplying (13) by

[
I 0

0 Ã−1

]
, we obtain

[
D 0
0 0

]

v
(α)
1 (t)
.
.
.

v
(α)
n (t)

 =

[
A1 A2

Ã−1A3 In−r

]
v1(t)
.
.
.

vn(t)

+ f(t)

[
I 0

0 Ã−1

]
〈z, θ1〉
.
.
.

〈z, θn〉

 .

Thus, we get

D


v
(α)
1 (t)
.
.
.

v
(α)
r (t)

 = A1


v1(t)
.
.
.

vr(t)

+A2


vr+1(t)

.

.

.
vn(t)

+ f(t)


〈z, θ1〉
.
.
.

〈z, θr〉

 , (14)



F. Seddiki, M. Al Horani, R. Khalil / Eur. J. Pure Appl. Math, 14 (2) (2021), 493-505 500

and

Ã−1A3


v1(t)
.
.
.

vr(t)

+ In−r


vr+1(t)

.

.

.
vn(t)

+ f(t)Ã−1


〈z, θr+1〉

.

.

.
〈z, θn〉

 = 0. (15)

From equation (15), we have
vr+1(t)

.

.

.
vn(t)

 = −Ã−1A3


v1(t)
.
.
.

vr(t)

− f(t)Ã−1


〈z, θr+1〉

.

.

.
〈z, θn〉

 . (16)

Substitute (16) in equation (14), we get
v
(α)
1 (t)
.
.
.

v
(α)
r (t)

 = D−1(A1 −A2Ã
−1A3)


v1(t)
.
.
.

vr(t)

+ f(t)D−1(


〈z, θ1〉
.
.
.

〈z, θr〉

−A2Ã
−1


〈z, θr+1〉

.

.

.
〈z, θn〉

).

We put, U1(t) =


v1(t)
.
.
.

vr(t)

, U2(t) =


vr+1(t)

.

.

.
vn(t)

, M = D−1(A1 − A2Ã
−1A3) and F (t) =

f(t)D−1(


〈z, θ1〉
.
.
.

〈z, θr〉

−A2Ã
−1


〈z, θr+1〉

.

.

.
〈z, θn〉

).

Then we obtain the system

U
(α)
1 (t) = MU1(t) + F (t).

Which is has a unique solution

U1(t) = φ(t)c+ φ(t)

∫ t

0

φ−1(s)F (s)

s1−α
ds,

where φ(t) is the fundamental matrix and we have

U2(t) = −Ã−1A3U1(t)− f(t)Ã−1


〈z, θr+1〉

.

.

.
〈z, θn〉

 .
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Hence, u(t) =

[
U1(t)
U2(t)

]T

θ1
.
.
.
θn

 .
Therefore, the problem (2) has a unique solution.

3.2. Inverse Problem Case

Let X = `2 be the Hilbert space. Let A : Dom(A) ⊆ `2 → `2, B : Dom(B) ⊆ `2 → `2

be two densely defined linear operators on `2, where domains of A and B contain the
elements of the natural basis of `2.
Consider the two inverse problems (P3) and (P4) respectively{

u(α)(t) = Au(t) + f(t)

u(0) = x0{
Bu(α)(t) = Au(t) + f(t)

u(0) = x0

Where u(α) ∈ C(I,X), f ∈ C(I,X).
In this section we look for a solution to problems (P3) and (P4) among finite rank functions

of the form u(t) =
∑n

i=1 ui(t)δi, and f(t) =
∑n

i=1 fi(t)δi, where, u
(α)
i ∈ C(I) and fi ∈ C(I),

for i = 1, 2, ...n. Here we use a condition similar to that used in [22].

Theorem 6. In problem (P3), let u(t) =
∑n

i=1 ui(t)δi, and f(t) =
∑n

i=1 fi(t)δi where,

u
(α)
i ∈ C(I) and fi ∈ C(I), for i = 1, 2, ...n.

Assume the following two condition are satisfied:

1)There exist, x ∈ `2 such that 〈ui(t)δi, x〉 = gi(t) where g
(α)
i ∈ C(I) and 〈δi, x〉 6= 0.

2) A is diagonal with respect to the basis {δi}ni=1. That is, Aδi = λiδi for all i = 1, ..., n.
Then the problem (P3) has a unique solution.

Proof. Substitute u(t) =
∑n

i=1 ui(t)δi, and f(t) =
∑n

i=1 fi(t)δi, in (P3), we get

n∑
i=1

u
(α)
i (t)δi =

n∑
i=1

ui(t)Aδi +
n∑
i=1

fi(t)δi.

Since A is diagonal with respect to {δi}ni=1, we have

n∑
i=1

u
(α)
i (t)δi =

n∑
i=1

λiui(t)δi +
n∑
i=1

fi(t)δi. (17)

Taking the inner product of δj with both sides of equation (17), we obtain

u
(α)
j (t) = λjuj(t) + fj(t). (18)
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Multiplying equation (18) by δj and use condition (1), we obtain

g
(α)
j (t) = λjgj(t) + 〈fj(t)δj , x〉.

Thus, we have

fj(t) =
g
(α)
j (t)− λjgj(t)
〈δj , x〉

.

Hence, fj(t) is determined uniquely for j = 1, ...n and thus f(t) is determined uniquely.
Now to find u(t). Since f(t) is determined, then we have

uj(t) = uj(0)eλj
tα

α + eλj
tα

α

∫ t

0

e−λj
sα

α fj(s)

s1−α
ds.

Consequently, the problem (P3) has a unique solution.

Now, to solve problem (P4) we need to assume the following satisfy:
Assumption 1. Bn = B |[δ1,...,δn] is orthogonally diagonalizable linear operator with
respect to the orthonormal basis {θ1, ..., θn} and corresponding eigenvalues λ1, ..., λn such
that An |Ker(Bn) is invertible, where An = A |[δ1,...,δn].
Assumption 2. An is diagonal with respect to {θ1, ..., θn} ie Anθj = µjθj for j = 1, ..., n.
Now, let u(t) =

∑n
i=1 ui(t)θi

Assumption 3. There exist, x ∈ `2 such that 〈ui(t)θi, x〉 = gi(t) where g
(α)
i ∈ C(I).

Assumption 4. M = [〈δi, θj〉〈θj , x〉]i,j=1,...,nis invertible.

Theorem 7. Under assumptions 1,2, 3 and 4, problem (P4) has a unique solution.

Proof. Since u(t) =
∑n

i=1 ui(t)θi, then we substitute in problem (P4), we have

n∑
i=1

u
(α)
i (t)Bnθi =

n∑
i=1

ui(t)Anθi +

n∑
i=1

fi(t)δi.

This implies
n∑
i=1

u
(α)
i (t)λiθi =

n∑
i=1

ui(t)µiθi +
n∑
i=1

fi(t)δi. (19)

Taking the inner product of θj with both sides of equation (19), we obtain

λju
(α)
j (t) = µjuj(t) +

n∑
i=1

fi(t)〈δi, θj〉. (20)

Multiplying equation (20) by θj and using assumption 3, we obtain

λjg
(α)
j (t) = µjgj(t) +

n∑
i=1

fi(t)〈(δi, θj〉〈θj , x〉.
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Hence, we get the following system:
λ1g

(α)
1 (t)− µ1g1(t)

.

.

.

λng
(α)
n (t)− µngn(t)

 = MT


f1(t)
.
.
.

fn(t)

 .

Where, M = [〈δi, θj〉〈θj , x〉]i,j=1,...,n. By assumption 4 M is invertible, then MT is also
invertible and (MT )−1 = (M−1)T , thus

f1(t)
.
.
.

fn(t)

 = (M−1)T


λ1g

(α)
1 (t)− µ1g1(t)

.

.

.

λng
(α)
n (t)− µngn(t)

 .

Therefore f is determined uniquely.
Now to find u(t), we have

• If λj = 0, then uj(t) =
∑n

i=1
fi(t)〈δi,θj〉
−µj .

• If λj 6= 0, then

uj(t) = uj(0)e
µjt

α

λjα +

n∑
i=1

e
µjt

α

λjα 〈δi, θj〉
∫ t

0

fi(s)e
−µjs

α

λjα

s1−α
ds.

Consequently, the problem (P4) has a unique solution.
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