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1. Introduction

In 1995, Smarandache [16] introduced the concept of neutrosophic logic as an ex-
tension of fuzzy logic in which indeterminacy is included. Indeterminacy means degrees of
uncertainty, vagueness, imprecision, undefined, unknown, inconsistency or redundancy, for
example, in tossing a die on irregular surface one can get {1,2,3,4,5, 6, indeterminacy}.
In the neutrosophic logic, each proposition is estimated to have the percentage of truth in
a subset T, the percentage of indeterminacy in a subset I, and the percentage of falsity in
a subset F.

Using neutrosophic theory, Vasantha Kandasamy and Florentin Smarandache [11] in
2003 introduced a neutrosophic structure based on indeterminacy “I” only, which they
called I-Neutrosophic Algebraic Structures, an algebraic structure based on sets of neutro-
sophic numbers of the form N = a + b, where a,b are real (or complex) numbers, and
1 is called literal indeterminacy, which stands for unknown or non-determinate such that
I? = I. Here, a is called the determinate part of N and bl is called the indeterminate
part of N, with mI +nl = (m +n)I, 0-1 = 0. The indeterminacy I is different from
the imaginary i = v/—1. In general, one has I = I if n > 0, and is undefined for n < 0.
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In 2006, they introduced some neutrosophic algebraic structures like neutrosophic fields,
neutrosophic vector spaces, neutrosophic groups, neutrosophic bigroups, neutrosophic N-
groups, neutrosophic semigroups, neutrosophic bisemigroups, neutrosophic N-semigroup,
neutrosophic loops, neutrosophic biloops, neutrosophic N-loop, neutrosophic groupoids,
neutrosophic bigroupoids, and neutrosophic rings [12, 17]. In 2015, A.A.A Agboola and
B. Davvaz [1] introduced the concept of neutrosophic BCI/BCK.

In 2002, J. Neggers and H.S. Kim [14, 15] introduced the concept of B-algebra and
established some properties of B-homomorphism[14]. From then on, several characteri-
zations as to commutativity and center, cyclicity, isomorphism, direct product, Lagrange
and Cauchy’s Theorems, B-action and the Sylow Theorems for B-algebras as exemplified
by the following literatures [2-5, 8-10, 13].

In this paper, we introduce the concepts of neutrosophic B-algebra and neutrosophic
subalgebra. Some properties of neutrosophic B-algebras and neutrosophic subalgebras are
presented and proved.

2. Preliminaries

For convenience, we view the neutrosophic number N = a + bl as an ordered pair
(a,bI).

Definition 2.1. [7] Let X be a nonempty set and let I be an indeterminate. A set
X(I)=(X,I) ={(x,yl) : x,y € X} is called a neutrosophic set generated by X and I.

A type (2,0) algebra is an algebra formed from a nonempty set X together with 2-ary
operation * and a 0-ary operation(with constant element 0).

“ ”

Definition 2.2. [15] Let X be a nonempty set with a binary operation “*” on X and a
constant 0. Then the algebra (X;*,0) of type (2,0) is called a B-algebra if it satisfies the
following axioms: for all x,y,z € X,

(Bl)zxx=0; (B2)zx0=uz; (B3) (zxy)*xz=1xx*(zx(0xy)).

Example 2.3. The following are examples of B-algebra.

(i) [15] Let X = {0,1,2}. (i) [15] Let X ={0,1,2,3,4,5}. De-
Define the operation “x fine the operation “ *” by the
7 by the Cayley table Cayley table shown below.

shown below.

T W N~ O %
T W N = OO
W Ut = O N
WOt O NN
N = O Otk W Ww
— O N W O
O N W oot
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The following properties of B-algebra can be found in [15] and [18]. Let (X;x*,0) be a
B-algebra. Then for any z,y,z € X, (P1): 0% (0xx) =z, (P2): 0% (zxy) =y =z, (P3):
(x*2)x(yxz)=zx*y,and (P4): zxy=0=x=y.

Lemma 2.4. Let X be a B-algebra. Then for any x,y,z € X,
(i) [6] (left cancellation law) = xy = x * z implies y = z.
(i) [15] x* (yx2) = (z* (0% 2)) xy.

Definition 2.5. [15] A B-algebra (X;*,0) is said to be commutative if
a* (0xb) =bx*(0xa) for any a,b € X.

Lemma 2.6. [15] Let X be a commutative B-algebra. Then for any z,y,z € X, xx(x*y) =
Y.

Definition 2.7. [14] Let (X;%,0) be a B-algebra. A nonempty subset N of X is said
to be a subalgebra of X if axb € N for all a,b € N. N is said to be normal if for any
x*y,a*xbe N implies (z*a)* (y*b) € N.

Lemma 2.8. [9] Let X be a B-algebra. If {N, : a € &/} is any nonempty collection of
subalgebras (resp., normal subalgebras) of X, then (¢ Na is a subalgebra (resp., normal
subalgebra) of X.

3. Some Properties of Neutrosophic B-algebras and Neutrosophic
Subalgebras

Definition 3.1. Let (X;x*,0) be any B-algebra. The set X(I) = {(z,yl) : z,y € X} is
the neutrosophic set determined by X and I. Moreover, (a,bl) = (¢,dI) in X (I) if and
only if a = ¢ and b = d.

Definition 3.2. Let (X;*,0) be any B-algebra. For any x,y € X, we denote x Ay =
ok (2 ).

Lemma 3.3. The mapping A : X(I) x X(I) — X(I) defined by A((a,bl),(c,dl)) =
(a,bl)-(c,dI) = (axc, ((axdAbxc) ANbxd)I) for any (a,bl),(c,dI) € X(I) is well-defined.

Proof: Let (a,bl), (c,dI), (z,yI),(u,vI) € X(I) such that (a,bl) = (z,yl) and (c,dI) =
(u,vI). Then X((a,bl),(c,dl)) = (a,bl) - (c,dI) = (axc,((axdANbxc)Ab*d)) =
(zxu, ((zxvAyxu) Ay*v)l) = (z,yl) - (u,vl) = X((z,yI), (u,vI)).

Hence, the A is well-defined. O

Definition 3.4. The triple (X (I);-, (0,0I)) is called a neutrosophic B-algebra determined
by X and [ with the binary operation - defined in Lemma 3.3 and (0,01) as its constant
element.

Remark 3.5. Every nonzero neutrosophic B-algebra X (I) always contains the B-algebra
X'={(z,0I): x € X} as a proper subset.
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Let X (I) stand for a neutrosophic B-algebra (X (I);+, (0,01)), unless otherwise stated.

Example 3.6. Consider the commutative B-algebra X = {0,1,2} in Example 2.3(i).
Then the neutrosophic B-algebra determined by X and [ is given by X (1) = {(0,01), (0, I),
(0,21), (1,01), (1,1), (1,2I), (2,01), (2, I), (2, 21)}.

Lemma 3.7. Let X be a B-algebra. Then for any x,y € X,

(i) zhz ==, (iv) zxyAy*xx=y=*uz,
(i) z A0 =0, (v) x Ay =0 if and only if y = 0.
(iii) 0Nz = =z,

Proof: (i) By (B1) and (B2), x Az =z * (xx2) = z*0 = z; (ii) By (B2) and (B1),
tANO=zx(zx0)=x*x =0; (iii) By (P1), 0Ax = 0% (0*x) = z; (iv) By Lemma 2.4(ii),
(B1) and (P3), @y Ay xa = (x5 y) * (2 5 ) % (y2)] = [(255) [0 (y )] * (2 ) =
[(xxy)x(x*xy)|*(xxy) =0%(xxy) =y=*x; (v) 2 Ay = 0 implies that x x (z xy) = 0.
By (P4), © = x x y which can be written as x x 0 = x * y. Hence, by Lemma 2.4(i), y = 0.
The converse follows directly from (ii). O

Lemma 3.8. If X(I) is a neutrosophic B-algebra, then for any (a,bl), (c,dI) € X(I),

(i) (a,b1) - (0,01) = (a, ((a A B) AD)T),

(ii) (a,cI) - (b,cl) = (a*b,0I),

(i) (a,al) - (b,bI) = (a* b, (a*b)I),

(iv) (a,bl) - (c,dI) = (0,01) if and only if (a,bI) = (c,dI).

Proof: (i) By Definition 3.4 and (B2), (a,bl) - (0,0I) = (a*0,((a*0Abx0) Abx0)]) =
(a, ((a Ab) Ab)I); (ii) By Definition 3.4, (B1), (B2) and Lemma 3.7(ii), (a,cl) - (b,cl) =
(axb, ((axcAcxb)Aexe)l) = (axb, ((axcAcxb)AO)I) = (axb,0I); (iii) Follows directly from
Definition 3.4 and Lemma 3.7(i); (iv) By Definition 3.4, (a,bI) - (¢,dI) = (0,0I) implies
that (axc, ((axdAbxc)Abxd)I) = (0,0I). That is, a*c = 0 and (axdAbxc)Abxd = 0. By
(P4), a = c and by Lemma 3.7(v), bxd = 0. Thus, by (P4), b = d. Hence, (a,bl) = (c,dI).
Conversely, let (a,bI) = (¢,dI). Then a = ¢ and b = d. Thus, by Definition 3.4, (B1) and
Lemma 3.7(ii and iv), (a,bl) - (¢,dI) = (a*c,((axdANbxc) Nbxd)I) = (a*xa,((a*bAbx
a) Nbxb)I)=(0,((bxa)AN0)I)=(0,01). O

Lemma 3.9. If X is a commutative B-algebra, then for any x,y,z € X,

(i) x ANy =1y, (i) (zAy)ANz=xAN(yAz) ==z
Proof: Let z,y,z € X. (i) By Definition 3.4 and Lemma 2.6, z Ay = x * (v x y) = y; (ii)
By (i), (@Ay)Az=yANz=z=axAz=xA (YA =2). O
Theorem 3.10. If X is commutative, then X (I) is a B-algebra.
Proof: Let (a,bl),(c,dI) € X(I). By Lemma 3.9(ii), the binary operation in X(I) is

(a,bl) - (c,dI) = (axc,((axdANbxc) Abxd)I) = (a*c,(bxd)I). This coincides with the
binary operation of X x X as a B-algebra. Therefore, X (I) is a B-algebra. O
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Remark 3.11. By Theorem 3.10, the neutrosophic B-algebra X (I) in Example 3.6 is a
B-algebra. However, a neutrosophic B-algebra is not a B-algebra in general as shown in
the following example.

Example 3.12. Consider the non-commutative B-algebra X = {0,1,2,3,4,5} in Example
2.3(ii). Then theset X (1) = {(0,01),(1,0I),...,(5,0I),(0,1),(1,1),...,(5,1),(0,21),(1,21),

. (5,2I),(0,31),(1,31),...,(5,31),(0,41),(1,41), ..., (5,4I), (0,5I),(1,5I), ..., (5,5I) } is the
neutrosophic B-algebra determined by X and I. X (I) is not a B-algebra since by Lemma
3.8(1), (3,41) - (0,01) = (3, ((BA4)ANA)I) = (3,(bAN4)]) = (3,3]) # (3,4]).

Definition 3.13. A neutrosophic B-algebra X (I) is said to be commutative if (a,bl) -
[(0,0]) - (¢,dI)] = (¢,dI) - [(0,0]) - (a,bl)] for any (a,bl), (c,dI) € X(I).

Remark 3.14. If X(I) is a commutative neutrosophic B-algebra, then X' = {(z,0I) :
x € X} is a commutative B-algebra.

In Example 3.12, X(I) is not commutative since (2,21), (5,5I) € X(I) but by Lemma
3.8(iii), (2,21)-[(0,0I)-(5,5I)] = (4,41) # (3,3I) = (5,5I) - [(0,0I) - (2,21)]. In Example
3.6, X is a commutative B-algebra and it can be verified that X (I) is also commutative.
This observation is generalized in the following result.

Theorem 3.15. X is commutative if and only if X (I) is commutative.

Proof: Let (a,bl),(c,dI) € X(I). Suppose that X is commutative. Then by Definition
3.4 and Lemma 3.9 (ii),

(a,bI) - [(0,01) - (c,dI)] = (a,bI) - (0% ¢, ((0xdAO*c)AO*d)I)
= (a,bl) - (0*¢, (0% d)I)
=(ax(0xc),[(a*x (0xd)Ab* (0%c)) Nbx(0xd)]I)
= (ax* (0*c),[bx(0xd)]I)
= (c* (0xa),[dx (0xb)]I)
= (cx(0xa),[(cx (0xb) Ad*(0xa)) ANdx* (0*b)]])
= (c,dI)- (0*a,(0*b)I)
=(c,dI)- (0%a,((0xbAOxa) AOxb)I)
= (¢,dI) - [(0,01) - (a,bI)].

Therefore, X (I) is commutative. Conversely, suppose that X (I) is commutative. Then by
Remark 3.14, X’ is commutative so that for any (z,0I), (y,0I) € X', xx(0xy) = y* (0xx)
for any z,y € X. Hence, by Definition 2.5, X is commutative. U

Corollary 3.16. If X (I) is commutative, then X (I) is a B-algebra.

The notion of neutrosophic subalgebra of a neutrosophic B-algebra will now be intro-
duced.
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Definition 3.17. Let X (I) be a neutrosophic B-algebra. A subset P(I) of X ([I) is said
to be a proper subset of X (1) if P(I) # X (I).

Definition 3.18. A nonempty subset S(I) of a neutrosophic B-algebra X (I) is said to
be a neutrosophic subalgebra of X (I) if the following conditions hold:

(i) (a,bl) - (c,dI) e S(I) for all (a,bl), (c,dl) € S(I), and
(ii) S(I) contains a proper subset which is a B-algebra.

In view of Lemma 3.8(iv), (0,07) is an element of any neutrosophic subalgebra S(I)
of X(I).

Remark 3.19. Let X (I) be a nonzero neutrosophic B-algebra.

(i) Then X(I) is a neutrosophic subalgebra of itself. However, {(0,0I)} is not a neutro-
sophic subalgebra of X (I) since it does contain a proper subset which is a B-algebra
but {(0,0I)} is a B-algebra.

(i1) If S(I) is a neutrosophic subalgebra of X (I), then S(I) is a neutrosophic B-algebra
in its own right.

Theorem 3.20. Let X(I) be a nonzero neutrosophic B-algebra. Then
(i) X' ={(z,0I): z € X} is a neutrosophic subalgebra of X (I).
(il) X" ={(0,zI) : x € X} is a neutrosophic subalgebra of X (I).
(iii) X,(I) ={(a,al):a € X} is a neutrosophic subalgebra of X (I).

Proof: (i) Clearly, (0,0I) € X’. Suppose that(a,0I), (b,0I) € X’. Then by Remark 3.5,
(a,0I)-(b,0I) € X'. Moreover, {(0,0I)} C X' is a B-algebra. Hence, X' is a neutrosophic
subalgebra of X (I). (ii) Clearly, (0,0I) € X”. Suppose that(0,al), (0,bI) € X"”. Then
a,b € X and (0,al) - (0,bI) = (0,((0*bAa=0)Aaxb)I). Since X is a B-algebra,
0xbAax0)Aaxbe X and so (0,al) - (0,bI) = (0,((0xbAax0)ANaxb)l) e X".
Moreover, {(0,0I)} C X" is a B-algebra. Therefore, X" is a neutrosophic subalgebra of
X(I). (iii) Clearly, (0,0I) € X, () and {(0,01)} € X, (I). Let (a,al),(b,bl) € X, (I).
Then by Lemma 3.8(iii), (a,al) - (b,bl) = (a* b, (a*xb)I) € X, (I). Therefore, X, (I) is a

neutrosophic subalgebra of X (I). O
Definition 3.21. A neutrosophic subalgebra N(I) of X (I) is normal if for any (a,bI) -
(e, 1), (z,yT) - (u,0]) € N(I), [(a,b) - (,y1)] - [(¢;dT) - (u, 0])] € N(I).

Example 3.22. Consider the neutrosophic B-algebra X (/) in Example 3.12 and its sub-
set N(I) = {(0,0I),(0,1),(0,21),(1,01),(1,1),(1,2I),(2,01),(2,1),(2,21)} determined
by N = {0,1,2} and I. It can be verified that N(I) is a normal neutrosophic subal-
gebra of X (I) with {(0,0I), (1,0I),(2,01)} as its proper subset which is a B-algebra.. It
can also be verified that N is a normal subalgebra of X.
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The observation in the preceding example are generalized in the next theorem.

Theorem 3.23. Let S(I) = {(a,bI) € X(I) : a,b € S,S C X}. Then S(I) is a neutro-
sophic subalgebra of X (I) if and only if S is a nonzero subalgebra of X. Moreover, if S(I)
is normal in X (I), then S is normal in X.

Proof: Let S be a nonzero subalgebra of X. Let (a,bl), (¢,dI) € S(I). Then a,b,c,d € S
and (a,bl)-(c,dI) = (axc, ((axdAbxc)Abxd)I). Since S is a subalgebra of X, axc, axd,
bxc, bxd € S sothat (axdAbxc)ANbxd e S. Thus, (a,bl) - (c,dI) € S(I). By Definition
3.4, S(I) is a neutrosophic B-algebra determined by S and I. Hence, by Remark 3.5, S(I)
contains the B-algebra S’ = {(z,0I) : x € S} as a proper subset. Therefore, S(I) is a
neutrosophic subalgebra of X (I). Conversely, let S(I) be a neutrosophic subalgebra of
X(I). Then S # @ and S # {0}. By Remark 3.19(ii), S(I) is a neutrosophic B-algebra.
Thus, S is a B-algebra by Definition 3.4. Hence, S is a nonzero subalgebra of X.
Moreover, let a xb,c*d € S. By definition of S(I) and Lemma 3.8(ii), (a x b,0I) =
(a,01)-(b,01),(cxd,0I) = (c,0I)-(d,0I) € S(I). By normality of S(I) and Lemma 3.8(ii),

[(a,01) - (c,01)] - [(b,01) - (d,0I)] = [(axc,0I)- (bxd,0I)]
= ([(axc) % (b d)],0I) € S(1),

By definition of S(I), [(a*c) * (b*d)] € S and hence S is normal in X. O
Since a neutrosophic subalgebra is also a neutrosophic B-algebra contained in a given
neutrosophic B-algebra, the following remark follows.

Remark 3.24. If N(I) is a normal neutrosophic subalgebra of X (I), then N(I) is normal
in every neutrosophic subalgebra of X (I) containing N(I).

Example 3.25. In the neutrosophic B-algebra X (I) in Example 3.6, X (I) has three
neutrosophic subalgebras: {(0,01I),(0,1),(0,2I)}, {(0,01),(1,0I),(2,0I)} and itself. The
first two have {(0,0I)} as their proper subset which is a B-algebra and the latter has
{(0,0I),(1,01),(2,0I)}. In the neutrosophic B-algebra X (I) in Example 3.12, the follow-
ing are some of its neutrosophic subalgebras:

S(I)y =X(I)={(0,0I),(1,0I),(2,01),(3,01),(4,0I),(5,0I),(0,1),(1,I),
1), (3,1),(4,1),(5,1),(0,2I),(1,21),(2,21),(3,2I),(4,2I), (5,21),

(2,1
(0,31), (1,31),(2,31), (3,31), (4,31), (5,31), (0,41, (1,41, (2,41,
(3,41), (4,41), (5,41), (0,51), (1,51), (2,51), (3,51), (4,51), (5,51}
S(I)2 ={(0,01),(0,1),(0,2I),(0,3I),(0,4I), (0,5I), (1,0I), (1, 1), (1,21),
(1,31),(1,41),(1,51),(2,01),(2,1),(2,21),(2,31),(2,41),(2,51)},
S(I)s ={(0,01),(0,1),(0,2I),(0,3I),(0,4I), (0,5I), (3,0I), (3, 1), (3,21,
(3,31),(3,41), (3,51)},
S(I)4 ={(0,01),(0,1), (0,2I), (0,3I), (0,4I), (0,5I), (4,0I), (4, ), (4, 2I),
(4,31), (4,41), (4,51},
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S(I)s ={(0,01I), (0,1),(0,2I), (0,31), (0,4I), (0,5I), (5,01), (5, 1), (5, 2I),
(5,31), (5,41), (5,51)}
S(I)g ={(0,01), (1,1), (2,2),(3,3I), (4,41), (5,5I)}

Aside from {(0,01)}, sets X', {(0,0I), (1,01), (2,01)}, {(0,01), (3,31)}, {(0,01), (4,4I)},
{(0,0I), (5,5I)} and {(0,0I),(1,1),(2,2I)} are proper subsets of S(I);, i = 1,2,3,4,5,6,
respectively, which are B-algbras.

Notice that the neutrosophic B-algebra in Example 3.6 is a neutrosophic subalgebra
of the neutrosophic B-algebra in Example 3.12.

In a B-algebra, the intersection of any collection of subalgebras is also a subalgebra
by Lemma 2.8. However, this is not always the case for neutrosophic B-algebra. Consider
the following example.

Example 3.26. Consider the neutrosophic B-algebra in Example 3.12 and a collection of
6

its neutrosophic subalgebras in Example 3.25. Clearly, ﬂ S(I); = {(0,0I)} is not a neutro-
i=1

sophic subalgebra of X (I) by Remark 3.19. However, ﬂ S(I); ={(0,0I),(0,1),(0,21)} is
i=1
a neutrosophic subalgebra of X (I) with {(0,0I)} as its proper subset which is a B-algebra.

The following theorem provides a necessary and sufficient condition for the intersection
of neutrosophic subalgebras to be a neutrosophic subalgebra.

Theorem 3.27. Let {S(I)y : o € &} be any nonempty collection of neutrosophic sub-
algebms (resp., normal neutrosophic subalgebms) of a neutrosophic B-algebra X (I). If
m S(I)a # {(0,01)}, then ﬂ S(I)q is a neutrosophic subalgebra (resp., normal neu-

acd acd
trosophic subalgebra) of X (I).

Proof: Since (0,0I) € S(I),, for every o € &7, (0,01) ﬂ S(I) so that ﬂ S(I

aE(zf acd
Since ﬂ S(I)a # {(0,0I)}, there exists (a,bl) ﬂ S(I)q such that (a,bl) # (0,01).
acd acd
Thus, {(0,0I)} € (7] S(I)s which is a B-algebra. Let (a,bl), (c,dl) € (] S(I)a. Then
acsd acd

(a,bl),(c,dI) € S(I)q for every a € o7. Since for every a € o7/, S(I), is a neutrosophic
subalgebra of X(I), (a,bl) - (¢,dI) € S(I)y for every a € &/. Thus, (a,bl) - (c,dl) €
m S(I)q. Hence, m S(I)q is a neutrosophic subalgebra of X (I). Moreover, let {S(I),
acd acd

a € &/} be any nonempty collection of normal neutrosophic subalgebras of a X (/) and
(a,bl)-(c,dI), (x,yI)-(u,vI) ﬂ S(I)a. Then (a,bl)-(c,dI), (z,yI)-(u,vl) € S(I), for

acd
every a € /. Since S(I), is normal for every o € o7, [(a,bl) - (z,yI)] - [(c,dI) - (u,v])] €
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S(I)q for every o € o7. Hence, [(a,bl) - (z,yl)] - [(c,dI) -+ (u,v])] ﬂ S(I)q. Therefore,
acd

ﬂ S(I)4 is a normal neutrosophic subalgebra of X (7). O

acd

Example 3.28. Consider the neutrosophic B-algebra in Example 3.12 and a collection of
6

its neutrosophic subalgebras in Example 3.25. The union U S(I); is not a neutrosophic

=4
6 6

subalgebra of X (I) since (1,1),(0,5I) € U S(I); but (1,1)-(0,5I) = (1,41) ¢ U S(I);.
i=4 i=4

Theorem 3.29. Let {S(I); : i € Z} be any nonempty collection of neutrosophic subal-

gebras of a neutrosophic B-algebra X (I) such that S(I); C S(I)2 € S(I)3 C ---. Then

U S(I); is a neutrosophic subalgebra of X (I).

€S

Proof:

Clearly, U S(I); # @. Let (a,bl), (c,dI) U S(I);. Then for somei € ., (a,bl), (c,dI) €
ies ics

S(I); and (a,bl) - (¢,dI) € S(I);. Thus, (a,bl) - (¢,dI) U S(I);. Let P(I); be a

(184
proper subset of S(I);, for every i € .# which is a B-algebra. Then for any i € %,
)i U S(I);. Therefore, U S(I); is a neutrosophic subalgebra of X (I). O
(1S54 €S
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