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We generate new topologies on the closed upper half plane which lie between the usual
metric topology and the half-disc topology. These new spaces may work as counterexam-
ples in Topology and help in study of some advances topological properties. We study
some of their fundamental properties and weaker versions of normality. Throughout this
paper, we denote an ordered pair by ⟨x, y⟩, the set of positive integers by N, the rationals
by Q, the irrationals by P, and the set of real numbers by R. A T4 space is a T1 normal
space and a Tychonoff space (T3 1

2
) is a T1 completely regular space. We do not assume T2

in the definition of compactness and countable compactness. We do not assume regularity
in the definition of Lindelöfness. For a subset A of a space X, intA and A denote the
interior and the closure of A, respectively. If two topologies τ and τ ′ on a set X are
considered, we denote the interior of A in (X , τ ) by int τA and the closure of A in (X ,

τ ′ ) by A
τ ′
.

We start by state some definitions and fix some notations. Let X = { ⟨x, y⟩ ∈ R2 :
y ≥ 0 } be the closed upper half plane. K = { ⟨x, y⟩ ∈ R2 : y > 0 }, so the x-axis is
L = X \K. Denote the usual metric topology on X by U and the half-disc topology on
X be H. For every ⟨a, b⟩ ∈ X and r > 0 where r ∈ R, let Ur(⟨a, b⟩) be the set of all
points in X inside the circle of radius r centered at ⟨a, b⟩. So, Ur(⟨a, b⟩) = { ⟨x, y⟩ ∈ X :
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(x− a)2 + (y − b)2 < r }. For every ⟨a, 0⟩ ∈ L, let C(⟨a, 0⟩, r) be the set of all points

of K inside the circle of radius r centered at ⟨a, 0⟩. So, C(⟨a, 0⟩, r) = Ur(⟨a, 0⟩) ∩ K.
Let Cr(⟨a, 0⟩) = C(⟨a, 0⟩, r) ∪ {⟨a, 0⟩}. Recall that the half-disc topology H on X [8,
Example 78] is generated by the following neighborhood system: For every ⟨a, 0⟩ ∈ L, let
B(⟨a, 0⟩) = {Cr(⟨a, 0⟩) : r > 0 } and for every ⟨a, b⟩ ∈ K, let B(⟨a, b⟩) = {Ur(⟨a, b⟩) : r >
0 }. Observe that K as a subspace of X with the usual metric topology coincides with K
as a subspace of X with the half-disc topology.

⟨a, b⟩•

⟨a, b⟩ ∈ K, Ur(⟨a, b⟩)

⟨a, 0⟩
•◦ ◦

⟨a, 0⟩ ∈ L, Ur(⟨a, 0⟩)

⟨a, 0⟩
•◦ ◦

⟨a, 0⟩ ∈ L, Cr(⟨a, 0⟩)

1. H-generated topology.

Definition 1. Let A be a non-empty proper subset of the x-axis L. For each ⟨a, b⟩ ∈ K∪A,
let B(⟨a, b⟩) = {Ur(⟨a, b⟩) : r > 0 }. For each ⟨a, 0⟩ ∈ L \ A, let B(⟨a, 0⟩) = {Cr(⟨a, 0⟩) :
r > 0 }. So, the points in K ∪ A will have the same local base as in (X , U ). The points
in L \A will have the same local base as in (X , H ). We call the topology on X generated
by the neighborhood system {B(⟨a, b⟩) : ⟨a, b⟩ ∈ X } the H-generated topology on X from
U and H, shortly H-topology, and denote it by UAH. We call X with this H-generated
topology an H-space and denote it by (X , UAH ).

Observe that if A = ∅, then the H-generated topology on X,UAH is just the half-disc
topology H and if A = L, then the H-generated topology on X, UAH is just the usual
metric topology U . So, from now on, when we consider an H-space (X , UAH ), we are
assuming that A is a non-empty proper subset of the x-axis L. In Definition 1, if we
interchange the local bases as follows: The points in K ∪ (L \A) will have the same local
base as in (X , U ). The points in A will have the same local base as in (X , H ). Then
we get the H-space (X , HAU ) and it is easy to see that (X , HAU ) ∼= (X , UL\AH ).
So, in this paper, we will study the H-spaces of Definition 1, (X , UAH ). Observe that
K as a subspace of X with the usual metric topology coincides with K as a subspace of
X with the H-topology.

2. Basic Properties of an H-space.

Since any basic open set in (X , U ) is also open in (X , UAH ), we get the following
fact.
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Theorem 1. The usual topology U on X is coarser than the H-topology UAH and the
H-topology UAH is coarser than the half-disc topology H. That is, U ⊂ UAH ⊂ H.

By Theorem 1, we conclude that any H-space (X , UAH ) is T0, T1, T2 Hausdorff, and
T2 1

2
Urysohn (completely Hausdorff) [1]. Now, take any ⟨x, 0⟩ ∈ L \A. For any 0 < ϵ < r,

we have that Cϵ(⟨x, 0⟩) ̸⊂ Cr(⟨x, 0⟩), thus any H-space (X , UAH ) is not regular nor
zero-dimensional, hence neither normal, T4, nor metrizable. We conclude also that any
H-space (X , UAH ) cannot be Tychonoff T3 1

2
hence has no compactification and is neither

paracompact, as any T2 paracompact space is T4, nor locally compact, as any T2 locally
compact space is Tychonoff. The subset D = { ⟨x, y⟩ ∈ X : x, y ∈ Q } is a countable
dense subset, thus any H-space (X , UAH ) is separable. For ⟨x, y⟩ ∈ K ∪ A, the family
B(⟨x, y⟩) = {U 1

n
(⟨x, y⟩) : n ∈ N } is a countable local base for (X , UAH ) at ⟨x, y⟩. For

⟨x, 0⟩ ∈ L \ A, the family B(⟨x, 0⟩) = {C 1
n
(⟨x, 0⟩) : n ∈ N } is a countable local base for

(X , UAH ) at ⟨x, 0⟩. Therefore, any H-space (X , UAH ) is first countable.

Theorem 2. An H-space (X , UAH ) is second countable if and only if L\A is countable.

Proof. If L \ A is uncountable, then L \ A is an uncountable discrete subspace of the
H-space (X , UAH ), thus cannot be second countable. Assume that L \ A is countable.
Since X = K ∪ A ∪ (L \ A) and K ∪ A is a separable metrizable subspace from (X , U),
then K ∪A is second countable.

Let B′ be a countable base for K ∪ A. Let B⋆ = {B(⟨x, 0⟩) = {C 1
n
(⟨x, 0⟩) : n ∈

N } : ⟨x, 0⟩ ∈ L \ A } . We show that B = B′⋃B⋆ is a countable base for the H-
space (X , UAH ). Let W be an arbitrary non-empty open set in (X , UAH ) and pick an
arbitrary ⟨x, y⟩ ∈ W .

Case 1: If ⟨x, y⟩ ∈ K ∪A, then there exists r > 0 such that Ur(⟨x, y⟩) ⊆ W . Since Ur(⟨x, y⟩)
is open in K ∪A containing ⟨x, y⟩, then there exists B ∈ B′ ⊂ B such that ⟨x, y⟩ ∈
B ⊆ Ur(⟨x, y⟩) ⊆ W .

Case 2: If ⟨x, y⟩ ∈ L\A, so y = 0, then there exists r > 0 such that Cr(⟨x, 0⟩) ⊆ W , thus there
exists an n ∈ N such that 0 < 1

n < r, thus ⟨x, 0⟩ ∈ C 1
n
(⟨x, 0⟩) ⊆ Cr(⟨x, 0⟩) ⊆ W ,

where C 1
n
(⟨x, 0⟩) ∈ B⋆.

Therefore, B is a base for the H-space (X , UAH ) .

For each n ∈ N, let Gn = R × [0, n), then the family {Gn : n ∈ N } is a countable
open cover for X which has no finite subcover. Thus any H-space (X , UAH ) is neither
compact nor countably compact. Since any second countable is Lindelöf, by Theorem 2,
we conclude the following.

Theorem 3. The H-spaces (X , UAH ) is Lindelöf if L \A is countable.
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3. Other Properties of an H-space.

Definition 2. A subset A of a space X is called a closed domain of X [1, 1.1.C] (also
called regularly closed, κ-closed) if A = intA. A space X is called mildly normal [7] (also
called κ-normal [10]) if for any two disjoint closed domains A and B of X there exist two
disjoint open subsets U and V of X such that A ⊆ U and B ⊆ V , see also [2, 5]. A space
X is called almost normal [6] if for any two disjoint closed subsets A and B of X one of
which is closed domain, there exist two disjoint open subsets U and V of X such that
A ⊆ U and B ⊆ V , see also [4].

It is clear from the definitions that
normal ⇒ almost normal ⇒ mildly normal.

Each implication above is not reversible, see [2, 4].

Lemma 1. Let D be any non-empty closed domain in (X , UAH ), then D is a closed set
in (X , U ).

Proof. If D = X, we are done. Assume X \D ̸= ∅. Let ⟨x, y⟩ ∈ X \D be arbitrary.

Case 1: ⟨x, y⟩ ∈ K ∪A. Since D is closed in (X , UAH ), then X \D is open in (X , UAH ),
thus there exists r > 0 such that Ur(⟨x, y⟩) ⊆ X \D. But Ur(⟨x, y⟩) is also a basic
open set in (X , U ).

Case 2: y = 0 and ⟨x, 0⟩ ∈ L \A. There exists r > 0 such that

Cr(⟨x, 0⟩) ⊆ X \D . . . ( ⋆ )

Suppose that for all 0 < ε ≤ r we have Uε(⟨x, 0⟩) ̸⊆ X \ D. That is, Uε(⟨x, 0⟩) ∩
D ̸= ∅. Fix such an ε, then there exists z ∈ (x − ε, x + ε ); z ̸= x such that

⟨z, 0⟩ ∈ D = intUAHD
UAH

. For all 0 < δ < ε, we have Cδ(⟨z, 0⟩) ∩ intUAHD ̸= ∅
if ⟨z, 0⟩ ∈ L \ A or Uδ(⟨z, 0⟩) ∩ intUAHD ̸= ∅ if ⟨z, 0⟩ ∈ A. If ⟨z, 0⟩ ∈ L \ A,
then⟨z, 0⟩ ∈ intUAHD , because Cδ(⟨z, 0⟩)∩L = {⟨z, 0⟩} and Cδ(⟨z, 0⟩)∩K ⊆ X \D.
Now, ⟨z, 0⟩ ∈ intUAHD means that there exists δ′ < δ such that Cδ′(⟨z, 0⟩) ⊆ D
which contradicts ( ⋆ ), because Cδ′(⟨z, 0⟩) ∩ K ⊆ Cr(⟨x, 0⟩) ⊆ X \ D. If ⟨z, 0⟩ ∈
A, and Uδ(⟨z, 0⟩) ∩ intUAHD ̸= ∅, then pick ⟨u, 0⟩ ∈ Uδ(⟨z, 0⟩) ∩ intUAHD , thus
⟨u, 0⟩ ∈ intUAHD . Then there exists δ′ < δ such that Uδ′(⟨u, 0⟩) ⊆ D if ⟨u, 0⟩ ∈ A
or Cδ′(⟨u, 0⟩) ⊆ D, if ⟨u, 0⟩ ∈ L \ A. In both cases, we get a contradiction to ( ⋆ ),
because Uδ′(⟨u, 0⟩)∩K ⊆ Cr(⟨x, 0⟩) ⊆ X\D and Cδ′(⟨u, 0⟩)∩K ⊆ Cr(⟨x, 0⟩) ⊆ X\D.

Thus X \D is open in the usual metric topology. Therefore, D is a closed set in (X , U ).

Lemma 2. Let D be any non-empty closed domain in (X , UAH ), then (intUAHD )∩(K∪
A) = (intUD ) ∩ (K ∪A).

Proof. Let ⟨u, v⟩ ∈ K ∪A.
⟨u, v⟩ ∈ intUAHD if and only if there exists r > 0 such that Ur(⟨u, v⟩) ⊆ D if and only

if ⟨u, v⟩ ∈ intUD
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Lemma 3. Let D be any non-empty closed domain in (X , UAH ), and ⟨x, 0⟩ ∈ (L \A)∩
(intUAHD ), then there exists r > 0 such that Ur(⟨x, 0⟩) ⊆ D.

Proof. Since ⟨x, 0⟩ ∈ L \ A and ⟨x, 0⟩ ∈ intUAHD , then there exists r > 0 such that
Cr(⟨x, 0⟩) ⊆ D

⊆ D

⟨x, 0⟩
• ◦◦

Now Cr(⟨x, 0⟩)
UAH ⊆ D

UAH
= D as D is closed.

⊆ D

⟨x, 0⟩
• ◦◦

But Ur(⟨x, 0⟩) ⊆ Cr(⟨x, 0⟩)
UAH ⊆ D.

Theorem 4. Let D be any non-empty closed domain in (X , UAH ), then D is a closed
domain in (X , U ).

Proof. Assume D = intUAHD
UAH ̸= ∅, we show D = intUD

U
.Since intUD ⊆ D, then

intUD
U ⊆ D

U
= D, by Lemma 1.

Now, we show D ⊆ intUD
U
. Let ⟨x, y⟩ ∈ D arbitrary. If ⟨x, y⟩ ∈ intUD , then clearly

⟨x, y⟩ ∈ intUD
U
. So, assume that ⟨x, y⟩ ∈ D \ intUD . To show ⟨x, y⟩ ∈ intUD

U
we have

to show that for all r > 0, we have Ur(⟨x, y⟩) ∩ intUD ̸= ∅

Case 1: ⟨x, y⟩ ∈ K ∪A.

Let r > 0 be arbitrary, we have Ur(⟨x, y⟩) ∩ intUAHD ̸= ∅. By Lemma 2, we have
(intUAHD ) ∩ (K ∪ A) = (intUD ) ∩ (K ∪ A), since ⟨x, y⟩ ∈ K ∪ A, then Ur(⟨x, y⟩) ∩
intUD ̸= ∅.

Case 2: ⟨x, y⟩ ∈ L \A, then y = 0. We want to show that for any r > 0 we have Ur(⟨x, 0⟩)∩
intUD ̸= ∅. Suppose that there exists r > 0 such that

Ur(⟨x, 0⟩) ∩ intUD = ∅ . . . (⋆).

Since Cr(⟨x, 0⟩) ⊆ Ur(⟨x, 0⟩), then Cr(⟨x, 0⟩) ∩ intUD = ∅.
Claim: Cr(⟨x, 0⟩) ∩ intUAHD = ∅.

If we prove the claim, we get ⟨x, 0⟩ ∈ D \ intUAHD , but ⟨x, 0⟩ ̸∈ intUAHD
UAH

, thus
D is not a closed domain in (X , UAH ), which is a contradiction.
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Proof of Claim: Suppose Cr(⟨x, 0⟩)∩ intUAHD ̸= ∅. Pick ⟨u, v⟩ ∈ Cr(⟨x, 0⟩)∩ intUAHD .
If v > 0, then ⟨u, v⟩ ∈ K, since Cr(⟨x, 0⟩) ⊆ Ur(⟨x, 0⟩), and (intUAHD )∩K = (intUD )∩K,
then ⟨u, v⟩ ∈ Ur(⟨x, 0⟩) ∩ intUD , which is a contradicts (⋆). Then v = 0, so ⟨u, v⟩ =
⟨x, 0⟩, hence ⟨x, 0⟩ ∈ intUAHD , therefore there exists 0 < s < r such that Cs(⟨x, 0⟩) ⊆
intUAHD ⊂ D . By Lemma 3 Us(⟨x, 0⟩) ⊆ intUAHD , then ⟨x, 0⟩ ∈ intUD , but ⟨x, 0⟩ ∈
D \ intUD , which is a contradiction. So, claim is proved.

Theorem 5. Any H-spaces (X , UAH ) is mildly normal.

Proof. Let E and F be any tow disjoint closed domains in (X , UAH ), by Theorem 4,
E and F are closed domains in (X,U), and (X,U) is mildly normal, then there exists U
and V in U such that E ⊂ U , F ⊂ V and U ∩ V = ∅. Since U ⊆ UAH, then U and V are
both open in H-space, thus (X,UAH) is mildly normal.

Theorem 6. Any closed domain in usual metric space (X , U ) is closed domain in H-
spaces (X,UAH).

Proof. Let D be a closed domain in usual metric space, we want to show that

intUAHD
UAH

= intUD
U
. We have intUAHD

UAH ⊆ intUD
U
.

Claim : intUD
U ⊆ intUAHD

UAH
.

Proof of claim: Let ⟨x, y⟩ ∈ intUD
U
be arbitrary, then for all r > 0 we have Ur(⟨x, y⟩) ∩

intUD ̸= ∅, by Lemma 2 we have Ur(⟨x, y⟩)∩intUAHD ̸= ∅, therefore ⟨x, y⟩ ∈ intUAHD
UAH

.

Recall that a space X is semiregular if it has a base consisting of open domains, [1,
1.7.8 (a)], see also [9]. Now, let (X , τ ) be a T2 space. Generate a coarser topology τ ′ ⊆
τ on X by the base of all open domains in (X , τ ). Then (X , τ ′ ) is semiregular and
the two spaces (X , τ ) and (X , τ ′ ) have the same open domains. (X , τ ′ ) is called the
semiregularization of (X , τ ) [1, 1.7.8 (b)], see also [9]. Since any closed domain in an
H-space (X , UAH ) is a closed domain in the usual metric space (X , U ), see Theorem
4 and Theorem 6, we conclude that any open domain in an H-space (X,UAH) is an open
domain in the usual metric space (X , U ). Thus the semiregularization of an H-space
(X , UAH ) is (X , U ).

We can conclude more interesting result from Theorem 4. Since anH-space (X , UAH )
and the usual metric space (X , U ) are having the same closed domain, then any H-space
(X , UAH ) is κ-metrizable. Let us recall the definitions. Denote the family of all closed
domains in X by R[X]. A κ-metric on a T3 space is a non-negative real-valued function
ϕ(x,C) of two variables, x ∈ X and C ∈ R[X], with the requirements:

(i) (K1) (membership axiom)
For every x ∈ X and C ∈ R[X], ϕ(x,C) = 0 ⇔ x ∈ C.

(ii) (K2) (monotonicity)
If C,C ′ ∈ R[X] and C ⊂ C ′, then ϕ(x,C) ≥ ϕ(x,C ′), for all x ∈ X.

(iii) (K3) (continuity)
For every C ∈ R[x], ϕ(x,C) is continuous in x.
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(iv) (K4) (union axiom)

ϕ

(
x,
⋃
α∈Λ

Cα

)
= inf{ϕ(x,Cα) : α ∈ Λ}

For every increasing transfinite sequence {Cα ∈ R[X] : α ∈ Λ }.

A space on which there exists a κ-metric on it is said to be κ-metrizable [11]. The
concept of κ-metrizability is a generalization of metrizability, in the sense that every
metric is a κ-metric, and every metrizable space is κ-metrizable. In [11], Ščepin proved
that “any κ-metrizable space is mildly normal”, which gives another proof that any H-
spaces (X,UAH) is mildly normal. Also, in [11], Ščepin proved that “κ-metrizability is
countable multiplicative”, we get the following corollary.

Corollary 1. If Λ is countable and for each α ∈ Λ, Aα is a non-empty proper subset of
the x-axis L, then

∏
α∈Λ(X,UAαH) is κ-metrizable, hence mildly normal.

Here are some open problems about this H-space.

(i) Is any H-space (X,UAH) almost normal, [6] ?

(ii) Is any H-space (X,UAH) CC-normal, [3] ?
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