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1. Significance statement

In 1990, Fritz Oberhettinger [5] published his book on Fourier transforms inter alia.
In his book a vast number of definite integrals and transforms are summarized and tables
produced. These tables are used in a wide area of mathematics namely probability and
mathematical statistics [3], Fourier series for a combination of Jacobian elliptic functions
[8], traveling wave solutions to the two-dimensional Korteweg-deVries equation [2], and
fundamental solution of hyperbolic differential operators and the poisson summation for-
mula [7] to name a few.

Since there is vast usage of integrals in the book of Oberhettinger [5], in this paper the
authors aim to expand on these tables of integral formula involving exponential and hy-
perbolic functions by providing new formulae derived in this work. Another aim in this
work is to provide the correct derivation of one of the integrals tables in [5], which is of
importance since the book of Oberhettinger is so widely used. Providing an updated ver-
sion of these tables will also assist in expanding current and future research where these
types of integrals are used.
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2. Introduction

In this paper we derive the definite integral given by

(1)
∫ ∞

0
log(tanh(αx))

(
eimx(log(a) + ix)k + e−imx(log(a)− ix)k

)
dx

where the parameters k, a are general complex numbers, Re(α) > 0 and
−1 < Re(m) < 0. The integral will be used to derive special cases in terms of special
functions and fundamental constants. The derivations follow the method used by us in
[9]. This method involves using a form of the generalized Cauchy’s integral formula given
by

yk

Γ(k + 1)
=

1

2πi

∫
C

ewy

wk+1
dw. (2)

where C is in general an open contour in the complex plane where the bilinear concomi-
tant [9] has the same value at the end points of the contour. We then multiply both sides
by a function of x and then take a definite integral of both sides. This yields a definite
integral in terms of a contour integral. Then we multiply both sides of equation (2) by an-
other function of x and take the infinite sums of both sides such that the contour integral
of both equations are the same.

3. Definite integral of the contour integral

We use the method in [9]. The variable of integration in the contour integral is t =
m+w. The cut and contour are in the second quadrant of the complex z-plane. The cut
approaches the origin from the interior of the first quadrant and the contour goes round
the origin with zero radius and is on opposite sides of the cut. Using equation (2) we
replace y → iy + log(a) and multiply by eimy. Next we replace y → −y to form a second
equation and add both to get

(3)

(
eimy(log(a) + iy)k + e−imy(log(a)− iy)k

)
Γ(k + 1)

=
1

2πi

∫
C
2aww−k−1 cos(y(m+ w))dw

Next we replace y → x, multiply both sides by 1
2 log(tanh(αx)) and take the definite

integral over x ∈ [0,∞) to get

(4)

∫ ∞

0

log(tanh(αx))
(
eimx(log(a) + ix)k + e−imx(log(a)− ix)k

)
2Γ(k + 1)

dx

=
1

2πi

∫ ∞

0

∫
C
aww−k−1 cos(x(m+ w)) log(tanh(αx))dwdx

=
1

2πi

∫
C

∫ ∞

0
aww−k−1 cos(x(m+ w)) log(tanh(αx))dxdw

− 1

2πi

∫
C

πaww−k−1 tanh
(
π(m+w)

4α

)
2(m+ w)

dw
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from equation (1.7.7.112) in [5] where 0 < Re(w+m) < 1. We are able to switch the order
of integration over w+m and x using Fubini’s theorem since the integrand is of bounded
measure over the space C× [0,∞). Note the equation quoted in [5] is in error.

4. The Incomplete Gamma Function and its contour integral
representation

The incomplete gamma functions [1], γ(a, z) and Γ(a, z), are defined by

γ(a, z) =

∫ z

0
ta−1e−tdt (5)

and

Γ(a, z) =

∫ ∞

z
ta−1e−tdt (6)

where Re(a) > 0. The incomplete gamma function has a recurrence relation given by

γ(a, z) + Γ(a, z) = Γ(a) (7)

where a ̸= 0,−1,−2, ... The incomplete gamma function is continued analytically by

γ(a, ze2mπi) = e2πmiaγ(a, z) (8)

and
Γ(a, ze2mπi) = e2πmiaΓ(a, z) + (1− e2πmia)Γ(a) (9)

where m ∈ Z, γ∗(a, z) = z−a

Γ(a)γ(a, z) is entire in z and a. When z ̸= 0, Γ(a, z) is an entire

function of a and γ(a, z) is meromorphic with simple poles at a = −n for n = 0, 1, 2, ...

with residue (−1)n

n! . These definitions are listed in Section 8.2(i) and (ii) in [1].

4.1. Infinite sum of the contour integral

Use equation (2) and multiply both sides by emy and integrate over y ∈ [−∞, y) to get

(−1)km−kΓ(k + 1) + yk(−my)−k(Γ(k + 1,−my)− kΓ(k))

mΓ(k + 1)
=

1

2πi

∫
C

w−k−1ey(m+w)

m+ w
dw

(10)

where Im(w +m) > 0. Next we multiply both sides by e−my and replace y → log(a) +
2π(y+1)

b to get
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(11)

1

mΓ(k + 1)
e
−m

(
log(a)+

2π(y+1)
b

)((
log(a) +

2π(y + 1)

b

)k

(
−m

(
log(a) +

2π(y + 1)

b

))−k

(
Γ

(
k + 1,−m

(
2π(y + 1)

b
+ log(a)

))
− kΓ(k)

)
+ (−1)km−kΓ(k + 1)

)

=
1

2πi

∫
C

w−k−1e
w
(
log(a)+

2π(y+1)
b

)
m+ w

dw

Next we multiply both sides by (−1)ye
2πm(y+1)

b and take the infinite sum over y ∈ [0,∞)
and simplify in terms of the incomplete gamma function to get

(12)

∞∑
y =0

π(−1)ya−m

mΓ(k + 1)

((
2 log(a) +

π(y + 1)

α

)k

(
−m(2α log(a) + πy + π)

α

)−k

(
Γ(k + 1)− Γ

(
k + 1,−m

(
π(y + 1)

2α
+ log(a)

)))
+ (−1)k+1m−kΓ(k + 1)

)

=
1

2πi

∞∑
y=0

∫
C

(−1)yaww−k−1e
2π(y+1)(m+w)

b

m+ w
dw

=
1

2πi

∫
C

∞∑
y=0

(−1)yaww−k−1e
2π(y+1)(m+w)

b

m+ w
dw

= − 1

2πi

∫
C

πaww−k−1
(
tanh

(
π(m+w)

4α

)
+ 1
)

2(m+ w)
dw

from equation (1.232.1) in [4] where Im(w +m) > 0 in order for the sum to converge.
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4.1.1. Derivation of the additional contour

Use equation (2) and replace
y → log(a) + y and multiply both sides by emy and take the definite integral over
y ∈ [0,∞) to get

(13)
πa−m(−m)−k−1Γ(k + 1,−m log(a))

2Γ(k + 1)
= − 1

2πi

∫
C

πaww−k−1

2(m+ w)
dw

where −1 < Re(m) < 0.

5. Definite integral in terms of the incomplete gamma function

Theorem 1. For −1 < Re(m) < 0, k, a ∈ C, Re(α) > 0

(14 )

∫ ∞

0
log(tanh(αx))

(
eimx(log(a) + ix)k + e−imx(log(a)− ix)k

)
dx

=

∞∑
y=0

2π(−1)ya−m

m

((
2 log(a) +

π(y + 1)

α

)k

(
−m(2α log(a) + πy + π)

α

)−k

(
Γ(k + 1)− Γ

(
k + 1,−m

(
π(y + 1)

2α
+ log(a)

)))
+ (−1)k+1m−kΓ(k + 1)

)
+ π

(
−a−m

)
(−m)−k−1Γ(k + 1,−m log(a))

Proof. Since the right-hand side of equation (4) is equal to the sum of the right-hand
sides of equations (12) and (13) we can equate the left-hand sides to get the stated result.

6. Table of definite integrals

In this section we will evaluate equation (14) for various values of the parameters and
express these integrals in terms of fundamental constants where possible. Some special
functions and fundamental constants which occur in this section are Euler’s constant γ
section (8.367) in [4], exponential integral function Ei(x) equation (5.231.1) in [4], the
imaginary error function erfi(iz)/i see equation (8.253.1) in [4] and equation (40:12:2) in
[6].
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6.1. Derivation of entry 1.7.7.112 in [5]

Lemma 1.

(15 )

∫ ∞

0
cos(mx) log(tanh(αx))dx = −

π tanh
(
πm
4α

)
2m

Proof. Use equation (14) and set k = 0 and simplify. Note the equation quoted in [5]
is in error.

Proposition 1.

(16 )

∫ ∞

0
xk
(
(−1)−ke−imx + eimx

)
log(tanh(αx))dx

=
∞∑
y=0

2πi−k(−1)y

m

(
(−1)k+1m−kΓ(k + 1)

+ (−m)−k

(
Γ(k + 1)− Γ

(
k + 1,−mπ(y + 1)

2α

)))
+ π

(
−i−k

)
(−m)−k−1Γ(k + 1)

Proof. Use equation (14) and set a = 1 and simplify.

Proposition 2.

(17 )

∫ ∞

0

log(tanh(αx))(log(a) cos(mx) + x sin(mx))

log2(a) + x2
dx

= π

∞∑
y=0

(−1)ya−m

(
log

(
−m(2α log(a) + πy + π)

α

)
+ Γ

(
0,−m(πy + 2α log(a) + π)

2α

)
− log

(
2 log(a) +

π(y + 1)

α

)
− log(m) + iπ

)
− 1

2
πa−mΓ(0,−m log(a))

Proof. Use equation (14) and apply L’Hopital’s rule as k → −1 and simplify.

Lemma 2.

(18 )

∫ ∞

0

log(tanh(3x))
(
log(2) cos

(
3x
4

)
− x sin

(
3x
4

))
x2 + log2(2)

dx

= 23/4π
∞∑
y=0

(−1)yΓ

(
0,

1

8
(πy + log(64) + π)

)
+

πEi
(
−3 log(2)

4

)
4
√
2
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Proof. Use equation (17) and set a = 2, α = 3,m = −3/4 and simplify.

Lemma 3.

(19 )

∫ ∞

0

log(tanh(3x))
(
x sin

(
3x
4

)
− iπ cos

(
3x
4

))
π2 − x2

dx

= π
∞∑
y=0

(−1)y+
3
4Γ

(
0,

1

8
π(y + (1 + 6i))

)
− 1

2
(−1)3/4πΓ

(
0,

3iπ

4

)
Proof. Use equation (17) and set a = −1, α = 3,m = −3/4 and simplify.

Lemma 4.

(20 )

∫ ∞

0

log(tanh(x))
(
cos
(
2x
3

)
− x sin

(
2x
3

))
x2 + 1

dx

= e2/3π
∞∑
y=0

(−1)yΓ

(
0,

1

3
(πy + π + 2)

)
+

1

2
e2/3πEi

(
−2

3

)
Proof. Use equation (17) and set a = e, α = 1,m = −2/3 and simplify.

Proposition 3.

(21 )

∫ ∞

0
(x sin(mx)− iπ cos(mx)) log(tanh(αx))dx

=

∞∑
y=0

π(−1)−m+y+1Γ
(
2,−mπ(y+2iα+1)

2α

)
m2

+
π(1− iπm)

2m2

Proof. Use equation (14) and set k = 1, a = −1 and simplify.

Proposition 4.

(22 )

∫ ∞

0
e−

2ix
3

(
e

4ix
3 log(i(π − x)) + log(i(x+ π))

)
log(tanh(αx))dx

=
3

2
π

∞∑
y=0

(−1)y
(
i
(√

3 + i
)

E1

(
π(y + 2iα+ 1)

3α

)
+ 2e−

π(y+1)
3α log

(
π(2iα+ y + 1)

2α

))
− 3

2
π

(
log(iπ) + (−1)2/3Γ

(
0,

2iπ

3

))
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Proof. Use equation (14) take the first partial derivative with respect to k then set
k = 0,m = −2/3, a = −1 and simplify.

Lemma 5.∫ ∞

0

log(tanh(3x))
(
cos
(
2x
3

)
− sin

(
2x
3

))
√
x

dx

=
√
3π

∞∑
y=0

(−1)yΓ

(
1

2
,
1

9
π(y + 1)

)
− 1

2

√
3π3/2

(23 )

Proof. Use equation (14) and set k = −1/2, a = 1,m = −2/3, α = 3 and simplify.

Lemma 6.

(24 )

∫ ∞

0

(sin(mx) + cos(mx)) log(tanh(αx))√
x

dx

=

∞∑
y=0

√
2π3/2(−1)y+1

(
erfi

(√
π
2

√
m
√

y+1
α

)
− i

)
√
m

+
π3/2m√
2(−m)3/2

Proof. Use equation (14) and set k = −1/2, a = 1 and simplify.

Lemma 7.

(25 )

∫ ∞

0

log(tanh(x))
(
cos
(
x
2

)
− sin

(
x
2

))
√
x

dx

= 2π
∞∑
y=0

(−1)yΓ

(
1

2
,
1

4
π(y + 1)

)
− π3/2

Proof. Use equation (14) and set k = −1/2, a = 1,m = −1/2, α = 1 and simplify.

Lemma 8.

(26 )

∫ ∞

0

√
x log(tanh(x))

(
sin
(x
2

)
+ cos

(x
2

))
dx

= 4π
∞∑
y=0

(−1)yΓ

(
3

2
,
1

4
π(y + 1)

)
− π3/2

Proof. Use equation (14) and set k = 1/2, a = 1,m = −1/2, α = 1 and simplify.
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Lemma 9.

(27 )

∫ ∞

0

e−
ix
2

(√
π − x+ eix

√
x+ π

)
log(tanh(πx))

√
π2 − x2

dx

= 2i
√
2π

∞∑
y=0

(−1)y+
1
4Γ

(
1

2
,
1

4
(y + 2iπ + 1)

)
+ (1− i)πΓ

(
1

2
,
iπ

2

)
Proof. Use equation (14) and set k = −1/2, a = −1,m = −1/2, α = π and simplify.

Lemma 10.

(28 )

∫ ∞

0
e−

ix
2
(
eix log(−ix) + log(ix)

)
log(tanh(πx))dx

= 4π
∞∑
y=0

(−1)y
(
e−

y
4
− 1

4 log

(
y + 1

2

)
+ Γ

(
0,

y + 1

4

))
+ 2π(γ − log(2))

Proof. Use equation (14) and set a = 1,m = −1/2, α = π then take the first partial
derivative with respect to k and set k = 0 and simplify.

Lemma 11.

(29 )

∫ ∞

0
e

ix
2

(
e−ix

3
√

i(x+ π)
+

1
3
√

i(π − x)

)
log(tanh(2πx))dx

= 2i22/3π
∞∑
y=0

(−1)yΓ

(
2

3
,
1

8
(y + 4iπ + 1)

)
− i22/3πΓ

(
2

3
,
iπ

2

)
Proof. Use equation (14) and set k = −1/3, a = −1, α = 2π,m = −1/2 and simplify.

Lemma 12.

(30 )

∫ ∞

0
e−

ix
2

(
− 1

(x+ π)2
− eix

(π − x)2

)
log(tanh(2πx))dx

= iπ
∞∑
y=0

(−1)yΓ

(
−1,

1

8
(y + 4iπ + 1)

)
− E2

(
iπ

2

)
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Proof. Use equation (14) set a = −1, α = 2π,m = −1/2 and apply L’Hopital’s rule as
k → −2 and simplify.

Lemma 13.

(31 )

∫ ∞

0
ie−

ix
2

(
1

(x+ π)3
+

eix

(π − x)3

)
log(tanh(3πx))dx

=
1

2
iπ

∞∑
y=0

(−1)yΓ

(
−2,

1

12
(y + 6iπ + 1)

)
+

iE3

(
iπ
2

)
π

Proof. Use equation (14) set a = −1, α = 2π,m = −1/2 and apply L’Hopital’s rule as
k → −3 and simplify.

7. Discussion

In this work the authors derived new definite integral formulae involving exponential
and hyperbolic functions and expressed this integral in terms of the incomplete gamma
function. The authors also derived the correct version for an integral in the [5]. Using this
derived integral formula we derived special cases in terms of fundamental constants and
special functions. The authors used their contour integral method to derive the integral
formula expressed in terms of the incomplete gamma function. The results presented were
numerically verified for both real and imaginary and complex values of the parameters in
the integrals using Mathematica by Wolfram.
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