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Abstract. A definite integral involving the power square root of an algebraic function is derived
in terms of the Lerch function. A table consisting of mostly new results is given for easy reading.
The majority of the results in this work are new.
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1. Significance statement

Definite integrals involving the nested square root of a function over [2,∞) have been
studied by Nyblom [7]. The authors studied a definite integral with a general root kernel
in [9]. In this work we will derive and evaluate integrals involving a power square root and
algebraic functions over [0,∞). This integral is also derived in terms of the Lerch function
which is currently not present in current literature. Possible applications of these types
integrals other than those met in stochastic problems has not yet been explored.

2. Introduction

In the present work, the authors used their contour integral method and applied it to
the Lerch function to derive a definite integral and expressed its closed form in terms of a
special function. This derived integral formula was then used to provide formal derivations
in terms of special functions and fundamental constants. The Lerch function being a
special function has the fundamental property of analytic continuation, which enables
us to widen the range of evaluation for the parameters involved in our definite integral.
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The Lerch function is a special function that generalizes the Hurwitz zeta function, the
polylogarithms, and so many interesting and important special functions. The definite
integral derived in this manuscript is given by
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where the parameters k, b and a are general complex numbers and −1 < Re(m) < 0. The
derivation of the definite integral follows the method used by us in [10] which involves
Cauchy’s integral formula. The generalized Cauchy’s integral formula is given by
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where C is in general an open contour in the complex plane where the bilinear concomitant
[10] has the same value at the end points. This method involves using a form of equation
(2) then multiply both sides by a function, then take a definite integral of both sides.
This yields a definite integral in terms of a contour integral. A second contour integral is
derived by multiplying equation (2) by a function and performing some substitutions so
that the contour integrals are the same.

3. Definite integral of contour integral

We use the method in [10]. The variable of integration in the contour integral is
z = w+m. The cut and contour are in the first quadrant of the complex z-plane. The cut
approaches the origin from the interior of the first quadrant and the contour goes round
the origin with zero radius and is on opposite sides of the cut. Using equation (2) we
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from equation (2.1.8.1) in [3] where 0 < Re(w+m
2 ) < 1, |arg(b)|< π. We are able to switch

the order of integration over w+m and x using Fubini’s theorem since the integrand is of
bounded measure over the space C× [0,∞).

4. The Lerch function

We use equation (1.11.3) in [2] where Φ(z, s, v) is the Lerch function which is a gen-
eralization of the Hurwitz zeta ζ(s, v) and Polylogarithm functions Lin(z). The Lerch
function has a series representation given by

Φ(z, s, v) =

∞∑
n=0

(v + n)−szn (4)

where |z|< 1, v ̸= 0,−1, .. and is continued analytically by its integral representation given
by
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1
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where Re(v) > 0, and either |z|≤ 1, z ̸= 1, Re(s) > 0, or z = 1, Re(s) > 1.

5. Infinite sum of contour integral

In this section we will again use Cauchy’s integral formula (2) and take the infinite
sum to derive equivalent sum representations for the contour integrals. We proceed using
equation (2) and replace y by log(a)− log(b)

2 +iπ(2y+1)− log(2) and multiply both sides by
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from equation (1.232.3) in [5] where csch(ix) = −i csc(x) from equation (4.5.10) in [1] and
Im(w +m) > 0 for the sum to converge.
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6. Definite integral in terms of the Lerch function

Theorem 1. For k, a, b ∈ C,−1 < Re(m) < −1/2,
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Proof. Since the right-hand side of equation (3) and (6) are equal we can equate the
left-hand sides and simplify the factorials to get the stated result.

Main results

Proposition 1. For −1 < Re(m) < −1/2, |arg(b)|< π,
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Proof. Use equation (7) and set k = 0 and simplify using entry (2) Table below
(64:12:7) in [8].

Proposition 2. For k ∈ C,−1 < Re(m) < −1/2,
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Proof. Use equation (7) and set a = 2, b = 1 and simplify.

Proposition 3. For b ∈ C,−1 < Re(m) < −1/2,
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Proof. Use equation (7) and set k = a = 1 and simplify using entry (3) Table below
(64:12:7) in [8].
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Proof. Use equation (7) and form a second equation by setting m → p and taking their
difference. Next set k = −1, a = 1, b = 1/4,m = −3/4, p = −2/3 and simplify using entry
(1) in Table below (64:12:7) in [8].

Proposition 5.

(12 )
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Proof. Use equation (7) and form a second equation by setting m → p and taking their
difference. Next set k = −1, a = 1, b = 1/4,m = −1/2, p = −2/3 and simplify using entry
(1) in Table below (64:12:7) in [8].

Theorem 2. For k ∈ C,−1 < Re(m) < 0,
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Proof. Use equation (7) and set a = −1, b = 1/4 and simplify using equation (64:12:2)

in [8].

Theorem 3. For k ∈ C,
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Proof. Use equation (7) and set a = −1, b = 1/4,m = −1/2 and simplify using entry
(4) in Table below (64:12:7) and equation (64:12:1) and entry (2) in Table below (64:7) in
[8].

Proposition 6.

(15 )
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Proof. Use equation (13) and set k = −2,m = −3/4 and simplify in terms of Catalan’s
constant (C) using equation (2.3) in [6] and section (1.7.6) in [4].
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Proof. Use equation 14 and take the first partial derivative with respect to k then
apply L’Hopital’s rule to the right-hand side as k → −1 and simplify in terms of Euler’s
constant (γ) using equation (3:10:1) in [8] and (2.15) in [4].
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Proof. Use equation (14) and take the first partial derivative with respect to k and set
k = 0 and simplify using equation (3:10:1) in [8] and (2.15) in [4].
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Proof. Use equation (14) and take the first partial derivative with respect to k and set
k = 1 and simplify in terms of Glaisher’s constant (A) using equation (3:10:1) in [8] and
(2.15) in [4].
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7. Table of Integrals
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8. Discussion

In this article we derived the definite integral of the logarithmic power square root of
an algebraic function and expressed it in terms of the Lerch function. We then used this
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integral transform to derive a table of integrals consisting of mostly new formula in terms
of special constants and special functions. The results presented were numerically verified
for both real and imaginary values of the parameters in the integrals using Mathematica
by Wolfram. In this work we used Mathematica software to numerically evaluate both
the definite integral and associated Special function for complex values of the parameters
k, a, b,m. We considered various ranges of these parameters for real, integer, negative
and positive values. We compared the evaluation of the definite integral to the evaluated
Special function and ensured agreement.

9. Conclusion

In this paper, we have derived a method for expressing definite integrals in terms of
Special functions using our contour integration method. The contour we used was specific
to solving integral representations in terms of the Lerch function. We expect that other
contours and integrals can be derived using this method.
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