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Abstract. Gα-transform, which is a comprehensive and essential form of Laplace-type integral
transforms, has both advantages and limitations. The purpose of this study is to consider the
applicable range ofGα-transform in finding solutions of ordinary differential equations with variable
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1. Introduction

The differential equations have played a central role in every aspect of applied math-
ematics for a very long time, and their importance has increased further with the advent
of computers. Several mathematical methods have been applied by various researchers
in various fields of science and engineering to obtain the analytical solutions of differ-
ential equations, which appeared in the literature [26, 34, 36]. To solve the differential
equations, the integral transforms were extensively used. The Laplace transform is one
of many integral transforms in applied mathematics and is often used to solve differential
equations.

The Laplace transform reduces a linear differential equation to an algebraic equation,
which can then be solved using algebra’s formal rules. After that, the differential equation
can then be solved by applying the inverse Laplace transform [33]. The Laplace transform
is beneficial for finding the solution of the diffusion equation in transient flow [8, 35, 43]. In
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addition, many researchers mainly had paid attention to study for theory and applications
of Laplace transform, see [9–11, 21, 41] for more details.

The Laplace transform is a well-known fact that it converts a function f of a real
variable t to a function F of a complex variable s, which is defined by

F (s) = L{f(t)} =

∫ ∞

0
e−stf(t)dt.

In addition, if f(t) is a piecewise continuous on [0,∞) and has an exponential order k,
then the Laplace transform F (s) = L{f(t)} exists for s > k.

For s = 1/u, the Laplace transform L{f(t)} can be rewritten as

L{f(t)} =

∫ ∞

0
e−t/uf(t)dt.

In the last two decades, many integral transforms in the class of Laplace-typed integral
transform are introduced, such as Sumudu transform, Elzaki transform, natural transform,
Aboodh transform, Mohand transform, Gα-transform, HY-transform, and Kamal trans-
form. These transforms have been used for solving different types of integral equations,
ordinary differential equations, partial differential equations, and fractional differential
equations, see [1, 3, 15, 22, 37, 42, 45] for more details.

Since the Laplace transform is not suitable for solving some differential equations, in
1993, G. Watugala [44] introduced a new transform, named Sumudu transform, and shown
that Sumudu transform has fascinating properties, making it easy to visualize and apply it
for finding the solution of ordinary differential equations in control engineering problems.
Thus, the Sumudu transform is an ideal transform for control engineering and applied
mathematics.

In 2010, H. Eltayeb and A. Kilicman [14] introduced some relationships between
Sumudu transform and Laplace transform. They showed that the solution which is given
by Laplace transform into a complex domain and given by Sumudu transform into a real
domain. Thus, this leads them to consider that if the solution exists by Sumudu trans-
form, then the solution also exists by Laplace transform. Moreover, they showed a strong
relationship between Sumudu transform and other integral transforms, see A. Kilicman et
al.[13].

Many researchers applied Sumudu transform to solve the system of dynamic equations,
partial differential equations with variable coefficient, a semi-infinite string, an integro-
differential equation, the fractional neutron transport equation, see [2, 4–6, 12, 20, 23–
25, 27, 28] for more details.

The Sumudu transform converts a function f of a real variable t to a function of a
complex variable u, which is defined by

S{f(t)} =
1

u

∫ ∞

0
e−t/uf(t)dt.

In addition, if f(t) is a piecewise continuous on [0,∞) and has an exponential order k,
then the Sumudu transform S{f(t)} exists for u < 1/k.
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Elzaki transform is the modified version of Laplace transform and Sumudu transform,
which was first introduced by T.M. Elzaki [16] in 2011. Elzaki transform was then pre-
sented when Sumudu transform failed to solve some differential equations with variable
coefficients [19]. T.M. Elzaki et al. [17, 18] showed that Elzaki transform provides a
method for analyzing ordinary differential equations such as linear dynamic systems equa-
tion, signals-delay differential equation, and the renewal equation in statistics.

The Elzaki transform converts a function f of a real variable t to a function of a
complex variable u, which is defined by

E{f(t)} = u

∫ ∞

0
e−t/uf(t)dt.

In particular, if f(t) is a piecewise continuous on t ≥ 0 and has an exponential order
k, then the Elzaki transform E{f(t)} exists for u < 1/k.

Recently, Hj. Kim [29] introduced the intrinsic structure and some properties of Gα-
transform, which is defined by

F (u) = Gα{f(t)} = uα
∫ ∞

0
e−t/uf(t)dt,

where α ∈ Z and u is a complex variable. The Gα-transform can be applied directly to
any situation by choosing α appropriately.

In addition, if f(t) is a piecewise continuous on t ≥ 0 and has an exponential order k,
then the Gα-transform Gα{f(t)} exists for u < 1/k.

The Gα-transform is a Laplace-type integral transform can be reduced to the Laplace
transform, Sumudu transform, and Elzaki transform for α = 0,−1, 1, respectively.

Moreover, we know that the Laplace transform has a strong point in the transforms
of derivatives. If we set α = −2, then we obtain a simple tool for transforms of integral,
which can be rewritten as

G−2{f(t)} =
1

u2

∫ ∞

0
e−t/uf(t)dt,

see [30]. Further, Hj. Kim [31] also solved Laguerre’s equation by the G−2-transform.
In 2019, S. Sattaso et al. [39] studied the properties of Gα-transform and presented

an example that cannot be solved by the Sumudu and Elzaki transforms, but it can be
solved by the Gα-transform.

Furthermore, Hj. Kim et al. [38] considered an application of Gα-transform in partial
differential equations by using the n-th partial derivatives, and Hj. Kim [7, 32] also
considered a proof concerning the Laplace transform of the n-th derivative of any order
by mathematical induction and considered a variant of Gα-transform represented by a
logarithmic function. The connection of this transform to the convolutional neural network
can be found in [40].

In this paper, we give some conditions of certain ordinary differential equations that
can be solved by Gα-transform. Furthermore, we include examples to demonstrate the
effectiveness of these results.
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2. Preliminaries

In this section, we give some basic properties of the Gα-transform, which would appear
in this study quite frequently. The proofs of the following properties are given in [29, 39].

Lemma 1. [29] (Gα-transform of derivatives) If f(t), f ′(t), . . . , f (m−1)(t) are continuous
and f (m)(t) is a piecewise continuous function on [0,∞) for m ∈ N ∪ {0} and has an
exponential order k for u < 1/k, then the following properties hold:

(i) Gα{f ′(t)} =
F (u)

u
− uαf(0);

(ii) Gα{f ′′(t)} =
F (u)

u2
− uα−1f(0)− uαf ′(0);

(iii) Gα{f (m)(t)} =
F (u)

um
−

m−1∑
k=0

uα−m+(k+1)f (k)(0),

where F (u) = Gα{f(t)}.

Lemma 2. [39] (Gα-transform of multiplication by power of t) If f(t) is a piecewise
continuous function on [0,∞) and has an exponential order k for u < 1/k, then the
following properties hold:

(i) Gα{tf(t)} = u2F ′(u)− αuF (u);

(ii) Gα{t2f(t)} = u4F ′′(u)− 2(α− 1)u3F ′(u) + (α− 1)αu2F (u);

(iii) Gα{tnf(t)} = u2nF (n)(u)−
(
n

1

)
(α− (n− 1))u2n−1F (n−1)

+ · · · −
(

n

n− 1

)
(α− (n− 1)) (α− (n− 2)) · · · (α− 1)un+1F ′(u)

+ (α− (n− 1)) (α− (n− 2)) · · ·αunF (u),

where F (u) = Gα{f(t)}.

Lemma 3. [39] If f (m)(t) is a piecewise continuous function on [0,∞) for m ∈ N ∪ {0}
and has an exponential order k for u < 1/k, then

Gα{tnf (m)(t)} = u2n
dnGα{f (m)(t)}

dun
−

(
n

1

)
[α− (n− 1)]u2n−1d

n−1Gα{f (m)(t)}
dun−1

+ · · · −
(

n

n− 1

)
[α− (n− 1)] [α− (n− 2)] · · · (α− 1)un+1dGα{f (m)(t)}

du

+ [α− (n− 1)] [α− (n− 2)] · · ·αunGα{f (m)(t)}. (1)

Lemma 4. [29] If f(t) = tn for n ∈ N ∪ {0}, then

Gα{tn} = n!un+α+1.
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Remark 1. By using Lemma 3, substituting n = 1, 2, and 3 in (1) and derivatives, after
some simplification, we obtain

(i) Gα{tf (m)(t)} =
F ′(u)

um−2
− (m+ α)

F (u)

um−1
−

m−1∑
k=0

(1 + k −m)u2+k+α−mf (k)(0);

(ii) Gα{t2f (m)(t)} =
F ′′(u)

um−4
− 2(m+α− 1)

F ′(u)

um−3
+ [m(m+ 1) + 2(α− 1)m+ (α− 1)α]

×F (u)

um−2
−

m−1∑
k=0

[(α−m+ k + 1)(α−m+ k)− 2(α− 1)(α−m+ k + 1)

+(α− 1)α]u3+k+α−mf (k)(0);

(iii) Gα{t3f (m)(t)} =
F ′′′(u)

um−6
− 3(m+ α− 2)

F ′′(u)

um−5
+ [3m(m+ 1) + 6(α− 2)m

+3(α− 2)(α− 1)]
F ′(u)

um−4
− [m(m+ 1)(m+ 2) + 3(α− 2)m(m+ 1)

+3(α− 2)(α− 1)m+ (α− 2)(α− 1)α]
F (u)

um−3

−
m−1∑
k=0

[(α−m+ k + 1)(α−m+ k)(α−m+ k − 1)

−3(α−2)(α−m+k+1)(α−m+k)+3(α−2)(α−1)(α−m+k+1)
−(α− 2)(α− 1)α]u4+k+α−mf (k)(0),

where F (u) = Gα{f(t)}.

3. Main Results

In this section, we show some conditions of certain ordinary differential equations to
ensure that those ordinary differential equations can be solved by Gα-transform.

Theorem 1. Consider the m-th order ordinary differential equation of the form(
amt2 + bmt+ cm

)
y(m)(t) +

(
am−1t

2 + bm−1t+ cm−1

)
y(m−1)(t)

+ · · ·+
(
a0t

2 + b0t+ c0
)
y(t) = g(t), (2)

where aj , bj , cj are constants, j = 0, 1, 2, . . . ,m and g(t) is an unknown function. The
Gα-transform is a suitable method for solving (2), if the following conditions are satisfies

cm = bm = cm−1 = (α− 1)αa0 = 2(α− 1)a0 = 0,

[2 + 2(α− 1) + (α− 1)α]a1 − αb0 = bi−1 − 2(α+ i− 1)ai = 0

for i = 1, 2, 3, . . . ,m, and

[i(i+ 1) + 2(α− 1)i+ (α− 1)α]ai − (i+ α− 1)bi−1 + ci−2 = 0

for i = 2, 3, 4, . . . ,m.
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Proof. By using Remark 1(1-2) and taking Gα-transform of both sides to (2), we obtain[ am
um−4

+
am−1

um−5
+ · · ·+ a1

u−3
+

a0
u−4

]
F ′′(u) +

[
−2(α+m− 1)

am
um−3

− 2(α+m− 2)
am−1

um−4

− · · · − 2α
a1
u−2

− 2(α− 1)
a0
u−3

+
bm

um−2
+

bm−1

um−3
+ · · ·+ b1

u−1
+

b0
u−2

]
F ′(u)

+
[(
m(m+ 1) + 2(α− 1)m+ (α− 1)α

) am
um−2

+
(
(m− 1)m+ 2(α− 1)(m− 1)

+ (α− 1)α
)am−1

um−3
+ · · ·+

(
2 + 2(α− 1) + (α− 1)α

) a1
u−1

+ (α− 1)α
a0
u−2

− (α+m)
bm

um−1

−(α+m− 1)
bm−1

um−2
− · · · − (α+ 1)b1 − α

b0
u−1

+
cm
um

+
cm−1

um−1
+ · · ·+ c1

u
+ c0

]
F (u)

= Gα{g(t)} − q(u), (3)

where q(u) be contained in some expressions that are started by summation and do not
influence the proof steps.

If the Gα-transform is suitable method for solving (2), then the coefficient of F (u) and
F ′(u) in (3) should be equal to zero. Thus, if the coefficient of F (u) = 0, then

um → cm = 0;

um−1 → cm−1 − (m+ α)bm = 0;

um−2 → cm−2 − (m+ α− 1)bm−1 + (m(m+ 1) + 2(α− 1)m+ (α− 1)α) am = 0;

...

u0 → c0 − (α+ 1)b1 + (6 + 4(α− 1) + (α− 1)α) a2 = 0;

u−1 → −αb0 +
(
2 + 2(α− 1) + (α− 1)α

)
a1 = 0;

u−2 → (α− 1)αa0 = 0.

And if the coefficient of F ′(u) = 0, then

um−2 → bm = 0

um−3 → bm−1 − 2(m+ α− 1)am = 0

um−4 → bm−2 − 2(m+ α− 2)am−1 = 0

...

u−1 → b1 − 2(α+ 1)a2 = 0

u−2 → b0 − 2αa1 = 0

u−3 → 2(α− 1)a0 = 0.

In general, we can show that

cm = bm = cm−1 = (α− 1)αa0 = 2(α− 1)a0 = 0,
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[2 + 2(α− 1) + (α− 1)α]a1 − αb0 = bi−1 − 2(α+ i− 1)ai = 0

for i = 1, 2, 3, . . . ,m, and

[i(i+ 1) + 2(α− 1)i+ (α− 1)α]ai − (i+ α− 1)bi−1 + ci−2 = 0

for i = 2, 3, 4, . . . ,m. This completes the proof.

Remark 2. From Theorem 1, if g(t) = 0, we can just set the coefficient of F (u) equal to
zero to reduce conditions. Therefore, the Gα-transform is a suitable method for solving
equation (2), if

cm = cm−1 − (m+ α)bm = [2 + 2(α− 1) + (α− 1)α]a1 − αb0 = (α− 1)αa0 = 0,

and
[i(i+ 1) + 2(α− 1)i+ (α− 1)α]ai − (i+ α− 1)bi−1 + ci−2 = 0

for i = 2, 3, 4, . . . ,m.

Theorem 2. Consider the m-th order ordinary differential equation of the form(
amt3 + bmt2 + cmt+ dm

)
y(m)(t) +

(
am−1t

3 + bm−1t
2 + cm−1t+ dm−1

)
y(m−1)(t)

+ · · ·+
(
a0t

3 + b0t
2 + c0t+ d0

)
y(t) = g(t), (4)

where aj , bj , cj , dj are constants, j = 0, 1, 2, . . . ,m and g(t) is an unknown function. The
Gα-transform is a suitable method for solving (4), if the following conditions are satisfies

dm = cm = bm = dm−1 = cm−1 = dm−2 = 0,

(α− 2)(α− 1)αa0 = 3(α− 2)(α− 1)a0 = 3(α− 2)a0 = 0,

αc0 − [2 + 2(α− 1) + (α− 1)α]b1

+[24 + 18(α− 2) + 6(α− 2)(α− 1) + (α− 2)(α− 1)α]a2 = 0,

(α− 1)αb0 − [6 + 6(α− 2) + 3(α− 2)(α− 1) + (α− 2)(α− 1)α]a1 = 0,

2(α− 1)b0 − [6 + 6(α− 2) + 3(α− 2)(α− 1)]a1 = 0,

di−3 − (α+ i− 2)ci−2 + [(i− 1)i+ 2(α− 1)(i− 1) + (α− 1)α]bi−1

−[i(i+ 1)(i+ 2) + 3(α− 2)i(i+ 1) + 3(α− 2)(α− 1)i+ (α− 2)(α− 1)α]ai = 0

for i = 3, 4, 5, . . . ,m,

ci−2 − 2(α+ i− 2)bi−1 + [3i(i+ 1) + 6(α− 2)i+ 3(α− 2)(α− 1)]ai = 0

for i = 2, 3, 4, . . . ,m, and bi−1 − 3(α+ i− 2)ai = 0 for i = 1, 2, 3, . . . ,m.

Proof. By using Remark 1 and taking Gα-transform of both sides to (4), we obtain[ am
um−6

+
am−1

um−7
+ · · ·+ a1

u−5
+

a0
u−6

]
F ′′′(u) +

[
−3(m+ α− 2)

am
um−5

− 3(m+ α− 3)
am−1

um−6
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− · · · − 3(α− 1)
a1
u−4

− 3(α− 2)
a0
u−5

+
bm

um−4
+

bm−1

um−5
+ · · ·+ b1

u−3
+

b0
u−4

]
F ′′(u)

+
[(
3m(m+ 1) + 6(α− 2)m+ 3(α− 2)(α− 1)

) am
um−4

+
(
3(m− 1)m+ 6(α− 2)(m− 1)

+ 3(α− 2)(α− 1)
)am−1

um−5
+ · · ·+

(
6 + 6(α− 2) + 3(α− 2)(α− 1)

) a1
u−3

+ 3(α− 2)(α− 1)

× a0
u−4

− 2(α+m− 1)
bm

um−3
− 2(α+m− 2)

bm−1

um−4
− · · · − 2α

b1
u−2

− 2(α− 1)
b0
u−3

+
cm

um−2

+
cm−1

um−3
+ · · ·+ c1

u−1
+

c0
u−2

]
F ′(u) +

[
−
(
m(m+ 1)(m+ 2) + 3(α− 2)m(m+ 1)

+ 3(α− 2)(α− 1)m+ (α− 2)(α− 1)α
) am
um−3

−
(
(m− 1)m(m+ 1) + 3(α− 2)(m− 1)m

+ 3(α− 2)(α− 1)(m− 1) + (α− 2)(α− 1)α
)am−1

um−4
− · · · −

(
6 + 6(α− 2)

+ 3(α− 2)(α− 1) + (α− 2)(α− 1)α
) a1
u−2

− (α− 2)(α− 1)α
a0
u−3

− (m(m+ 1)

+2(α− 1)m+ (α− 1)α)
bm

um−2
+
(
(m− 1)m+ 2(α− 1)(m− 1) + (α− 1)α

) bm−1

um−3

+ · · ·+
(
2 + 2(α− 1) + (α− 1)α

) b1
u−1

+ (α− 1)α
b0
u−2

− (m+ α)
cm

um−1

− (m+ α− 1)
cm−1

um−2
− · · · − (α+ 1)

c1
u0

− α
c0
u−1

+
dm
um

+
dm−1

um−1
+ · · ·+ d1

u1
+

d0
u0

]
F (u)

= Gα{g(t)} − r(u),

where r(u) be contained in some expressions that are started by summation and do not
influence the proof steps.

By using the previous results, which similar to the Theorem 1, we know that the
coefficients of F (u), F ′(u) and F ′′(u) should be equal to zero, by the same process as
Theorem 1, we can show that

dm = cm = bm = dm−1 = cm−1 = dm−2 = 0,

(α− 2)(α− 1)αa0 = 3(α− 2)(α− 1)a0 = 3(α− 2)a0 = 0,

αc0 − [2 + 2(α− 1) + (α− 1)α]b1

+[24 + 18(α− 2) + 6(α− 2)(α− 1) + (α− 2)(α− 1)α]a2 = 0,

(α− 1)αb0 − [6 + 6(α− 2) + 3(α− 2)(α− 1) + (α− 2)(α− 1)α]a1 = 0,

2(α− 1)b0 − [6 + 6(α− 2) + 3(α− 2)(α− 1)]a1 = 0,

di−3 − (α+ i− 2)ci−2 + [(i− 1)i+ 2(α− 1)(i− 1) + (α− 1)α]bi−1

−[i(i+ 1)(i+ 2) + 3(α− 2)i(i+ 1) + 3(α− 2)(α− 1)i+ (α− 2)(α− 1)α]ai = 0

for i = 3, 4, 5, . . . ,m,

ci−2 − 2(α+ i− 2)bi−1 + [3i(i+ 1) + 6(α− 2)i+ 3(α− 2)(α− 1)]ai = 0

for i = 2, 3, 4, . . . ,m, and bi−1 − 3(α + i − 2)ai = 0 for i = 1, 2, 3, . . . ,m. The proof is
completed.
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Remark 3. From Theorem 2, if g(t) = 0, we can just set the coefficient of F (u) equal
to zero and F ′(u) equal to zero to reduce conditions. Therefore, the Gα-transform is a
suitable method for solving equation (4), if

dm = cm = dm−1 = cm−1 − 2(α+m− 1)bm = 0,

dm−2 − (α+m− 1)cm−1 + [m(m+ 1) + 2(α− 1)m+ (α− 1)α]bm = 0,

(α− 2)(α− 1)αa0 = 3(α− 2)(α− 1)a0 = 0,

αc0 − [2 + 2(α− 1) + (α− 1)α]b1+

[24 + 18(α− 2) + 6(α− 2)(α− 1) + (α− 2)(α− 1)α]a2 = 0,

(α− 1)αb0 − [6 + 6(α− 2) + 3(α− 2)(α− 1) + (α− 2)(α− 1)α]a1 = 0,

2(α− 1)b0 − [6 + 6(α− 2) + 3(α− 2)(α− 1)]a1 = 0,

di−3 − (α+ i− 2)ci−2 + [(i− 1)i+ 2(α− 1)(i− 1) + (α− 1)α]bi−1

−[i(i+ 1)(i+ 2) + 3(α− 2)i(i+ 1) + 3(α− 2)(α− 1)i+ (α− 2)(α− 1)α]ai = 0

for i = 3, 4, 5, . . . ,m, and

ci−2 − 2(α+ i− 2)bi−1 + [3i(i+ 1) + 6(α− 2)i+ 3(α− 2)(α− 1)]ai = 0

for i = 2, 3, 4, . . . ,m.

4. Examples

In this section, we show the usage of Gα-transform for solving the ordinary differential
equations with variable coefficients that according to Theorem 1 and Theorem 2 via some
examples.

Example 1. Consider the ordinary differential equation with variable coefficients of the
form

t2y′′(t) + 4ty′(t) + 2y(t) = t3. (5)

From (2) and (5), we have

a2 = 1, b1 = 4, c0 = 2, a0 = a1 = 0, b0 = b2 = 0, c1 = c2 = 0,

and we define α = 1 to satisfy with the conditions of Theorem 1, so using the G1-transform
leads to find the solution of (5). By applying the G1-transform to (5) and using Lemma
3, we obtain

G1{t2y′′(t)}+G1{4ty′(t)}+G1{2y(t)} = G1{t3}
u2F ′′(u)− 4uF ′(u) + 6F (u) + 4uF ′(u)− 8F (u) + 2F (u) = 6u5

F ′′(u) = 6u3.

Then, we have

F (u) =
3

10
u5 + c1u+ c2,
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where c1 and c2 are constants. Letting c1 = c2 = 0, we get F (u) =
3

10
u5. By using Lemma

4 and the inverse G1-transform, thus the inverse of u5 is
t3

6
, we obtain y(t) =

1

20
t3 as a

solution of (5). It is not difficult to show that y(t) =
1

20
t3 satisfies (5).

The next example will show that if the conditions do not satisfy Theorem 1, then it is
not suitable to solve by this method as the following.

Example 2. Consider the Legendre differential equation of the form

(1− t2)y′′(t)− 2ty′(t) = t. (6)

From (2) and (6), we have

a2 = −1, c2 = 1, b1 = −2, a0 = a1 = 0, b0 = b2 = 0, c0 = c1 = 0,

and with respect to the conditions in Theorem 1, c2 should be equal to 0, while c2 is equal
to 1. Therefore, the conditions of Theorem 1 are not satisfied. If we take Gα-transform
both sides of (6), we obtain

Gα{(1− t2)y′′(t)} −Gα{2ty′(t)} = Gα{t}

−u2F ′′(u) + 2αuF ′(u) +

(
(α− 3)α+

1

u2

)
F (u) = uα+2.

Observe that (6) changed into a second-order ordinary differential equation with variable
coefficients. Thus, using Gα-transform did not lead to finding the solution of (6).

Example 3. Consider the ordinary differential equation with variable coefficients of the
form

t2y′′(t) + 2ty′(t)− 2y(t) = 0. (7)

From (2) and (7), we have

a2 = 1, b1 = 2, c0 = −2, a0 = a1 = 0, b0 = b2 = 0, c1 = c2 = 0,

and we define α = 1 to satisfy with the conditions of Remark 2, so using the G1-transform
leads to find the solution of (7). By applying the G1-transform to (7) and using Lemma
3, we obtain

G1{t2y′′(t)}+G1{2ty′(t)} −G1{2y(t)} = 0

u2F ′′(u)− 4uF ′(u) + 6F (u) + 2uF ′(u)− 2F (u)− 2F (u)− 2F (u) = 0

u2F ′′(u)− 2uF ′(u) = 0.

Then, we have
F ′′(u)

F ′(u)
=

2

u
. By integration both sides, we obtain

lnF ′(u) = ln c1u
2 or F ′(u) = c1u

2,
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and hence
F (u) =

c1
3
u3 + c2,

where c1 and c2 are constants. Letting c2 = 0, we get F (u) =
c1
3
u3. By using Lemma

4 and the inverse G1-transform, thus the inverse of u3 is t, we obtain y(t) =
c1
3
t as a

solution of (7). It is not difficult to show that y(t) =
c1
3
t satisfies (7).

Example 4. Consider the ordinary differential equation with variable coefficients of the
form

t3y′′′(t) + 9t2y′′(t) + 18ty′(t) + 6y(t) = t. (8)

From (4) and (8), we have

a3 = 1, b2 = 9, c1 = 8, d0 = 6, a0 = a1 = a2 = 0, b0 = b1 = b3 = 0, c0 = c2 = c3 = 0,

d1 = d2 = d3 = 0,

and we define α = 2 to satisfy with the conditions of Theorem 2, so using the G2-transform
leads to find the solution of (8). By applying the G2-transform to (8) and using Lemma
3, we obtain

G2{t3y′′′(t)}+G2{9t2y′′(t)}+G2{18ty′(t)}+G2{6y(t)} = G2{t}
u3F ′′′(u)− 9u2F ′′(u) + 36uF ′(u)− 60F (u) + 9u2F ′′(u)− 54uF ′(u) + 108F (u)

+18uF ′(u)− 54F (u) + 6F (u) = u4.

Then, we have F ′′′(u) = u. By integration both sides, we obtain

F (u) =
1

24
u4 +

c1
2
u2 + c2u+ c3,

where c1, c2, and c3 are constants. Letting c1 = c2 = c3 = 0, we get F (u) =
1

24
u4.

By using Lemma 4 and the inverse G2-transform, thus the inverse of u4 is t, we obtain

y(t) =
1

24
t as a solution of (8).

The next example will show that if the conditions do not satisfy Theorem 2, then it is
not suitable to solve by this method as the following.

Example 5. Consider the ordinary differential equation with variable coefficients of the
form

(t3 + t)y′′′(t) + 6t2y′′(t) + 6ty′(t) = t2. (9)

From (4) and (9), we have

a3 = 1, c3 = 1, b2 = 6, c1 = 6, a0 = a1 = a2 = 0, b0 = b1 = b3 = 0, c0 = c2 = 0,

d0 = d1 = d2 = d3 = 0,
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and with respect to the conditions in Theorem 2, c3 should be equal to 0, while c3 is equal
to 1. Therefore, the conditions of Theorem 2 are not satisfied. If we take Gα-transform
both sides of (9), we obtain

Gα{(t3 + t)y′′′(t)}+Gα{6t2y′′(t)}+Gα{6ty′(t)} = Gα{t2}

u3F ′′′(u)− [3 + 3(α− 2)]u2F ′′(u) +

[
18− 18(α− 2) + 3(α− 2)(α− 1)

−12(α− 1) +
1

u2

]
uF ′(u)−

[
24 + 36(α− 2) + 9(α− 2)(α− 1)

+(α− 2)(α− 1)α+ (α+ 3)
1

u2
− 24(α− 1) + 6(α+ 1)

]
F (u) = 2uα+3.

Observe that (9) changed into a third order ordinary differential equation with variable
coefficients. Thus, by using Gα-transform did not lead to find the solution of (9).

Example 6. Consider the ordinary differential equation with variable coefficients of the
form

t3y′′′(t) + 4t2y′′(t)− 2ty′(t)− 4y(t) = 0. (10)

From (4) and (10), we have

a3 = 1, b2 = 4, c1 = −2, d0 = −4, a0 = a1 = a2 = 0, b0 = b1 = b3 = 0,

c0 = c2 = c3 = 0, d1 = d2 = d3 = 0,

and we define α = 1 to satisfy with the conditions of Remark 3, so using the G1-transform
leads to find the solution of (10). By applying the G1-transform to (10) and using Lemma
3, we obtain

G1{t3y′′′(t)}+G1{4t2y′′(t)} −G1{2ty′(t)} −G1{4y(t)} = 0

u3F ′′′(u)− 9u2F ′′(u) + 36uF ′(u)− 60F (u) + 3u2F ′′(u)− 18uF ′(u) + 36F (u)

+4u2F ′′(u)− 16uF ′(u) + 24F (u)− 2uF ′(u) + 2F (u) + 2F (u)− 4F (u) = 0.

Then, we have
F ′′′(u)

F ′′(u)
=

2

u
. By integration both sides, we obtain

lnF ′′(u) = ln c1u
2 or F ′′(u) = c1u

2,

and hence
F (u) =

c1
12

u4 + c2u+ c3,

where c1, c2, and c3 are constants. Letting c2 = c3 = 0, we get F (u) =
c1
12

u4. By using

Lemma 4 and the inverse G1-transform, thus the inverse of u4 is
t2

2
, we obtain y(t) =

c1
24

t2

as a solution of (10).
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Remark 4. We can see that Example 1, 3, and 6 can be solved by G1-transform, and
Example 4 can be solved by G2-transform, it is clear that Sumudu transform cannot be
solved for these ordinary differential equations.

Remark 5. If we choose the suitable value for α and the problem is consistent with the
conditions of Theorem 1 or Theorem 2, then we can easily find the solution of the ordinary
differential equation. But if the problem is not consistent with the conditions of Theorem
1 or Theorem 2, it will be difficult to find the solution of the ordinary differential equation.

5. Conclusions

We obtained some conditions of certain ordinary differential equations to ensure that
it can be solved by Gα-transform. In this regard, we observed that Gα-transform more
appropriate than other Laplace-typed integral transforms to solve the ordinary differential
equations with variable coefficients by choosing the suitable value for α.
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