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Abstract. In this paper, the Adomian decomposition method and Modified Technique are success-
fully applied to find the approximate solutions of the fuzzy system of Volterra integro-differential
equations. The approximate solutions obtained have been improved by using the iteration of the
integral equation and the numerical solution with the Simpson rule and Trapezoidal rule. These
proposed methods gave excellent results close to the exact solution. The results show that the
present method is very straightforward and effective.
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1. Introduction

Integral equations are used in variety scientific and technical fields, especially in
engineering fields, where they were considered from a period not briefly one of the most
important tools in applied mathematics. Mathematical modeling problems common in
the real world and in our lives are the result of analysis of differential equations, integral
equations, integro-differential equations and statistical equations, and others.

Many mathematical formulations of some physical phenomena contain, integro-differential
equations, these equations appear in fluid mechanics, biological models, kinetic physics
and chemical reactions, as well as, integro-differential equations appear in many physical
processes. Like glass formation and nano-dynamics [1]. There are many effective ways
to find approximate solutions and numerical and analytical solutions to linear and non-
linear problems of integral equations and integro-differential equations used over decades
Volterra integro-differential equations which has continuous kernel [1]. Approximation so-
lution based on basis functions has been utilized to estimate solutions of integral equation
in recent years.
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Basic concept of fuzzy was first introduced by Professor Zadeh in 1965 after his publi-
cations on fuzzy set theory [2, 3]. In the beginning of the 1980s, Adomian [4-6] proposed a
new and fruitful method (so-called decomposition method) for solving linear and nonlinear
(algebraic, differential, partial differential, integral, etc.) equations. It has been shown
that this method yields a rapid convergence of the solutions series to linear and nonlinear
deterministic and stochastic equations.

Many recent years solving fuzzy integro-differential equations, fuzzy Volterra-Fredholm
integral equation and fuzzy Volterra-Fredholm integro-differential equations require ap-
propriate and applicable definitions of fuzzy function [7-10], the fuzzy systems of integral
equations have attracted increasing attention, with regard to fuzzy control, have been
developed mathematical models used in many problems of physics, biology, chemistry,
engineering, and in other fields depend on an integral equation [11].

ADM is an analytical technique that uses Adomian polynomials to evaluate the ap-
proximate solutions. This method does not simplify or discretize the problem, and it can
be used to solve both linear and non-linear problems [12].

The ADM has been used to solve Volterra integral equations, integro-differential equa-
tions and Fredholm integro-differential equations of various types in the literature [13, 14].
Dalal Adnan and Eman Ahmed [15] have been examined the topic of population expan-
sion. Arikglu and Ozkol [12] have been applied Differential Transform Method (DTM)
on both integral equation and integro-differential equation system. Hassan and Peter [16]
solve new iterative method with a reliable algorithm and applied to the systems of Volterra
integro-differential equations. Berenguer et al [17] have been solved systems of integro-
differential equations using numerical of fixed Point. Biazar and Aminikhah [18] have
been used Variational iteration method (VIM) for solving nonlinear integral-differential
equations.

Bani Issaa et al [19] applied numerical methods to slove the fuzzy integro-differential
equations of the second kind. Shabestari et al [20] have been solved Fuzzy Volterra Integro-
differential equations of fractional order by Bernoulli Wavelet method. Das and Taluk-
dar [21] solved fuzzy integro-differential equation by using fuzzy Laplace Transformation.
Mikaeilvand et al [22] applied the differential transform method (DTM) to solve fuzzy
integro-differential equation.

The main objective of this article is to use the Standard Adomian Decomposition
Method (ADM) and Modified Technique (MT) to solve the fuzzy systems of linear and
non-linear four Volterra integro-differential equations (VIDEs) with a comparison between
the both techniques and improved the approximate solutions obtained for the system of
non-linear four VIDEs by using the iteration of the integral equation and the numerical
solution with the Simpson rule and Trapezoidal rule.

2. Basic Concepts

Fuzzy numbers are generalized classical real numbers, and we can define them as a
fuzzy subset of the real line with some additional features. The concept of a fuzzy number
is essential for fuzzy analysis, fuzzy integral equations, as well as a useful tool in a variety



M. T. Younis, W. Al-Hayani / Eur. J. Pure Appl. Math, 15 (1) (2022), 290-313 292

of fuzzy set applications. The basic definitions of fuzzy numbers are the following:

Definition 1. (Fuzzy set) [23]: A set A = {(t, MA(t)) T e X} is called a fuzzy set
where M Ar) 18 the membership function of fuzzy set A is defined by M A X — [0,1],
and the value of M i) is called the membership degree X.

Definition 2. (Fuzzy number) [24, 25]: A fuzzy number is a map o : R — [a,b],
which satisfying

(i) @ is upper semi-continuous function.
(ii) @ (t) = 0 outside some interval [a,d].
(iii) There are real numbers b,c such a < b < ¢ <d

i) @ (t) is a monotonic increasing function on [a, b].
ii) @ (t) is a monotonic decreasing function on [c,d] .
iii) a(t) =1 forall t € [b,].

Definition 3. [25—-27]: A fuzzy number @ in a parametric form is a pair (u,u) of a
function u (r), @ (r), 0 <r < 1; which satisfy the requirements

(i) w(r) is a left continuous function and bounded monotonic increasing.
(ii) @ (r) is a left continuous function and bounded monotonic decreasing.
(i) w(r) <a(r), 0<r <1

The triangular fuzzy number [2, 20, 28|, which is defined as a fuzzy set in R and
characterized by an ordered triple u = (a,b,c) € R3 with a < b < ¢ such that u(r) =
a+ (b—a)r and @ (r) = ¢ — (c — b) r, are the endpoints of r—level sets for all r € [0, 1] is
a popular fuzzy number:

We can represent a crisp number z by (u (r),u (r)) = (z,z), 0 < r < 1. By appropriate
definitions, the fuzzy number space {u (r) < @ (1)} becomes a convex cone E' which could
be isometrically and isomorphically into a Banach space [29]. Let 2 = (z(r),z (r)),
g=(y(r),y(r)),0<r <1, and k € R. Then
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Definition 4. (r—level) [12, 25, 27, 30]: Let E be the set of all fuzzy number on R,
we denoted [u]” r—level set of a fuzzy number u € F, 0 < r < 1, it is a mapping between
close interval [0, 1] to power set of R, where

e { a(r) b)), T el0.1

cl (supp (u)), =20
[u]" is closed and bounded interval [u(r),w (r)] where u(r) denotes the left—hand
endpoint of [u]” and @ (r) denotes the right-hand endpoint of [u]" since each u € R can be
1 if t=wu

0 if t#d
where ¢l (supp (u)) = closure of support u and supp (u) = {t : u(t) > 0}.

observed as defined by @ = {

Definition 5. [23]: Let u = (u(r),u(r)), v = (v(r),v(r)), 0 < r < 1 be two any

arbitrary fuzzy numbers and k is scalar, we define the operation of a fuzzy number

(i) (utv)(r) = (u(r)+u(r), (wto)(r)= (@) +o(r).

Definition 6. (The fuzzy Riemann integral) [31]: We say that
1- f(¢) is a fuzzy valued function if f : X — F.
2- f:(t) is a closed fuzzy valued function if f : X — Fy.
3- f(t) is a bounded fuzzy valued function if f : X — F,.

We denote A, = [ff fE(s)ds, ff 7Y (s) ds} If f(t) is a fuzzy valued function on [a, b]
that is closed and bounded, then the fuzzy Riemann integral f; ]?(s) ds, is a closed fuzzy
number. Furthermore, the [u]” set of f; f(s)ds is

</abj?(s) d8>r _ [/:J?TL (s) ds,/abf;{](s) ds] |

3. Fuzzy System of Volterra Integro-Differential Equations

When a physical system is modeled in a differential sense, the result is a fuzzy
integral equation or a fuzzy integro-differential equation, and hence the solution of fuzzy
integro-differential equations is important in science and engineering. Analytically, non-
linear fuzzy integro-differential equations are difficult to solve, and accurate solutions are
rare [10].
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We consider the following fuzzy system of Volterra integro-differential equations (FS-
VIDES) of the second kind [17, 18]:

& (2,0) = J (z,0) + il Ny [T Koy (o, t) By (i () db, = 1,2 (1)
PR

with the initial conditions

i (0,0) = (a; (a) @ (), (0,0) = (bi(a),bi(a)), i=1,2 (2)

where \;j; # 0, ¢,j = 1,2 are real constants, u (¢, o) = (uj (¢, ) ,iE(t,a))T, 0<t<uz,
a <z <b, T (z,a) are unknown functions, f; (z,a) and the kernels K;j (z,t) are analyt-
ical functions, FA’;] (u(t,«0)) are linear or non-linear functional of the unknown functions
u; (x,«) . Under the appropriate conditions ﬁ (x,a) and K;j (x,t), the FSVIDEs (1) have
a unique continuous solution u; (z, ) on the given interval [a, b].

The parametric form of the given FSVIDEs (1) can be written as

2
uf (z,a) = fi (r,0) + > Aij Iy Kij (2,1) Fij (u(t, a))dt,
B 7 i=1,2 (3)
u;/ (z,a) = ﬁ (x,a) + '21 Aij fgc K;;j (z,1) E(H (t,a)) dt,
j=

4. Adomian Decomposition Method

The Adomian decomposition method gives the solution of the FSVIDEs (1) as an
infinite series usually converging to the closed form solution. To solve the FSVIDEs (1)
and (2) by the Adomian’s technique, assume an infinite series solution for the unknowns
functions 4; (z, @) = [ (x, @), (z,a)], i = 1,2 given by [19, 21, 23] as follows

00
%(CIZ,Q) = Z Uin (‘T?a)v
n=0

~ i=1,2 (4)
Ui(xva) = Z m(x’a)v
n=0
and decomposing non-linear functions I/?ZVJ (w(t,o)) = |Fy (u(t,a)), Fiy (@(t, a))] 1, ) =
1,2 as
Fy (w(t,0) = 3 A
no:oo i,j=1,2 (5)
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where AZ] n= [AZJ n, Aij, n} ,m > 0, are polynomials (so called Adomian polynomials) [3—6]
of uig (t, ) ,ui1 (t,@), ..., uin (t, @), i = 1,2 given by

1 0"
Ai'n = )‘Z i, t )
2L nloan [ (Z ik OZ))L\_O i,j=1,2 (6)
1 " n=0,12,...
Aiip = N (t ,
Pl oan [ <k§0 i (1 a)ﬂ)\o

Applying the Adomian’s technique as in [4-6], the FSVIDEs (3) can be written as

Lu; (z,0) = fi (z,a) + Z Xij Jo Kij (x,t) Ny,

i=1,2 (7)
m<x7a) fz (z,0) + Z Aij fg z] z]dt
T p— dQUT . .
where Lu; (z,0) = ol Lu; (r, ) = 20 L= 1,2 are the linear operators and N;; =

Fyj(u(t,a)),N;j = F;; (u(t,a)), i,j = 1,2 are the non-linear operators. Operating on
both sides of the FSVIDEs (7) with the inverse operator of L (namely L' = [ [" [-] dtdt)
yields

ui (z,a) = u; (0, ) +u; (0,0) v + L~ Lfi(z,0) + L7

Z Nij Jo Kij (2, 1) szdt]

i=1,2
2
w (z,a) = (0,a) +u} (0,0)z + L7 fi (z,0) + L1 | 32 Mg Iy Kij (:U,t)N”dt] ,
Jj=1
(8)
Using (4) and (5) into the FSVIDEs (8) it follows that
E Ui (7,0) = u; (0,a) +uj (0,) x + L~ i (z, )
n=0"
F ) N -
—I—Lil Z )\ij fO Kz'j (l‘,t) Z Aij,ndt ,
= n=0""
. b= Ii=1,2 (9)
> Ui (z,0) =5 (0,a) + u (0,0) x + L7V f; (z, )
n=0
F N -
+ L7 Y N fo i (w,t) X2 Aijndt|,
\ J=1 n=0 J

Using the fuzzy Standard ADM, according to (9), the lower iterations (L) are then deter-
mined in the following recursive way:

uio (2, a) = u; (0,a) +uj (0, ) z + L7 fi(z,0),
— i=1,2

10
Uipt1 (v, 0) = L1 Z)‘Ufo ij (z,1) Awndt n=0,1,2,... (10)
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and the upper iterations (U) are

Wi (z, ) =15 (0, oz)—l—J(O a)r+ L7 i (z,a),

i=1,2
W( ) [Z )\Z] fO z] :C t Afmndt

n=20,1,2,... (11)

Using the fuzzy Modified Technique (MT) [11], according to (9), Lower iterations (L) are
then calculated in a recursive manner as follows:

U;,0 (33', CM) = % (07 Oé) + U;; (07 Oé) x
i1 (T, ) = L_lﬁ(:c,oz) + L7t Z Aij fo ij ( Aw odt| §=1,2
(12)
n=1,2,
Uit (2,00) = Z Nij Jo Kij (x,t) Aijmdt |
and the upper iterations (U) are
W,O(%a) = Ui(07a) +u7;(0,04)1'
wiq (z,0) = L7 fi (z,0) + L7 Z Nij Jo Kij (,t) Aijodt| 5 =1,2
(13)
=1,2,
ui,n—i—l( ) [Z )\U fO ij :L‘ t AZ] ndt
Thus, all components (m (z,a) = [um (z,a) ,m(x,a)} , 1= 1,2) of u; (z,a) =
@(m, ), (x, a)] , 1 =1,2 can be calculated once the ;1?]7/” are given fori, 7 =1,2,...,m
and n =0,1,2,... . We then define the n—term approximants to the solutions u; (x, ) =

n—1
@(ZL‘,O&) 7171'(%04)] i =1,2by ¢i,n @(ZE,O&)] = Z Us, K (IIZ‘,O() ;1 =1,2with h_>m ¢i,n @(l‘aa)] =
k=0" o

ik (T )i =1,2with lim ¢;,, [U; (x,a)] =

n—oo

n—1
ui (x,a),i=1,2and by ¢, [t; (z,)] = )
k=0

u; (r,a), i =1,2.

5. Applications and numerical results

The fuzzy systems of linear and non-linear Volterra integro-differential equations
are displayed in the following two problems, and we use ADM and MT to achieve ap-
proximate exact solutions. In the problem 2. The maximum errors are defined as follows
to demonstrate the great accuracy of the solution outcomes when compared to the exact
solutions:

00 [aa b] = HuEazact (l’i, CE) - (bi,n (xwa)Hoo )
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n

LQ,S [aa b] - Z [uEJ:act (IBZ’, Oé) - (bi,n (x’b 04)]27
=0

b
L2,I [CL, b] = \// [uExact (Jj’ Oé) - ¢i,n (337 a)]Q dl‘)

wheren = 1,2, ... represents the number of iterations. Moreover, we give the error residual
in the non-linear problem.

The computations for the problems were done with a precision of 40 digits using the
Maple 18 package.

Problem 1.
Let us consider the following linear fuzzy system of Volterra integro-differential
equations (LFSVIDESs) of the second kind

W (z,0) = fi (2, 0) + [ a1 (@) + (x — 1) (¢, )] dt,
uf (2,0) = fo (2, 0) + [ [(z — ) a1 (8, @) — @ (t, @) dt,

with the initial conditions

(14)

W (0,0)=(B-a20),  w(0,0)=(2-a,0?),

uz (0,0) = (3 — 20,200 — 1), ) (0,a) = (4—2@,3&2—(1),

where fl (z,a) = [ﬁ (z,a), f1(z, oz)] and fg (z,a) = [é (z,a) ,E(az,a)] are given by

filz,a) = B—a)+(1—-2a)e" + (1 —2a%) cosz,
fi(z,a) = (5a?—3) —ae” — (3a® — 2a) cosu,
fo(z,a) = (3—2a)z—(1—2a)e” + (2—3a°)sinz,
f2(z,a) = (30 =2)z+ (20° - 1)e* — asina,

The exact solutions of the LFSVIDEs (14) are uj () = €* 4+ cosz and usg () = e* + sin x.
Operating by the same way proceeding (3)-(9) as above, and applying the fuzzy Stan-
dard ADM, the lower iterations (L) are then determined in the following recursive way:
uip (T, ) = B-a)+2-—a)z+ L7 fi(z,0),
ugp (7, ) = (3 — 2a) + (4-20)z+ L7 fy(z,a),

M(m, a)=L"1 [fox [Ul,n (t,a) + (z — t)mi(t, a)} dt} ,

i (#,0) = L7 7|2 = )i (4,0) — w2 (6, 0)] ] n=012... (15)
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and the upper iterations (U) are
o (z,a) =2a + oz + L7Lfi (z,0),
Uz ( ):(204—1)—1—(3042—04):E—|—L_1E(a:,a),
Uit (z, ) = UOI Uiy (t, o) + (z —t) Uz, (K, a)] dt] Y 019 (16)
U2,n+1 (:E, [fo xr — t U1 M (t a) U2,n (t, a)] dt] y T

Applying the fuzzy Modified Technique (MT) [1
determined in the following recursive way:

w(xva) =
o (2, 0) =

1], the lower iterations (L) are then

B—a)+(2—-a)x,
(B—2a)+ (4—-2a)x

uig (z,0) = L7 fi (z,0) + L™ [fox [@(t,a) + (:E—t)%(t,a)} dt} ,
ug (z,0) = L7t fy (z,0) + L1 [ o [(m—t)m(t,a) —@(t,a)} dt} ,
st =1 [ st s et
Uz ni1 (T, 0) = L1 [fox [(aj =t uin () —ugn (¢, oz)} dt} ,
and the upper iterations (U) are
1o (z, @) = 2a + oz,
Uz0 (z,a) = 20— 1) + (3a* — o) z,
{ it (@, @) = L7 (e.0) + L7 [fg [0 (@) + (v = ) w2 (1)) di]
@(x, o)=L fy(x,0) + L1 USC [(z —t)urg (t, ) — TUgp (L, )] dt] ,
u1n+1 [fo ulntoz —&—(a:—t)m(t,a)]dt], "
{ u2,n+1( e Uo [(z —t)ury, (t,a) — m(t,a)]dt], =123, (18)

In Tables 1-4 we shown the maximum errors between the exact solutions and by fuzzy
standard ADM and fuzzy MT for different norms on the interval [0, 1], where n represents
the number of iterations.

Table 1. Norm Error for uj (z,a) (Problem 1) when ao = 0.3

L+ [0,1] Ly 510,1] Ly 1 [0,1]

ADM

MT

ADM

MT

ADM

MT

W
SIS

8.861F — 06
1.499EF — 06
2.637F — 08
1.547E — 08
2.035F — 08
1.672E — 08

1.112E — 04
6.271FE — 05
1.289EF — 07
8.198E — 08
2.040F — 08
1.675E — 08

9.560F — 06
1.620F — 06
4.215F — 08
3.198F — 08
3.765F — 08
3.280F — 8

1.224F — 04
6.916E — 05
1.428E — 07
9.351F — 08
3.768E — 08
3.282F — 08

2.017FE — 06
3.435E — 07
1.177TE — 08
9.480F — 09
1.095E — 08
9.631F — 09

2.681F — 05
1.519E — 05
3.098E — 08
2.103F — 08
1.096E — 08
9.634EF — 09
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Table 2. Norm Error for us (z, ) (Problem 1) when oo = 0.3

299

L [0,1] Ly s10,1] Ly 1[0,1]
n o1 ADM MT ADM MT ADM MT
3 L 6.781E—-06 b5881F—06 7.323E—06 6.567E —06 1549FE —06 1.472F — 06
U 1305F—-06 2815E—05 1407E—-06 3.087E—05 2.961F —07 6.720E — 06
4 L 3318E—-08 4.353E—-08 5997E —-08 6.799FE —08 1.729E —08 1877E —08
U 5533 —-09 1.646E —08 1.044E—08 1.087E—08 2.975FE—09 3.614F —09
5 L 277E—-08 2.737E—-08 5.616L—-08 5.616E—08 1.660E—08 1.660L — 08
U 4671FE—-08 4.683E—-09 9.892E09 9.898E —09 2.876E—09 2877E—09
Table 3. Norm Error for uj (z, ) (Problem 1) when ao = 0.9
Lo [0, 1] L2510, 1] L1 [0,1]
n o1 ADM MT ADM MT ADM MT
3 L 6565E—-06 2.533E—-05 T7.086E —06 2783E—05 1.496FE—06 6.075L —06
U 547TFE—-06 9.163E—06 5.912E —06 1.018E—05 1.248E —06 20264F — 06
4 L 1.009E —08 3.163E—08 1427FE —08 3.544FE —08 3.781E—-09 7.792E — (09
U 3448FE —09 1.362E —08 7.534E—09 1.711E—-08 2.384F —09 4.220F —09
5 L 5478E —-09 5.488E —09 1.068E —08 1.068E—08 3.139FE—09 3.140L —09
U 4.725F—-09 4.731E—-09 9.424FE —-09 9428E—-09 2.774FE—-09 7.792F — 09
Table 4. Norm Error for ug (z, ) (Problem 1) when o = 0.9
L [0,1] Ly s10,1] Ly 1[0,1]
n 1 ADM MT ADM MT ADM MT
3 L 3348E—-06 2314E—-05 3.617TE—06 2.545FE—05 7.657E —07 5.565L — 06
U 2144F —-06 1.220E—-05 2320E—-06 1.352E —05 4.492FE —07 2.996F — 06
4 L 1216E—-07 1.118E—-8 2.087TE—-08 1.733E—-8 5934FE—-09 4.481F—09
U 8131F—-10 1.502E—-8 1.572E—-09 1.609FE —08 4.182F —10 3.314FE —09
5 L 9265E—-09 9.276E—-09 1.887E —08 1.887TE —08 5.575E —09 5.576E —09
U 1.130E—-09 1.123E—-09 1982E—-09 1978E—09 5.553F —10 5.545F —10

In the following Figures (1-12) shows both the exact solutions of (u; (z,«),i =1,2)
and the Standard ADM (¢;3 (x),i = 1,2) for the interval 0 < ¢ < 1. We represent the
exact solutions with a continuous line and use the symbol o for the ADM ¢; 3 (z), i = 1,2.
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0 02 04 06 08 1
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Figure 1. ¢1,3(2,0), wi(z.,a), « =03

4.6-

Figure 2: ¢13(z,a), w1 (z,a), a=0.3
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0 02 04 06 08 1
X
Figure 3: ¢2,3 (z,0), w2 (z,), @« =0.3
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Figure 4: ¢23 (x,a), uz (z,a), a =0.3
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Figure 5: ¢1,3 (z,0), w1 (z,), «=0.6
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Figure 6: ¢13(z,a), w1 (z,a), a=0.6
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X
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Problem 2.
We consider the following non-linear fuzzy system of Volterra integro-differential

equations (NFSVIDESs) of the second kind

W (2.0) = fi(2.0) 4 f§ |uf (t,0) + o (t,0)] dt,

uf (v, @) = fo (2,0) + J3 [uf (t,0) — w3 (t,0) | db,
with the initial conditions

1 (0,0) = (0,0), (0,0)=(2-a,0q),

2 (0,0) = (0,0), uh(0,0) = (20 —a? 3 —2a),

where fi (z, ) = [fi(z,a), fi(z,a)] and fo (@, 0) = [f2 (z, @), f2 (z, )] are given by

(1-30%) ,  (2-4a) ,

filz,a) = (9—-3a)z+ 3 3+ ——a,
3 2
ﬁmwzzumﬁﬂ_wgag_@jﬂﬂ
2 _
fo(z,a) = _(7_0[2)$_(17Oé20OZ)JU57
B = —@rdae 9

The exact solutions of the NFSVIDEs (19) are u; (z) = 2 + 2® and u (z) = 2 — 23,
Operating by the same way proceeding (3)-(9) as above, and applying the fuzzy Stan-
dard ADM, the lower iterations (L) are then determined in the following recursive way:

M(IE,O&) = (2—04):1:+L_1ﬁ(x,a),
m(w,a) = (204—042)x+Lflé(x,a),

Uln+1 (l’, a) = L_l [fox (Al,n + A2,n> dt:| ;
— — n=0,12,... (20)
U2,n+1 (l’, Oé) =Lt [fox (Al,n - A2,n) dt:| )

and the upper iterations (U) are

W5 (2,0) = az + LU (2,0).
Uzp (z,0) = (3 —20) x + L~ fo (z,0),

{ul,nﬂ(x,aFL‘l Uo (Aun +Azn)dt], (21)

Uzt (z,0) = L1 [foz (m - E) dt] )
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where the non-linear terms defined by the series

oo JE— e
u%,n (tv a) = E[) Al,n, u%,n (t, Oé) = ZO Al,n,
n= n=

(22)

o0 [ (e
u%,n (t7 a) = ZO A2,n) u%’n (ta Oé) - ZO A2,n7
n= n=

the corresponding Adomian polynomials [Al,mAl,n} and [Agm,AZn] [3, 4] are

N
18

1n

o0
UL iUl p—is, Aip = D Ui, n>14 n=0,1,2...
n=0

Il
=)

n

8

N

. o
om = Y. U U p—i, Aop= > Uglap—, n>14, n=0,1,2..
n=0 n=0

Applying the fuzzy Modified Technique (MT) [11], the lower iterations (L) are then
determined in the following recursive way:

s (2,0) = L7 5 (Ao + Ann )] (23)
5 ( .

U pt1 (z, ) = L1

and the upper iterations (U) are

{ urp (z, ) = ax,

Uzp (z,a) = (3 — 20 x,

e

w1 (z,0) = L7 (z,0) + L1 U(;c (E—I—Ep) dt] ,
2,1 (337 Oé) = Lilﬁ (ZL‘, Oé) +L7! Ugﬁ (m - E,O) dt] ’

Uttt (w,0) = L7V [ (Arn + Az dt]
Upnt (z,0) = L[ [y (AL — Aop) dt]

In Tables 5-8 display a comparison of the numerical results applying the ADM (n = 4),
Iteration of the Integral Equation (IIE) (23), (24) and the numerical solution of (23), (24)
with the Simpson rule (SIMP) and the trapezoidal rule (TRAP) on the interval [0, 1].
Twenty points have been used in the Simpson and trapezoidal methods. In Tables 9 and
10 we present the maximum error residual obtained by fuzzy standard ADM and fuzzy
MT on the interval [0, 1], where n represents the number of iterations.

n=1,23,... (24)
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Table 5. Numerical results for uj (x, ) (Problem 2) when oo = 0.3

r 1 ADM IIE SIMP TRAP
0.0 L 0.0 0.0 0.0 0.0
U 0.0 0.0 0.0 0.0
0.2 L 0.350820906 0.350820906 0.350820906 0.350820978
U 0.061956312 0.061956312 0.061956312 0.061956441
0.4 L 0.767091047 0.767091047 0.767091047 0.767093546
U 0.136187326 0.136187326 0.136187326 0.136191319
0.6 L 1317168717 1.317168717 1.317168718 1.317190739
U 0.237475634 0.237475634 0.237475634  0.237504395
0.8 L 2.076937697 2.076937698 2.076937706 2.077053136
U 0.384710630 0.384710628 0.384710630 0.384822684
1.0 L 3.139469824 3.139469864 3.139469904 3.139936553
U 0.600309591 0.600309524 0.600309527 0.600616856
Table 6. Numerical results for uy (x,«) (Problem 2) when o = 0.3
T 1 ADM IIE SIMP TRAP
0.0 L 0.0 0.0 0.0 0.0
U 0.0 0.0 0.0 0.0
0.2 L 0.092801026 0.092801026 0.092801026 0.092801087
U 0475703185 0.475703185 0.475703185 0.475703060
0.4 L 0.130785108 0.130785108 0.130785108 0.130787377
U 0.924910864 0.924910864 0.924910864 0.924907020
0.6 L 0.061390455 0.061390455 0.061390456 0.061411601
U 1.317657321 1.317657321 1.317657320 1.317629935
0.8 L —0.161630983 —0.161630982 —0.161630975 —0.161517388
U 1.617533199 1.617533199 1.617533198 1.617428686
1.0 L —-0.570121458 —0.570121448 —0.570121413 —0.569668950
U

1.779759247

1.779759262

1.779759263

1.779483691

308
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Table 7. Numerical results for u (z, ) (Problem 2) when ov = 0.9

309

x 1 ADM I1E SIMP TRAP
0.0 L 0.0 0.0 0.0 0.0
U 0.0 0.0 0.0 0.0
0.2 L 0.228404070 0.228404070 0.228404070 0.228404119
U 0.186735344 0.186735344 0.186735344 0.186735394
0.4 L 0.507332123 0.507332123 0.507332123 0.507333716
U 0.413926676 0.413926676 0.413926676 0.413928238
0.6 L 0.887832878 (.887832878 0.887832879 0.887845675
U 0.722198170 0.722198170 0.722198171 0.722209943
0.8 L 1.422181142 1.422181142 1.422181145 1.422242142
U 1.152251625 1.152251626 1.152251628 1.152302769
1.0 L 2.165166483 2.165166491 2.165166509 2.165395782
U 1.744176060 1.744176064 1.744176075 1.744349048
Table 8. Numerical results for us (x,«) (Problem 2) when o = 0.9
r 1 ADM ITIE SIMP TRAP
0.0 L 0.0 0.0 0.0 0.0
U 0.0 0.0 0.0 0.0
0.2 L 0.189747962 0.189747962 0.189747962 0.189747969
U 0.232529982  0.232529982  0.232529982  0.232529970
0.4 L 0.330021457 0.330021457 0.330021457 0.330021918
U 0.420160289  0.420160289  0.420160289  0.420160096
0.6 L 0.371610554 0.371610554 0.371610555 0.371616888
U 0.517601598  0.517601598  0.517601598  0.517602534
0.8 L 0.266194321 0.266194321 0.266194325 0.266237859
U 0.478812319 0.478812319 0.478812322 0.478830230
1.0 L —-0.032275868 —0.032275864 —0.032275846 —0.032075986
U 0.256634701 0.256634705 0.256634717 0.256743055
Table 9. Error Residual for uy (x, ) (Problem 2)
a=03 a=0.6 a=09
n i ADM MT ADM MT ADM MT
3 L 1128E—-03 4.673E—-01 6.123F—-04 3.920F —01 2.906FE —04 3.152E —01
U 1600F —-03 7.019FE—-02 4.431E—-04 1.227FEF—-01 1.895F —04 2.319F —01
4 L 1285E—-05 1989FE —03 6.062FE —06 8.645E —04 2495E —06 2.060F — 03
U 1.698F —05 2298E —03 1.955E —06 2962E —03 1.285F —06 2.724F —03
5 L 1.050E—07 1255E—03 4.649F —08 9.859E —04 1.720FE —08 7.284E —04
U 1847TFE —07 1.159FE —04 2.712E —08 2.320F —04 9.465F —08 4.912F —04
6 L 7.390FE—-10 1.156E—05 3.058E —10 9.433E—07 9.920F —11 3.428F — 06
U 1350F—-09 3.118E—-06 7.110E—11 5.122F —-06 5.014F —11 b5.347E — 06
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Table 10. Error Residual for us (z, ) (Problem 2)
a=0.3 a=0.6 a=0.9
n i ADM MT ADM MT ADM MT
3 L 3.71E—-04 1.147TE—-01 2955E—-04 5.029E —-02 1979FE —04 5.800F — 03
U 3.081F—-04 4.793E —02 3.550E —05 b5.832E —02 1.570F —04 3.058E — 02
4 L 2525E—-06 1.333E—-02 2.198FE—-06 9.011EF—-03 1211E—-06 b5.735F —03
U 4310F—-06 1.150E—03 1.956E —06 1.755E —03 9.418F —06 3.528F — 03
5 L 4271FE—-08 1.581E—-03 1.928E—08 1.080E—03 7.010E—-09 6.880F —04
U 5304F —-08 2.046E—05 7.163E—09 2097E—03 4.217F—09 3.332E —04
6 L 4399FE—-09 2319FE—-05 1.501E—-10 1.066E —05 4.090E —11 3.979F — 06
U 8200F—10 2289FE —07 3.357E —11 bH.404FE —07 1.672E —11 6.306E — 07

6. Conclusions

The results obtained from the two given problems, have been shown that the Ado-
mian decomposition method and modified technique are powerful and efficient techniques
to find the approximate solution for both linear and non-linear fuzzy system of Volterra
integro-differential equations of the second kind according to the numerical results, men-
tioned in the tables and graphs. Therefore, increasing the number of iterations in the
Adomian decomposition method and modified technique, make the approximate solution
tends to the exact solution. For the non-linear problem, we conclude that the numerical
results by using the numerical solution with the Simpson rule close to the exact solution
more than the numerical solution with the trapezoidal rule. Finally, we conclude that the
methods are extremely quick and simple to converge for solving any equation or system for
any value of o, and it provides more accurate results and therefore is more advantageous.
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