EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 14, No. 4, 2021, 1306-1323
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On the Fourier Transform Related to the Diamond Klein-Gordon Kernel

Sudprathai Bupasiri

Faculty of Education, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand

Abstract. In this article, we study the fundamental solution of the operator

$$
\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k}
$$

iterated k-times, which is defined by (10), where m is a non-negative real number, and k is a nonnegative integer. After that, we study the Fourier transform of the operator $\left(\left(\diamond+m^{2}\right)\left(\frac{\Delta^{2}+\boxtimes^{2}}{2}\right)\right)^{k} \delta$, where δ is the Dirac delta function.
2020 Mathematics Subject Classifications: 46F10
Key Words and Phrases: Diamond Klein-Gordon kernel; Diamond operator; Laplace operator; Fourier transform; wave equation

Introduction

The operator \diamond^{k} has been first introduced by Kananthai [5], is named as the diamond operator iterated k-times, and is defined by

$$
\begin{equation*}
\diamond^{k}=\left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right]^{k}, \quad p+q=n \tag{1}
\end{equation*}
$$

where n is the dimension of the space \mathbb{R}^{n}, for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and k is a nonnegative integer. The operator \diamond^{k} can be expressed in the form $\diamond^{k}=\square^{k} \triangle^{k}=\triangle^{k} \square^{k}$, where the operator Δ^{k} is Laplace operator iterated k-times, which is defined by

$$
\begin{equation*}
\triangle^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right)^{k} \tag{2}
\end{equation*}
$$

DOI: https://doi.org/10.29020/nybg.ejpam.v14i4.4101
Email address: sudprathai@gmail.com (S. Bupasiri)
and the operator \square^{k} is the ultra-hyperbolic operator iterated k-times, which is defined by

$$
\begin{equation*}
\varpi^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\frac{\partial^{2}}{\partial x_{p+2}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k} . \tag{3}
\end{equation*}
$$

By putting $p=1$ and $x_{1}=t$ (time) in (3), then we obtain the wave operator

$$
\begin{equation*}
\boxtimes=\frac{\partial^{2}}{\partial t^{2}}-\sum_{j=1}^{n-1} \frac{\partial^{2}}{\partial x_{j}^{2}} . \tag{4}
\end{equation*}
$$

In 1997, Kananthai [5] showed that the convolution $(-1)^{k} R_{2 k}^{e}(x) * R_{2 k}^{H}(x)$ is the fundamental solution of the operator \diamond^{k}, that is

$$
\begin{equation*}
\diamond^{k}\left((-1)^{k} R_{2 k}^{e}(x) * R_{2 k}^{H}(x)\right)=\delta, \tag{5}
\end{equation*}
$$

where the function $R_{2 k}^{H}(x)$ is defined by (20) and $R_{2 k}^{e}(x)$ is defined by (19). The fundamental solution $(-1)^{k} R_{2 k}^{e}(x) * R_{2 k}^{H}(x)$ is called the diamond kernel of Marcel Riesz. Satsanit [20] showed that

$$
\begin{align*}
\odot^{k} & =\left(\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}+\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right)^{k} \\
& =\left(\left(\frac{\triangle+\square}{2}\right)^{2}+\left(\frac{\triangle-\odot}{2}\right)^{2}\right)^{k} \\
& =\left(\frac{\triangle^{2}+Ф^{2}}{2}\right)^{k} \tag{6}
\end{align*}
$$

Moreover, Kananthai, Suantai and Longani [7] studied the fundamental solution of the operator \oplus^{k} and the weak solution of the equation $\oplus^{k} u(x)=f(x)$, where the operator \oplus^{k} is defined by

$$
\begin{align*}
\oplus^{k} & =\left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{4}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{4}\right]^{k} \\
& =\left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right]^{k}\left[\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}+\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right]^{k} \\
& =\diamond^{k} L_{1}^{k} L_{2}^{k} \\
& =\diamond^{k} L^{k} \tag{7}
\end{align*}
$$

where $p+q=n$ is the dimension of the Euclidean space \mathbb{R}^{n}, k is a non-negative integer, and $f(x)$ is a generalized function.

Next, Kananthai, Suantai and Longani [6] studied the relationship between the operator \oplus^{k} and the wave operator, and the relationship between the operator \oplus^{k} and the Laplace operator. Moreover, they studied equation $\oplus^{k} K(x)=\delta$ and they showed that

$$
K(x)=\left[R_{2 k}^{H}(x) *(-1)^{k} R_{2 k}^{e}(x)\right] * S_{2 k}(x) * T_{2 k}(x)
$$

is the fundamental solution of the operator \oplus^{k}. Later, Kananthai [3] studied the inversion of the kernel $K_{\alpha, \beta, \gamma, \nu}$ related to the operator \oplus^{k}.

In 1988, Trione [22] studied the fundamental solution of the ultra-hyperbolic KleinGordon operator iterated k-times, which is defined by

$$
\begin{equation*}
\left(\square+m^{2}\right)^{k}=\left[\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\frac{\partial^{2}}{\partial x_{p+2}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}+m^{2}\right]^{k} \tag{8}
\end{equation*}
$$

Later, Lunnaree and Nonlaopon [11] introduced the operator $\left(\diamond+m^{2}\right)^{k}$, that is named as the diamond Klein-Gordon operator iterated k-times, which is defined by

$$
\begin{equation*}
\left(\diamond+m^{2}\right)^{k}=\left(\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}+m^{2}\right)^{k} \tag{9}
\end{equation*}
$$

where $p+q=n$ is the dimension of the space \mathbb{R}^{n}, for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, m$ is a nonnegative real number and k is a non-negative integer, see $[9,10,17,18]$ for more details. V.N. Mishra, K. Khatri and L.N. Mishra [15] studied the linear operators to approximate signals of Lip $(\alpha, p),(p \geq 1)$-class, see $[2,12-14,16]$ for more details.

Moreover, Kananthai [4] studied the fundamental solution for the $\left(\diamond+m^{4}\right)^{k}$, which related to the Klein-Gordon operator. From (7) the operator

$$
\left[\left(\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k}
$$

can be expressed in the form

$$
\begin{aligned}
& {\left[\left(\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k}} \\
& =\left(\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}+m^{2}\right)^{k}\left(\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}+\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}\right)^{k} \\
& =\left(\diamond+m^{2}\right)^{k}\left(\frac{\triangle^{2}+\square^{2}}{2}\right)^{k}
\end{aligned}
$$

$$
\begin{equation*}
=\left(\diamond+m^{2}\right)^{k} \odot^{k} . \tag{10}
\end{equation*}
$$

From (10) with $q=m=0$ and $k=1$, we obtain Laplace operator \triangle_{p}^{4} of p-dimension, where

$$
\begin{equation*}
\triangle_{p}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}} . \tag{11}
\end{equation*}
$$

In this article, we study the fundamental solution of the equation of the form

$$
\left(\left(\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right)^{k} K(x, m)=\delta,
$$

or

$$
\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} K(x, m)=\delta,
$$

where $K(x, m)$ is the fundamental solution, δ is the Dirac delta function, k is a nonnegative integer, and m is a non-negative real number. Moreover, we study the Fourier transform of the operator $\left(\left(\diamond+m^{2}\right)\left(\frac{\Delta^{2}+\square^{2}}{2}\right)\right)^{k} \delta$.

Preliminary Notes

Definition 1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of the n-dimensional space \mathbb{R}^{n},

$$
\begin{equation*}
u=x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-x_{p+2}^{2}-\cdots-x_{p+q}^{2}, \tag{12}
\end{equation*}
$$

where $p+q=n$.
Define $\Gamma_{+}=\left\{x \in \mathbb{R}^{n}: x_{1}>0\right.$ and $\left.u>0\right\}$, which designates the interior of the forward cone and $\bar{\Gamma}_{+}$designates its closure and the following functions introduce by Nozaki [19, Page 72], that

$$
R_{\alpha}^{H}(x)= \begin{cases}\frac{u^{\frac{\alpha-n}{2}}}{K_{n}(\alpha)}, & \text { if } x \in \Gamma_{+} ; \tag{13}\\ 0, & \text { if } x \notin \Gamma_{+}\end{cases}
$$

is called the ultra-hyperbolic kernel of Marcel Riesz. Here, α is a complex parameter and n the dimension of the space. The constant $K_{n}(\alpha)$ is defined by

$$
\begin{equation*}
K_{n}(\alpha)=\frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{2+\alpha-n}{2}\right) \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma(\alpha)}{\Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right)} \tag{14}
\end{equation*}
$$

and p is the number of positive terms of

$$
u=x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-x_{p+2}^{2}-\cdots-x_{p+q}^{2}, \quad p+q=n
$$

and let supp $R_{\alpha}^{H}(x) \subset \bar{\Gamma}_{+}$. Now, $R_{\alpha}^{H}(x)$ is an ordinary function if $R e \alpha \geq n$ and is a distribution of α if Re $\alpha<n$. Now, if $p=1$ then (13) reduces to the function $M_{\alpha}(u)$, and is defined by

$$
M_{\alpha}(u)= \begin{cases}\frac{u^{\frac{\alpha-n}{2}}}{H_{n}(\alpha)}, & \text { if } x \in \Gamma_{+} ; \tag{15}\\ 0, & \text { if } x \notin \Gamma_{+},\end{cases}
$$

where $u=x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2}$ and $H_{n}(\alpha)=\pi^{\frac{(n-1)}{2}} 2^{\alpha-1} \Gamma\left(\frac{\alpha-n+2}{2}\right)$. The function $M_{\alpha}(u)$ is called the hyperbolic kernel of Marcel Riesz.

Definition 2. Let $f(x) \in L_{1}\left(\mathbb{R}^{n}\right)$ (the space of integrable function in $\left.\mathbb{R}^{n}\right)$. The Fourier transform of $f(x)$ is defined as

$$
\begin{equation*}
\widehat{f(\xi)}=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f(x) d x \tag{16}
\end{equation*}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right), x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \xi \cdot x=\left(\xi_{1} x_{1}, \xi_{2} x_{2}, \ldots, \xi_{n} x_{n}\right)$ is the usual inner product in \mathbb{R}^{n} and $d x=d x_{1} d x_{2} \ldots d x_{n}$. The inverse of the Fourier transform is defined by

$$
\begin{equation*}
f(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} \widehat{f(\xi)} d \xi . \tag{17}
\end{equation*}
$$

If f is a distribution with compact supports, by [24, Theorem 7.4-3], Equation (17) can be written as

$$
\begin{equation*}
\widehat{f}(\xi)=\mathcal{F} f(x)=\frac{1}{(2 \pi)^{n / 2}}\left\langle f(x), e^{-i \xi \cdot x}\right\rangle . \tag{18}
\end{equation*}
$$

Lemma 1. [5] Given the equation $\triangle^{k} u(x)=\delta$ for $x \in \mathbb{R}^{n}$, where \triangle^{k} is the Laplace operator iterated k-times, which is defined by (2). Then $u(x)=(-1)^{k} R_{2 k}^{e}(x)$ is the fundamental solution of the operator \triangle^{k}, where

$$
\begin{equation*}
R_{2 k}^{e}(x)=\frac{\Gamma\left(\frac{n-2 k}{2}\right)}{2^{2 k} \pi^{\frac{n}{2}} \Gamma(k)}|x|^{2 k-n} . \tag{19}
\end{equation*}
$$

Lemma 2. [22] If $\square^{k} u(x)=\delta$ for $x \in \Gamma_{+}=\left\{x \in \mathbb{R}^{n}: x_{1}>0\right.$ and $\left.u>0\right\}$, where \square^{k} is the ultra-hyperbolic operator iterated k-times, which is defined by (3). Then $u(x)=R_{2 k}^{H}(x)$ is the unique fundamental solution of the operator \square^{k}, where

$$
\begin{equation*}
R_{2 k}^{H}(x)=\frac{u^{\left(\frac{2 k-n}{2}\right)}}{K_{n}(2 k)}=\frac{\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}\right)^{\left(\frac{2 k-n}{2}\right)}}{K_{n}(2 k)} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{n}(2 k)=\frac{\pi^{\frac{n-1}{2}} \Gamma\left(\frac{2+2 k-n}{2}\right) \Gamma\left(\frac{1-2 k}{2}\right) \Gamma(2 k)}{\Gamma\left(\frac{2+2 k-p}{2}\right) \Gamma\left(\frac{p-2 k}{2}\right)} . \tag{21}
\end{equation*}
$$

Lemma 3. [5] Given the equation $\diamond^{k} u(x)=\delta$ for $x \in \mathbb{R}^{n}$, then $u(x)=(-1)^{k} R_{2 k}^{e}(x) *$ $R_{2 k}^{H}(x)$ is the unique fundamental solution of the operator \diamond^{k}, where \diamond^{k} is the diamond operator iterated k-times, which is defined by (1), $R_{2 k}^{e}(x)$ and $R_{2 k}^{H}(x)$ are defined by (19) and (20), respectively. Moreover, $(-1)^{k} R_{2 k}^{e}(x) * R_{2 k}^{H}(x)$ is a tempered distribution.

It is not difficult to show that $R_{-2 k}^{e}(x) * R_{-2 k}^{H}(x)=(-1)^{k} \diamond^{k} \delta$, for k is a non-negative integer.
Definition 3. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of \mathbb{R}^{n}, the function $P_{\alpha}(x, m)$ is defined by

$$
\begin{equation*}
P_{\alpha}(x, m)=\sum_{r=0}^{\infty}\binom{-\alpha / 2}{r}\left(m^{2}\right)^{r}(-1)^{\alpha / 2+r} R_{\alpha+2 r}^{e}(x) * R_{\alpha+2 r}^{H}(x), \tag{22}
\end{equation*}
$$

where α is a complex parameter, m is a non-negative real number, $R_{\alpha+2 r}^{H}(x)$ and $R_{\alpha+2 r}^{e}(x)$ are defined by (20) and (19), respectively.

From the definition of $P_{\alpha}(x, m)$ and by putting $\alpha=-2 k$, we have

$$
P_{-2 k}(x, m)=\sum_{r=0}^{\infty}\binom{k}{r}\left(m^{2}\right)^{r}(-1)^{-k+r} R_{2(-k+r)}^{e}(x) * R_{2(-k+r)}^{H}(x) .
$$

Since the operator $\left(\diamond+m^{2}\right)^{k}$ defined in equation (9) is a linearly continuous and has $1-1$ mapping, then it has inverse. From Lemma 3, we obtain

$$
\begin{align*}
P_{-2 k}(x, m) & =\sum_{r=0}^{\infty}\binom{-k}{r}\left(m^{2}\right)^{r} \diamond^{-k-r} \delta \\
& =\left(\diamond+m^{2}\right)^{k} \delta . \tag{23}
\end{align*}
$$

By putting $k=0$ in (23), we have $P_{0}(x, m)=\delta$. By putting $\alpha=2 k$ into (22), we have

$$
\begin{align*}
P_{2 k}(x, m)= & \binom{-k}{0}\left(m^{2}\right)^{0}(-1)^{k+0} R_{2 k+0}^{e}(x) * R_{2 k+0}^{H}(x) \\
& +\sum_{r=1}^{\infty}\binom{-k}{r}\left(m^{2}\right)^{r}(-1)^{k+r} R_{2 k+2 r}^{e}(x) * R_{2 k+2 r}^{H}(x) . \tag{24}
\end{align*}
$$

The second summand of the right-hand member of (24) vanishes for $m=0$ and then, we have

$$
\begin{equation*}
P_{2 k}(x, m=0)=(-1)^{k} R_{2 k}^{e}(x) * R_{2 k}^{H}(x) \tag{25}
\end{equation*}
$$

is the fundamental solution of the diamond operator \diamond^{k}.
Lemma 4. The function $R_{-2 k}^{H}(x)$ and $(-1)^{k} R_{-2 k}^{e}(x)$ are the inverse in the convolution algebra of $R_{2 k}^{H}(x)$ and $(-1)^{k} R_{2 k}^{e}(x)$, respectively. That is,

$$
R_{-2 k}^{H}(x) * R_{2 k}^{H}(x)=R_{-2 k+2 k}^{H}(x)=R_{0}^{H}(x)=\delta
$$

and

$$
(-1)^{k} R_{-2 k}^{e}(x) *(-1)^{k} R_{2 k}^{e}(x)=(-1)^{2 k} R_{-2 k+2 k}^{e}(x)=R_{0}^{e}(x)=\delta .
$$

For the proof of the this Lemma is given in [1, 21, 23].
Lemma 5. $[20]$ (Convolution of $R_{\alpha}^{e}(x)$ and $R_{\alpha}^{H}(x)$). If $R_{\alpha}^{e}(x)$ and $R_{\alpha}^{H}(x)$ are defined by (19) and (20), respectively, then
(i) $R_{\alpha}^{e}(x) * R_{\beta}^{e}(x)=R_{\alpha+\beta}^{e}(x)$, where α and β are complex parameters;
(ii) $R_{\alpha}^{H}(x) * R_{\beta}^{H}(x)=R_{\alpha+\beta}^{H}(x)$, where α and β are both integers and except only the case both α and β are both integers.

Lemma 6. [11] Given the equation $\left(\diamond+m^{2}\right)^{k} u(x)=\delta$, where $\left(\diamond+m^{2}\right)^{k}$ is the diamond Klein-Gordon operator, which is defined by

$$
\begin{equation*}
\left(\diamond+m^{2}\right)^{k}=\left(\left(\sum_{r=1}^{p} \frac{\partial^{2}}{\partial x_{r}^{2}}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{2}+m^{2}\right)^{k} \tag{26}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, k$ is a non-negative integer, m is a non-negative real number and δ is the Dirac delta function. Then, we obtain

$$
\begin{equation*}
P_{2 k}(x, m)=\sum_{r=0}^{\infty}\binom{-k}{r} m^{2 r}(-1)^{k+r} R_{2 k+2 r}^{e}(x) * R_{2 k+2 r}^{H}(x) \tag{27}
\end{equation*}
$$

is the fundamental solution of the operator $\left(\diamond+m^{2}\right)^{k}$, defined by (9), where $R_{2 k}^{H}(x)$ and $R_{2 k}^{e}(x)$ are defined by (20) and (19), respectively. Moreover, $u(x)=P_{2 k}(x, m)$ is tempered distribution.

Lemma 7. [20] Given the equation

$$
\begin{equation*}
\odot^{k} G(x)=\delta, \tag{28}
\end{equation*}
$$

where \odot^{k} is the operator iterated k-times is defined by (6). Then, we obtain $G(x)$ is the fundamental solution of the equation (28), where

$$
\begin{equation*}
G(x)=\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x)\right) *\left(H^{* k}(x)\right)^{*-1} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
H(x)=\frac{1}{2} R_{4}^{H}(x)+\frac{1}{2}(-1)^{2} R_{4}^{e}(x) . \tag{30}
\end{equation*}
$$

Here, $H^{* k}(x)$ denotes the convolution of $H(x)$ itself k-times, $\left(H^{* k}(x)\right)^{*-1}$ denotes the inverse of $H^{* k}(x)$ in the convolution algebra. Moreover, $G(x)$ is a tempered distribution.

Lemma 8. (The Fourier transform of $\left(\left(\diamond+m^{2}\right)\left(\frac{\Delta^{2}+\square^{2}}{2}\right)\right)^{k} \delta$.)
Let

$$
\|\xi\|=\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right)^{1 / 2}
$$

for $\xi \in \mathbb{R}^{n}$. Then

$$
\left|\mathcal{F}\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} \delta\right| \leq \frac{1}{(2 \pi)^{n / 2}}\left(\|\xi\|^{4}+m^{2}\right)^{k}\|\xi\|^{4 k}
$$

That is, $\mathcal{F}\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} \delta$ is bounded and continuous on the space \mathcal{S}^{\prime} of the tempered distribution. Moreover, by the inverse Fourier transformation

$$
\begin{aligned}
\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} \delta= & \mathcal{F}^{-1} \frac{1}{(2 \pi)^{n / 2}}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}\right. \\
& \left.-\left(\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k}
\end{aligned}
$$

Proof. From the Fourier transform (16), we have

$$
\begin{aligned}
\mathcal{F} & \left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} \delta \\
= & \frac{1}{(2 \pi)^{n / 2}}\left\langle\delta,\left(\diamond+m^{2}\right)^{k}\left(\frac{\triangle^{2}+\square^{2}}{2}\right)^{k} e^{-i \xi \cdot x}\right\rangle \\
= & \frac{1}{(2 \pi)^{n / 2}}\left\langle\delta,\left(\diamond+m^{2}\right)^{k} \frac{(-1)^{2 k}}{2}\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right)^{2}+\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right.\right.\right. \\
& \left.\left.\left.-\xi_{p+1}^{2}-\xi_{p+2}^{2}-\cdots-\xi_{n}^{2}\right)^{2}\right)^{k} e^{-i \xi \cdot x}\right\rangle \\
= & \frac{1}{(2 \pi)^{n / 2}}\left\langle\delta, \frac{(-1)^{2 k}}{2}\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right)^{2}+\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right.\right.\right. \\
& \left.\left.\left.-\xi_{p+1}^{2}-\xi_{p+2}^{2}-\cdots-\xi_{n}^{2}\right)^{2}\right)^{k}\left(\diamond+m^{2}\right)^{k} e^{-i \xi \cdot x}\right\rangle \\
= & \frac{1}{(2 \pi)^{n / 2}}\left\langle\delta,\left[\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}+\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right]^{k}\left[\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}+m^{2}\right]^{k} e^{-i \xi \cdot x}\right\rangle \\
= & \frac{1}{(2 \pi)^{n / 2}}\left\langle\delta,\left[\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{-i \xi \cdot x}\right\rangle \\
= & \left.\frac{1}{(2 \pi)^{n / 2}}\left[\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k} \\
= & \frac{1}{(2 \pi)^{n / 2}}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k}
\end{aligned}
$$

Next, we consider the boundedness of $\mathcal{F}\left(\left(\diamond+m^{2}\right)\left(\frac{\Delta^{2}+\square^{2}}{2}\right)\right)^{k} \delta$. Since

$$
\begin{aligned}
& \left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+Ф^{2}}{2}\right)\right)^{k} \\
& =\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k} \\
& =\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{n}^{2}\right)^{2}+m^{2}\right)^{k}\right. \\
& \left.\quad \times\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{n}^{2}\right)^{2}\right)^{k}\right] \\
& =\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right)\left(\xi_{1}^{2}+\cdots+\xi_{p}^{2}-\xi_{p+1}^{2}-\cdots-\xi_{n}^{2}\right)+m^{2}\right)^{k}\right. \\
& \left.\quad \times\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\left(\xi_{p+1}^{2}+\cdots+\xi_{n}^{2}\right)^{2}\right)^{k}\right] .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \mathcal{F}\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+๑^{2}}{2}\right)\right)^{k} \delta \\
&= \frac{1}{(2 \pi)^{n / 2}}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right)\left(\xi_{1}^{2}+\cdots+\xi_{p}^{2}-\xi_{p+1}^{2}-\cdots-\xi_{n}^{2}\right)+m^{2}\right)^{k}\right. \\
&\left.\times\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\left(\xi_{p+1}^{2}+\cdots+\xi_{n}^{2}\right)^{2}\right)^{k}\right] \\
&\left|\mathcal{F}\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\oplus^{2}}{2}\right)\right)^{k} \delta\right| \\
&= \frac{1}{(2 \pi)^{n / 2}}\left(\left|\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right|\left|\xi_{1}^{2}+\cdots+\xi_{p}^{2}-\xi_{p+1}^{2}-\cdots-\xi_{n}^{2}\right|+m^{2}\right)^{k} \\
& \times\left|\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\left(\xi_{p+1}^{2}+\cdots+\xi_{n}^{2}\right)^{2}\right)\right|^{k} \\
& \leq \frac{1}{(2 \pi)^{n / 2}}\left(\left|\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right|^{2}+m^{2}\right)^{k}\left|\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right|^{2 k} \\
&= \frac{1}{(2 \pi)^{n / 2}}\left(\| \xi| |^{4}+m^{2}\right)^{k}| | \xi| |^{4 k}
\end{aligned}
$$

where $\|\xi\|=\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right)^{1 / 2}, \xi_{i}(i=1,2, \ldots, n) \in \mathbb{R}$. Hence, we obtain

$$
\mathcal{F}\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\boxtimes^{2}}{2}\right)\right)^{k} \delta
$$

is bounded and continuous on the space \mathcal{S}^{\prime} of the tempered distribution.
Since \mathcal{F} is 1-1 transformation from the space \mathcal{S}^{\prime} of the tempered distribution to the real space \mathbb{R}, then by (17), we have

$$
\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} \delta
$$

$$
=\frac{1}{(2 \pi)^{n / 2}} \mathcal{F}^{-1}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k} .
$$

Main Results

Theorem 1. (The fundamental solution of $\left.\left(\left(\diamond+m^{2}\right)\left(\frac{\Delta^{2}+\square^{2}}{2}\right)\right)^{k}\right)$.
Given the equation

$$
\begin{equation*}
\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} K(x, m)=\delta \tag{31}
\end{equation*}
$$

where $\left(\left(\diamond+m^{2}\right)\left(\frac{\Delta^{2}+\square^{2}}{2}\right)\right)^{k}$ is the operator iterated k-times, which is defined by (10), δ is the Dirac-delta function, $x \in \mathbb{R}^{n}, m$ is a non-negative real number and k is a non-negative integer. Then, we obtain

$$
\begin{equation*}
K(x, m)=\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m) \tag{32}
\end{equation*}
$$

is the fundamental solution for the operator iterated k-times, which is defined by (10). In particular, for $m=0$ then (31) becomes

$$
\begin{equation*}
\oplus^{k} K(x, 0)=\delta, \tag{33}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
K(x, 0)=\left(R_{6 k}^{H}(x) *(-1)^{3 k} R_{6 k}^{e}(x)\right) *\left(\left(H^{* k}(x)\right)^{*-1}\right) \tag{34}
\end{equation*}
$$

is the fundamental solution of the o-plus operator \oplus^{k}, for $q=m=0$ then (31) becomes

$$
\begin{equation*}
\triangle_{p}^{4 k} K(x, 0)=\delta \tag{35}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
K(x, 0)=R_{8 k}^{e}(x) \tag{36}
\end{equation*}
$$

is the fundamental solution of (35), where $\triangle_{p}^{4 k}$ is the Laplace operator of p-dimension, iterated $4 k$-times which is defined by (11).

Moreover, from (34), we obtain

$$
\begin{equation*}
\left(R_{-4 k}^{H}(x) *(-1)^{3 k} R_{-6 k}^{e}(x)\right) *\left(H^{* k}(x)\right) * K(x, 0)=R_{2 k}^{H}(x) \tag{37}
\end{equation*}
$$

is the fundamental solution of the ultra-hyperbolic operator \square^{k} iterated k-times, which defined by (3), where $R_{-6 k}^{e}(x)$ and $R_{-4 k}^{H}(x)$ are inverse of $R_{6 k}^{e}(x)$ and $R_{4 k}^{H}(x)$, respectively.

From (34) and (37) with $p=1, q=n-1, k=1, m=0$ and $x_{1}=t$ (time), we obtain

$$
\begin{equation*}
\left(\frac{(-1)^{3}}{2} R_{-6}^{e}(x)+M_{-4}^{H}(u) * \frac{(-1)^{5}}{2} R_{-2}^{e}(x)\right) * K(x, 0)=M_{2}^{H}(u) \tag{38}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\left(-\frac{1}{2} R_{-6}^{e}(x)\right)+M_{-4}^{H}(u) *\left(-\frac{1}{2} R_{-2}^{e}(x)\right)\right) * K(x, 0)=M_{2}^{H}(u) \tag{39}
\end{equation*}
$$

is the fundamental solution of the wave operator is defined by (4), where $M_{2}(u)$ is defined by (15) with $\alpha=2$.

Proof. From (10) and (31), we have

$$
\begin{equation*}
\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\oplus^{2}}{2}\right)\right)^{k} K(x, m)=\left(\diamond+m^{2}\right)^{k}\left(\frac{\triangle^{2}+\varpi^{2}}{2}\right)^{k} K(x, m)=\delta \tag{40}
\end{equation*}
$$

Convolving both sides of (40) by $\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)$, we obtain

$$
\begin{aligned}
& {\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right] *\left(\diamond+m^{2}\right)^{k}\left(\frac{\triangle^{2}+\oplus^{2}}{2}\right)^{k} K(x, m)} \\
& =\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right] * \delta .
\end{aligned}
$$

By properties of the convolution, we have

$$
\begin{aligned}
& \left(\diamond+m^{2}\right)^{k}\left(P_{2 k}(x, m)\right) *\left(\frac{\triangle^{2}+๑^{2}}{2}\right)^{k}\left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right)\right) * K(x, m) \\
& =\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m) .
\end{aligned}
$$

By Lemma 6 and Lemma 7, we obtain,

$$
\begin{equation*}
\delta * \delta * K(x, m)=K(x, m)=\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m) \tag{41}
\end{equation*}
$$

is the fundamental solution of $\left(\left(\diamond+m^{2}\right)\left(\frac{\Delta^{2}+\square^{2}}{2}\right)\right)^{k}$ operator.
In particular, for $m=0$ then (31) becomes

$$
\begin{equation*}
\oplus^{k} K(x, 0)=\delta . \tag{42}
\end{equation*}
$$

From Lemma 5, (22) and (41), we obtain

$$
\begin{aligned}
K(x, 0) & =\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, 0) \\
& =\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) *\left((-1)^{k} R_{2 k}^{e}(x) * R_{2 k}^{H}(x)\right)
\end{aligned}
$$

$$
\begin{equation*}
=\left(R_{6 k}^{H}(x) *(-1)^{3 k} R_{6 k}^{e}(x)\right) *\left(\left(H^{* k}(x)\right)^{*-1}\right) \tag{43}
\end{equation*}
$$

is the fundamental solution of the o-plus operator \oplus^{k}.
Putting $q=m=0$, then (31) becomes

$$
\begin{equation*}
\triangle_{p}^{4 k} K(x, 0)=\delta \tag{44}
\end{equation*}
$$

where $\triangle_{p}^{4 k}$ is Laplace operator of p-dimension iterated $4 k$-times. By Lemma 1 , we have

$$
K(x, 0)=(-1)^{4 k} R_{8 k}^{e}(x)=R_{8 k}^{e}(x)
$$

is the fundamental solution of (44).
On the other hand, we can also find $K(x, m)$ from (41). Since $q=0$, we have $R_{2 k}^{H}(x)$ reduces to $(-1)^{k} R_{2 k}^{e}(x)$. Thus, by (41) for $q=m=0$, we obtain

$$
\begin{aligned}
K(x, 0) & =\left((-1)^{2 k} R_{4 k}^{e}(x) *(-1)^{2 k} R_{4 k}^{e}(x)\right) *\left((-1)^{2 k} R_{4 k}^{e}(x)\right)^{*-1} * P_{2 k}(x, 0) \\
& =(-1)^{4 k} R_{4 k+4 k}^{e}(x) *\left((-1)^{2 k} R_{4 k}^{e}(x)\right)^{*-1} *\left((-1)^{k} R_{2 k}^{e}(x) *(-1)^{k} R_{2 k}^{e}(x)\right) \\
& =(-1)^{8 k} R_{8 k}^{e}(x)=R_{8 k}^{e}(x)
\end{aligned}
$$

where $\left(R_{4 k}^{e}(x)\right)^{*-1}$ is the inverse of $R_{4 k}^{e}(x)$ in the convolution algebra.
From (41), we have

$$
K(x, 0)=\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x)\right) *\left(H^{* k}(x)\right)^{*-1} * P_{2 k}(x, 0)
$$

Convolving the above equation by $\left(R_{-4 k}^{H}(x) *(-1)^{3 k} R_{-6 k}^{e}(x)\right) *\left(H^{* k}(x)\right)$. By Lemma 4, Lemma 5, and (25), we obtain

$$
\begin{aligned}
& \left(R_{-4 k}^{H}(x) *(-1)^{3 k} R_{-6 k}^{e}(x)\right) *\left(H^{* k}(x)\right) * K(x, 0) \\
& \left.=\left(R_{4 k}^{H}(x) * R_{-4 k}^{H}(x)\right) *\left((-1)^{2 k} R_{4 k}^{e}(x) *(-1)^{3 k} R_{-6 k}^{e}(x)\right)\right) \\
& *\left(\left(H^{* k}(x)\right) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, 0)
\end{aligned}
$$

or

$$
\begin{aligned}
& \left(R_{-4 k}^{H}(x) *(-1)^{3 k} R_{-6 k}^{e}(x)\right) *\left(H^{* k}(x)\right) * K(x, 0) \\
& =\delta(x) *(-1)^{5 k} R_{-2 k}^{e}(x) * \delta(x) * P_{2 k}(x, 0) \\
& =\delta(x) *(-1)^{5 k} R_{-2 k}^{e}(x) * \delta(x) *\left((-1)^{k} R_{2 k}^{e}(x) * R_{2 k}^{H}(x)\right) \\
& =\delta(x) * \delta(x) * \delta(x) * R_{2 k}^{H}(x)=R_{2 k}^{H}(x)
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left(R_{-4 k}^{H}(x) *(-1)^{3 k} R_{-6 k}^{e}(x)\right) *\left(H^{* k}(x)\right) * K(x, 0)=R_{2 k}^{H}(x) \tag{45}
\end{equation*}
$$

as the fundamental solution of the ultra-hyperbolic operator iterated k-times defined by (3).

In particular, if we put $p=1, q=n-1, k=1, m=0$ and $x_{1}=t$ (time) in (41) then $R_{-4}^{H}(x)$ reduces to $M_{-4}^{H}(u)$ and $R_{2}^{H}(x)$ reduce to $M_{2}^{H}(u)$, where $M_{4}^{H}(u)$ and $M_{2}^{H}(u)$ are defined by (15) with $\alpha=-4, \alpha=2$, respectively. Thus, (45) becomes

$$
\begin{equation*}
\left(M_{-4}^{H}(u) *(-1)^{3} R_{-6}^{e}(x)\right) *\left(\frac{1}{2} M_{4}^{H}(x)+\frac{(-1)^{2}}{2} R_{4}^{e}(x)\right) * K(x, 0)=M_{2}^{H}(u) \tag{46}
\end{equation*}
$$

By Lemma 7, we obtain

$$
\begin{equation*}
\left(\frac{(-1)^{3}}{2} R_{-6}^{e}(x)+M_{-4}^{H}(u) * \frac{(-1)^{5}}{2} R_{-2}^{e}(x)\right) * K(x, 0)=M_{2}^{H}(u) \tag{47}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\left(-\frac{1}{2} R_{-6}^{e}(x)\right)+M_{-4}^{H}(u) *\left(-\frac{1}{2} R_{-2}^{e}(x)\right)\right) * K(x, 0)=M_{2}^{H}(u) \tag{48}
\end{equation*}
$$

as the fundamental solution of the wave operator defined by

$$
\begin{equation*}
\boxtimes=\frac{\partial^{2}}{\partial t^{2}}-\sum_{j=1}^{n-1} \frac{\partial^{2}}{\partial x_{j}^{2}} \tag{49}
\end{equation*}
$$

where $R_{-6}^{e}(x)$ defined by (19). This completes the proof.

Theorem 2.

$$
\begin{align*}
& \mathcal{F}\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right] \\
& =\frac{1}{(2 \pi)^{n / 2}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k}} \\
& =\left|\mathcal{F}\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right]\right| \leq \frac{1}{(2 \pi)^{\frac{n}{2}}} M \tag{50}
\end{align*}
$$

for a large $\xi_{i} \in \mathbb{R}$, where m is a non-negative real number and M is a constant. That is, \mathcal{F} is bounded and continuous on the space \mathcal{S}^{\prime} of the tempered distributions.

Proof. By Theorem 1, we obtain

$$
\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k}\left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right)=\delta
$$

or

$$
\left(\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} \delta\right) *\left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right)=\delta
$$

Taking the Fourier transform on both sides of the above equation, we obtain

$$
\begin{aligned}
& \mathcal{F}\left((((\diamond + m ^ { 2 }) (\frac { \triangle ^ { 2 } + ® ^ { 2 } } { 2 })) ^ { k } \delta) * \left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right)\right.\right. \\
& \left.\left.\quad * P_{2 k}(x, m)\right)\right)=\mathcal{F} \delta=\frac{1}{(2 \pi)^{n / 2}} .
\end{aligned}
$$

By (18), we have

$$
\begin{aligned}
\frac{1}{(2 \pi)^{n / 2}} & \left\langle(((\diamond + m ^ { 2 }) (\frac { \triangle ^ { 2 } + Ф ^ { 2 } } { 2 })) ^ { k } \delta) * \left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right)\right.\right. \\
& \left.\left.* P_{2 k}(x, m)\right), e^{-i(\xi \cdot x)}\right\rangle=\frac{1}{(2 \pi)^{n / 2}}
\end{aligned}
$$

By the definition of convolution

$$
\begin{aligned}
\frac{1}{(2 \pi)^{n / 2}} & \left\langle(((\diamond + m ^ { 2 }) (\frac { \triangle ^ { 2 } + \square ^ { 2 } } { 2 })) ^ { k } \delta) * \left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right)\right.\right. \\
& \left.\left.* P_{2 k}(x, m)\right), e^{-i \xi \cdot(x+r)}\right\rangle=\frac{1}{(2 \pi)^{n / 2}}, \\
& \frac{1}{(2 \pi)^{n / 2}}\left\langle\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m), e^{-i(\xi \cdot r)}\right\rangle \\
& \times\left\langle\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} \delta, e^{-i(\xi \cdot x)}\right\rangle=\frac{1}{(2 \pi)^{n / 2}}, \\
& \mathcal{F}\left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right)(2 \pi)^{\frac{n}{2}} \mathcal{F}\left(\left(\left(\diamond+m^{2}\right)\left(\frac{\triangle^{2}+\square^{2}}{2}\right)\right)^{k} \delta\right) \\
& =\frac{1}{(2 \pi)^{n / 2}} .
\end{aligned}
$$

By Lemma 8, we obtain

$$
\begin{aligned}
& \mathcal{F}\left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right) \\
& \quad \times\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k} \\
& =\frac{1}{(2 \pi)^{n / 2}} .
\end{aligned}
$$

It follows that

$$
\mathcal{F}\left(\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right)
$$

$$
=\frac{1}{(2 \pi)^{n / 2}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k}}
$$

Since

$$
\begin{align*}
& \frac{1}{\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]} \\
& =\frac{1}{\left[\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)^{2}\right]} \\
& \quad \times \frac{1}{\left[\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{n}^{2}\right)\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}-\xi_{p+1}^{2}-\cdots-\xi_{p+q}^{2}\right)+m^{2}\right]} \tag{51}
\end{align*}
$$

Let $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \Gamma_{+}$with Γ_{+}defined by Definition 1. Then $\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}+\right.$ $\left.\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)>0$ and for a large k, the right-hand side of (51) tend to zero. It follows that it is bounded by a positive constant M say, that is we obtain (50) as required and also by (50) \mathcal{F} is continuous on the space \mathcal{S}^{\prime} of the tempered distribution.

Theorem 3.

$$
\begin{aligned}
\mathcal{F} & \left(\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right]\right. \\
& \left.*\left[\left(R_{4 l}^{H}(x) *(-1)^{2 l} R_{4 l}^{e}(x) *\left(H^{* l}(x)\right)^{*-1}\right) * P_{2 l}(x, m)\right]\right) \\
= & (2 \pi)^{n / 2} \mathcal{F}\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right] \\
& \times \mathcal{F}\left[\left(R_{4 l}^{H}(x) *(-1)^{2 l} R_{4 l}^{e}(x) *\left(H^{* l}(x)\right)^{*-1}\right) * P_{2 l}(x, m)\right] \\
= & \frac{1}{(2 \pi)^{n / 2}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k+l}},
\end{aligned}
$$

where k and l are non-negative integers and \mathcal{F} is bounded and continuous on the space \mathcal{S}^{\prime} of tempered distribution.

Proof. Since $R_{4 k}^{H}(x), R_{4 k}^{e}(x)$ and $P_{2 k}(x, m)$ are tempered distribution with compact support,

$$
\begin{aligned}
& \left(\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right]\right. \\
& \left.\quad *\left[\left(R_{4 l}^{H}(x) *(-1)^{2 l} R_{4 l}^{e}(x) *\left(H^{* l}(x)\right)^{*-1}\right) * P_{2 l}(x, m)\right]\right) \\
& =\left[R_{4 k}^{H}(x) * R_{4 l}^{H}(x)\right] *\left[(-1)^{2 k+2 l} R_{4 k}^{e}(x) * R_{4 l}^{e}(x)\right] *\left[\left(H^{* k}(x)\right)^{*-1}\left(H^{* l}(x)\right)^{*-1}\right] \\
& \quad *\left[P_{2 k}(x, m) * P_{2 l}(x, m)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & {\left[R_{4(k+l)}^{H}(x)\right] *\left[(-1)^{2(k+l)} R_{4(k+l)}^{e}(x)\right] *\left[\left(H^{*(k+l)}(x)\right)^{*-1}\right] } \\
& *\left[P_{2(k+l)}(x, m)\right]
\end{aligned}
$$

by [8, Pages 156-159] and [21, Lemma 2.45]. Taking the Fourier transform on both sides and using Theorem 2, we obtain

$$
\begin{aligned}
\mathcal{F} & \left(\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right]\right. \\
= & \left.*\left[\left(R_{4 l}^{H}(x) *(-1)^{2 l} R_{4 l}^{e}(x) *\left(H^{* l}(x)\right)^{*-1}\right) * P_{2 l}(x, m)\right]\right) \\
& \frac{1}{(2 \pi)^{n / 2}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k+l}} \\
= & \frac{1}{(2 \pi)^{n / 2}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{k}} \\
& \times \frac{(2 \pi)^{n / 2}}{(2 \pi)^{n / 2}\left[\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}+\frac{m^{2}}{2}\right)^{2}-\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\frac{m^{2}}{2}\right)^{2}\right]^{l}} \\
= & (2 \pi)^{n / 2} \mathcal{F}\left[\left(R_{4 k}^{H}(x) *(-1)^{2 k} R_{4 k}^{e}(x) *\left(H^{* k}(x)\right)^{*-1}\right) * P_{2 k}(x, m)\right] \\
& \times \mathcal{F}\left[\left(R_{4 l}^{H}(x) *(-1)^{2 l} R_{4 l}^{e}(x) *\left(H^{* l}(x)\right)^{*-1}\right) * P_{2 l}(x, m)\right] .
\end{aligned}
$$

Since $\left(R_{4(k+l)}^{H}(x) *(-1)^{2(k+l)} R_{4(k+l)}^{e}(x) *\left(H^{*(k+l)}(x)\right)^{*-1}\right) *\left(P_{2(k+l)}(x, m)\right) \in \mathcal{S}^{\prime}$, the space of tempered distribution and by Theorem 2, we obtain that \mathcal{F} is bounded and continuous on \mathcal{S}^{\prime}.

Acknowledgements

The author would like to thank the referees for their suggestions which enhanced the presentation of the paper. The author was supported by Sakon Nakhon Rajabhat University, Thailand.

References

[1] W.F. Donoghue, Distribution and Fourier Transform. Academic Press, New York, 1969.
[2] Deepmala, L.N. Mishra and V.N. Mishra. Trigonometric approximation of signals (functions) belonging to the $W\left(L_{r}, \xi(t)\right),(r \geq 1)$ - class by $(E, q)(q>0)$-means of the conjugate series of its Fourier series. GJMS Special Issue for Recent Advances in

Mathematical Sciences and Applications-13, Global Journal of Mathematical Sciences, 2:61-69, 2014.
[3] A. Kananthai, On the inversion of the kernel $K_{\alpha, \beta, \gamma, \nu}$ related to the operator \oplus^{k}. Indian Journal of Pure and Applied Mathematics, 34:1419-1429, 2003.
[4] A. Kananthai. On the Green function of the diamond operator related to the KleinGordon operator. Bulletin of the Calcutta Mathematical Society, 93:353-360, 2001.
[5] A. Kananthai. On the solutions of the n-dimensional diamond operator. Applied Mathematics and Computation, 88:27-37, 1997.
[6] A. Kananthai, S. Suantai and V. Longani. On the operator \oplus^{k} related to the wave equation and Laplacian. Applied Mathematics and Computation, 132:219-229, 2002.
[7] A. Kananthai, S. Suantai and V. Longani. On the weak solution of the equation related to the diamond operator. Computational Technologies, 5:42-48, 2000.
[8] A. Kananthai. On the distribution related to the Ultra-hyperbolic equation. Journal of Computational and Applied Mathematics, 84:101-106, 1997.
[9] A. Liangprom and K. Nonlaopon. On the convolution equation related to the KleinGordon operator, International Journal of Pure and Applied Mathematics, 71:67-82, 2011.
[10] A. Liangprom and K. Nonlaopon. On the convolution equation related to the diamond Klein-Gordon operator, Abstract and Applied Analysis, 2011:1-14, 2011.
[11] A. Lunnaree and K. Nonlaopon. On the Fourier transform of the diamond KleinGordon kernel. International Journal of Pure and Applied Mathematics, 68:85-97, 2011.
[12] V.N. Mishra and L.N. Mishra. Trigonometric approximation of signals (functions) in L_{p}-norm. International Journal of Contemporary Mathematical Sciences, 7:909-918, 2012.
[13] L.N. Mishra, V.N. Mishra, K. Khatri and Deepmala. On the trigonometric approximation of signals belonging to generalized weighted Lipschitz $W\left(L^{r}, \xi(t)\right)(r \geq 1)$ class by matrix ($C^{1} . N_{p}$) operator of conjugate series of its Fourier series. Applied Mathematics and Computation, 273:252-263, 2014.
[14] V.N. Mishra, K. Khatri, L.N. Mishra, and Deepmala. Trigonometric approximation of periodic signals belonging to generalized weighted Lipschitz $W^{\prime}\left(L_{r}, \xi(t)\right),(r \geq 1)-$ class by Nörlund-Euler $\left(N, p_{n}\right)(E, q)$ operator of conjugate series of its Fourier series. Journal of Classical Analysis, 5:91-105, 2014.
[15] V.N. Mishra, K. Khatri and L.N. Mishra. Using linear operators to approximate signals of Lip $(\alpha, p),(p \geq 1)$-class. Filomat, 27:353-363, 2013.
[16] L.N. Mishra, V.N. Mishra and V. Sonavane. Trigonometric approximation of functions belonging to Lipschitz class by matrix $\left(C^{1} . N_{p}\right)$ operator of conjugate series of Fourier series. Advances in Difference Equations, 127: 2013.
[17] K. Nonlaopon. On the inverse ultrahyperbolic Klein-Gordon kernel, Mathematics, 7:534, 2019.
[18] K. Nonlaopon, A. Lunnaree and A. Kananthai. On the solution of the n-dimensional diamond Klein-Gordon operator and its convolution, Far East Journal of Mathematical Sciences, 63:203-220, 2012.
[19] Y. Nozaki. On Riemann-Liouville integral of ultra-hyperbolic type. Kodai Mathematical Seminar Reports, 6:69-87, 1964.
[20] W. Satsanit. Green function and Fourier transform for o-plus operator. Electronic Journal of Differential Equation, 2010:1-14, 2010.
[21] M.A. Tellez and S.E. Trione. The distributional convolution products of Marcel Riesz's ultra-hyperbolic Kernel. Ravista de la Union Mathematica Argentina, 39:115-124, 1995.
[22] S.E. Trione, On the elementary related, ultra-hyperbolic solution of the Klein-Gordon operator iterated k-times. Studies in Applied Mathematics, 89:121-141, 1988.
[23] S.E. Trione. On the ultra-hyperbolic kernel. Trabajos de Mathematica, 116, 1987.
[24] A. H. Zemanian. Distribution Theory and Transform Analysis. McGraw-Hill, New York, 1965.

