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Abstract. A set S C V(@) is a hop dominating set of G if for each v € V(G) \ S, there exists
w € S such that dg(v,w) = 2. It is a global hop dominating set of G if it is a hop dominating
set of both G and the complement G of . The minimum cardinality of a hop dominating (global
hop dominating) set of G, denoted by v4(G) (resp. v4n(G)), is called the hop domination (resp.
global hop domination) number of G. In this paper, we give some realization results involving
domination, hop domination, and global hop domination parameters. Also, we give a rectification
of a result found in a recent paper of the authors and use this to prove some results in this paper.
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1. Introduction

Domination has been a topic of interest to many researchers in the field of Graph
Theory. By imposing certain additional conditions or formulating similar conditions from
the standard concept, a variant can then be obtained. Indeed, the domination concept
yielded several variations which have been investigated by researchers. Some of these
variants can be found in [1], [2], [3], [4], [6], [7], [8], [9], [10] and [14].

Shortly after Natarajan and Ayyaswamy [13] introduced and studied the concept of
hop domination in a graph, some variants of the concept emerged. The concept and some
of its variants are studied in [5], [11], [12], [15], and [16]. In this paper, we show that the
standard domination and hop domination parameters are generally non-comparable. It
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is shown that the absolute difference of these parameters can be made arbitrarily large.
Further, we rectify a result found in [16] and use the corrected result to prove some results
in this paper.

Let G = (V(G), E(G)) be a simple undirected graph. The distance between two
vertices v and v of G, denoted by dg(u,v), is equal to the length of a shortest path
connecting u and v. Any path connecting v and v of length dg(u, v) is called a u-v geodesic.
The open neighbourhood of a vertex v of G is the set Ng(v) = {u € V(G) : wv € E(G)}
and its closed neighbourhood is the set Ng[v] = Ng(v) U {v}. The open neighbourhood of
a subset S of V(G) is the set Ng(S) = UyesNg(v) and its closed neighbourhood is the
set Ng[S] = Ng(S) U S. The degree of v, denoted by degg(v), is equal to |[Ng(v)|. A
vertex v is called a leaf in G if degg(v) = 1. The open hop neighbourhood of a vertex v
of G is the set Ng(v,2) = {w € V(G) : dg(v,w) = 2} and its closed hop neighbourhood is
the set Ng[v,2] = Ng(v,2) U {v}. The open hop neighbourhood of a subset S of V(G) is
the set Ng(S,2) = UyesNg(v,2) and its closed hop neighbourhood is the set Ng[S,2] =
N¢g(S,2)US.

A set S C V(G) is a dominating set of G if Ng[S] = V(G). A vertex v of G is a
dominating vertex if {v} is a dominating set of G. The smallest cardinality of a dominating
set of G, denoted by v(G), is called the domination number of G. A dominating set of G
with with cardinality v(G) is called a 7y-set of G.

A set S C V(G) is a hop dominating set of G if for each z € V(G) \ S, there exists
z € S such that dg(z,z) = 2. The smallest cardinality of a hop dominating set of G,
denoted by v, (G), is called the hop domination number of G. A hop dominating set of G
with cardinality v, (G) is called a ~yp,-set of G. A set S C V(G) is a global hop dominating
set of G if it is a hop dominating set of G and G. The smallest cardinality of a global hop
dominating set of G, denoted by v,41,(G), is called the global hop domination number of G.
A global hop dominating set of G' with cardinality v,,(G) is called a ~44-set of G.

2. Results

We note that although hop domination is, in some sense, a variation of the standard
domination concept, the associated parameters are, in general, not comparable. Our
first simple result says that the absolute difference of the domination number and hop
domination number can be made arbitrarily large.

Proposition 1. Fach of the following statements holds.
(i) For each integer n > 1, there exists a connected graph G such that v,,(G)—~(G) = n.
(1) For each integer n > 1, there exists a connected graph G such that v(G) —v,(G) = n.

Proof. (i) Let G = Kp41. Then v(G) = 1 and 4(G) = n+1. Hence, 7,(G)—v(G) = n.

(17) Consider the star K 42 with vertices vg, v1,v2,...,Unt1, Unt2, Where vy is the
central vertex. Let G (see Figure 1) be the graph obtained from K 42 by adding n + 2
pendant edges viwy, VowWa, . .., Vpt1Wnt1, UntoWnto. Let S = {v1,v2,...,Un, Unt1, Unya}
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Figure 1
and Sy = {vp,v1}. Clearly, S; and Sy are 7y-set and 7,-set of G, respectively. Thus,
1G) —w(G) = (n+2) —2=n. m
The next result is, in fact, a realization problem.
Theorem 1. Let a and b be positive integers. Then each of the following statements holds.

(1) If 2 < a < b, then there exists a connected graph G such that v,(G) = a and
1(G) =b.

(13) If 3 < a < b, then there exists a graph H such that v(H) = a and y,(H) = b.

Proof. (i) Suppose first that @ = b. Consider the graph G in Figure 2. Clearly,
S1 ={x1,22,...,24} is a yp-set and Sy = {y1,92,...,Ys} is a y-set of G. Hence, 7;(G) =

Y(G) = a.

Y1 Y2 Y3 Ya—1 Ya

1 T2 3 Ta—1 Lq
Figure 2
Next, suppose a < b and let m = b — a. Consider the graph G in Figure 3. One can

easily see that set S = {z1,x2,...,24} is a yp-set of G. Hence, v,(G) = |S| = a. The set
S ={y1,92, -, Ya, 21,22, - - -, Zm 18 & y-set of G and so v(G) = |S'| =a+m =b.
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Figure 3

(74) The case a = b is similar to the first case of (7). Suppose a < b and let m = b — a.
Consider graph H = G U K41, where V(K;4+1) = {v1,v2,...,Vm,Ums1} and G is the
graph in Figure 4. Then S = {y1,y2,...,Ya—1,v1} is ay-set and S’ = {x1,22,...,24-1}U

Y1 Y2 Y3 Ya—2] Ya—

X1 x2 €3 Tag—2 Ta-1

Figure 4
V(Kp+1) is a yp-set of H. Therefore, v(H) = aand y,(H) = a—14+m+1=a+m =0. O

It must be clear that every global hop dominating set is a hop dominating a set and a
set is a global hop dominating set of a graph G if and only if it is a global hop dominating
set of G. The following remark is immediate from these facts.

Remark 1. For any graph G, y,(G) < vgn(G) and vgn(G) = v4n(G).

It was pointed out in [16] that 1 < v44(G) < |V(G)| for any graph G and that
Ygn(G) = 1if and only if G = K. The next result is a rectification of Theorem 3.3 in [16].

Theorem 2. (Theorem 3.3 in [16]) Let G be a graph of order n > 1. Then v4n,(G) =n
if and only if every component of G or G is complete. Moreover, if G is connected, then

for each v € V(G), we have
(1) V(G)\ Ng(v) is an independent set, and
(1i) Ng(v) = Ng(a) for each a € V(G) \ Ng(v).

Proof. Suppose v4,(G) = n. Assume first that G is disconnected and suppose that G
has a component C' which is not complete. Then there exist distinct vertices z,y € V(C)
such that dg(z,y) = do(x,y) = 2. Let S = V(G) \ {z}. Then S is a hop dominating set
of G. Let z € C such that [z,z,y] is an z-y geodesic in G. Let C’ be a component of
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G with C' # C and pick any w € C’. Then [x,w, 2] is an 2-z geodesic in G. It follows
that dg(z,z) = 2. Thus, S is a hop dominating set of G, showing that S is a global hop
dominating set of G. Therefore, v,,(G) < |S| = n—1, a contradiction. Accordingly, every
component of GG is complete.

Next, suppose that G is connected. Suppose further that G is connected. Then,
clearly, G # K,. Let u,v € V(G) be such that dg(u,v) = 2 and let [u,p,v] be a u-v
geodesic in G. Then S* = V(G) \ {u} is a hop dominating set of G. Since up ¢ E(G),
it follows that dg(u,p) > 2. It follows that there exists ¢ € S such that dg(u,q) = 2.
This shows that S* is hop dominating set of G. Thus, S* is a global hop dominating set
of G and v4,(G) < |S*| = n — 1, a contradiction. Therefore, G is disconnected. Since
Ygh(G) = Ygn(G) = n, this would imply that every component of G is complete (as in the
first case applied to G).

For the converse, suppose first that every component of G is complete. Then, clearly,
S = V(@) is the only hop dominating set of G. It follows that S is the only global hop
dominating set of G. If every component of G is complete, then S is the only global hop
dominating set of G. Therefore, vy44(G) = n.

Now suppose G is connected and let v € V(G) = V(G). Suppose there exist distinct
vertices a,b € V(G) \ Ng(v) such that ab € E(G). Then [a,v,b] is an a-b geodesic in G,
implying that S, = V(G)\ {a} is a hop dominating set of G. Now, since a € V(G)\ Ng(v),
it follows that dg(a,v) > 2. This implies that there exists w € S, such that dg(a,w) = 2,
showing that S, is also a hop dominating set of G. Hence, v4,(G) < |S,| =n —1, a
contradiction. Therefore, V(G) \ Ng(v) is an independent set, showing that (i) holds.
Next, let a € V(G)\ Ng(v). Let C, be the component of G with v € C,. Since a € Ng(v)
and C, is complete, Ng(a) = Ng(v). This shows that (i) holds. O

The next result is a consequence of Theorem 2.
Corollary 1. vy,(Kp) = Ygn(Kin—1) = n for all integer n > 2.

Theorem 3. Let a and b be positive integers such that 2 < a < b. Then there exists a
connected graph G such that v,(G) = a and v4,(G) = b.

Proof. Consider the following cases:
Case 1. a =10

Let G = K,. Then G = K,. By Theorem 2, v,(G) = y,1(G) = a.

Case 2. a < b

Let k =b—a. Let V(K4—1) = {z1,22,...,24—1} and consider the graph G in Figure
5 obtained from (v) + K,—1 by adding the edges z;y; for i € {1,2,...,a — 1} and j €
{1,2,...,k} ({(v) is the graph induced by {v}).
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Figure 5

Let S = {v} UV (K,-1) = {v,x1,22,...,24—1}. Since every vertex x; (1 <i<a—1)isa
dominating vertex of G, it follows that each x; is in every ~yj,-set of G. Since dg(v,y;) = 2
for all j € {1,2,...,k}, it follows that S is a y,-set of G. Hence, v,(G) = a. Now,
the complement G of G is the graph isomorphic to (K; + K;) U K, 1. By Theorem 2,
Ygn(G) = [V(G)| = (k+ 1)+ (a—1) =b. O

Corollary 2. For each positive integer n, there exists a connected graph G such that
Ygh(G) —(G) = n. In other words, the difference g, — 1 can be made arbitrarily large.

Proof. Let n be a positive integer. By Theorem 3, there exists a connected graph G
such that v4,(G) = n + 1 and y4,(G) = 2n + 1. Hence, y44(G) — 1 (G) = n. O

For a graph G, the complementary prism, denoted by GG, is formed from the disjoint
union of G and its complement G by adding a perfect matching between corresponding
vertices of G and G. For each v € V(G), let ¥ denote the vertex corresponding to v in
G. In simple terms, the graph GG is formed from G U G by adding the edge v for every
vertex v € V(G).

The next result gives bounds for the domination number of the complementary prism
of a graph.
Theorem 4. [10] For any graph G, max{v(G),v(G)} < v(GG) < v(G) +~(G).
Theorem 5. Let G be a connected graph of order n. Then each of following holds.

(i) If G is a non-trivial graph such that v(G) = 1, then v(GG) = 1 +~(G \ v), where v
is a dominating vertex of G. In particular, v(K,K,) = n.

(i) If n > 1, then y,(GG) = 2. In particular, {v,v} is y,-set of GG for each v € V(G).
(iii) If n > 2, then vyn(GG) < min{n, 27,4, (G)}.

Proof. (i) Let v be a dominating vertex of G and let D be a dominating set of G \ v.

Since (V(G)\{v})U{t} C Nog(v) and V(G)\{7} C Nz(D), S = DU{v} is a dominating

set of GG. This implies that v(GG) < 1+ |D| =1+ (G \ v).
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Suppose now that Sy is a y-set of GG. Since v is a dominating vertex of G, T is an
isolated vertex of G (and so a leaf in GG). Hence, v € Sy or T € Sy. Suppose v & Sp. Then
v € Sp. Suppose S1 = SoNV(G) = @. Since Nyg(w)NV(G) = {w} for each w € V(G), it
follows that Sp = V(G). Hence, v(GG) = |So| =n > 1+~(G\v). Suppose S; # & and let
Sy = So N (V(G)\ {v}). If S5 is a dominating of G \ 7, then v(GG) = |So| > 1 + (G \ ).
Suppose R = V(G \ ) \ Ng\5lS2] # @ and set Rg = {w € V(G) \ {v} : w € R}. Then
necessarily, Rg C S1. Thus, v(GG) = |So| = 1+|S1|+|S2| > 1+|Rg|+|S2| > 1+~(G\v).

Next, suppose that v € Sp. Since Sy is a y-set of GG and v is a leaf of GG, v ¢ S.
Let Dy = (V(G) \ {v})NSy. If D1 = @, then Dy = (V(G) NSy must be a dominating set
of G\ v. It follows that v(GG) = |Sg| > 1+ ~(G \ ©). Suppose that D; # @. If Dy = @,
then D1 = V(G) \ {v}. It follows that Sy = V(G) and v(GG) = |So| =n > 1+ (G \ v).
Suppose Dy # @ and let D} = V(G \ v) \ Na\E[DQ].Since So is a y-set and v € Sp, it
follows that D5 = {Z : « € D1} and |Dj| = |D;|. Clearly, D' = Dy U D} is a dominating
set of G\ ¥ and so v(GG) = |So| = 1+ |D1|+ | D3| =1+ |D’| > 1 +~(G \ v). This proves
the desired equality. Thus, in particular, if G = K,,, then v(K,K,) = n.

(i1) If n = 1, then GG = K». Hence, 7,(GG) = 2. Suppose n > 2. Let v € V(G) and let
S = {v,v}. Let w € V(G) \ {v}. If wv € E(G), then [w,v,] is a w-v geodesic in GG. If
wv ¢ E(G), then w v € E(G). Tt follows that [w,w, ] is a w-v geodesic in GG. Next, let
ze V(G)\ {v}. If zv € E(G), then [z,7,v] is a z-v geodesic in GG. If 7 v ¢ F(G), then
zv € E(G) and [z, z,v] is a z-v geodesic in GG. Thus, S is a hop dominating set of G.
Since GG is non-trivial, it follows that v,(GG) = 2.

(i71) Suppose n > 2. Let S = V(G) and let v € V(GG) \ S = V(G). Since G is connected
and non-trivial, we may choose any w € V(G) N Ng(v). Consequently, [0, v,w] is a v-w
geodesic in GG. Hence, dgg(v,w) = 2. Since v was arbitrarily chosen, it follows that
S = V(@) is a hop dominating set of GG. Next, let 7 € V(GG) \ S. Then yy ¢ E(GG).
Pick any = € V(G) \ {y}. If vy € E(GQ), then T 7 € E(GG). Since yT € E(GG),
it follows that d@@,y) = 2. If 2y ¢ E(GG), then 2y € E(GG). Since 27 € E(GG),
d@(y, y) = 2. This shows that S is also a hop dominating set of GG. Therefore, S is a
global hop dominating set of GG and 7,,(GG) < |S| = n.

Now let Sg be a global hop dominating set of G and let Sz = {7 : v € Sg}. Then
clearly, S’ = Sg U Sg is a hop dominating set of both GG and GG, that is, S’ is a global
hop dominating set of GG. Thus, in particular, if Sg is a ygu-set of G, then S" = Sg U S
is a global hop dominating set of GG. This implies that 74, (GG) < |S'] = 2794, (G).
Combining this with the first inequality, we find that the assertion in (#ii) holds. O]

The bound given in Theorem 5(iii) is sharp. To see this, consider the graph G = P;
and the graph H obtained from Cy by adding a pendant edge. It can be verified that
Yor(GG) = |V(G)| =3 and ygn(HH) = 2yg0(H) =4 <5 = |V (H)|.

Theorem 6. Let G = Ky, mo,...m, be a complete multipartite graph such that m; < mg <
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..<my and k > 2. Then

k z'fmlzl
YGG) =< k+1 if m =2
k+2 ifm123.

Proof. Let Uj,Us,...,U be the partite sets of G with |U;] = m; for each i €
{1,2,...,k}. For each i € {1,2,...,k}, let U; = {¥ : v € U;}. Then the induced
graphs of the sets Uy,Us,...,U} are exactly the (complete) components of G in GG.
Suppose first that mq = 1, say Uy = {v}. Then v is a dominating vertex of G and so by
Theorem 5(i), v(GG) = 1+ (G \ v). Since G \ 7 is the disjoint union of complete graphs
(U3), (U3), ..., (Ug), it follows that v(G \ ¥) = k — 1. Thus, v(GG) = k.

Next, suppose that m; = 2, say Uy = {u,v}. By Theorem 4, max{y(G),v(G)} =
k< ~v(GG) < k+2=~(G)+~(G). For each i € {2...,k}, choose any v; € U; and
let S = {u,v}U{v; : i € {2,3,...,k}}. Then S is a dominating set of GG. Hence,
YGG) < |S| =2+k—1=k+1. Let S beavyset of GG. If S NV(G) = & or
S'NV(G) =@, then |S'| = [V(G)| = 3¢, m; > 2k > k + 1 which is not possible. Thus,
S'NV(G) # @ and S'NV(G) # @. Clearly, 'N(U; UU;) # @ for alli € {1,2,...,k}.
Suppose ' NUy # @. If |S'NUL| = 1, say v € S’ N Uy, then V(G) \ {u,v} C Nyg(v).
Since S’ is a y-set of GG and u ¢ S', |S'NU;| = 1. We may assume that uw € S’. Let
j € {2,3,...,k} and suppose that SN U; = @. Then necessarily, U; C S’. Pick any
w € Uj and let Sy, = (8" \U;) U{w}. Then S, is a dominating set of GG. Since |U;| > 2,
Y(GG) = |S'| > |Swl, a contradiction. Therefore, S'NU; # @ for each j € {2,3,...,k}.
Moreover, because S’ is a y-set of GG, |’ NU;| = 1 for all j € {2,3,...,k}. Thus,
YGG) = |S'| > k+1. If |S"NUL| = 2, then S'NU; = @. Since S’ N (U; UU;) # & for
all i € {2,...,k}, it follows that v(GG) = |S’| > k + 1. Suppose now that S'NU; = @.
If |S"NU;y| = 1, then there exists j # 1 such that S'NU; # @. If |S'NU;| = 1,
then |S'NUj| # 0. Since S'N(U; UU;) # @ foralli € {2,...,5 — 1,5 +2,...,k}, it
follows that v(GG) = |S'| > k+ 1. If |S'NU;| > 2, then clearly, v(GG) = || > k + 1.
Therefore,y(GG) = k + 1.

Finally, let m; > 3. Let S be a y-set of GG. Since 7(GG) < k+2 (by Theorem 4) and
V(@) =Sk mi>k+2 SNV(G) # @ and SNV(G) # @. Again, SN (U; UT,) # @
for each i € {1,2,...,k}. Suppose SNU; = @. Then SNU; # @. If |SNU;| > 3, then
v(GG) = |S| > k + 2. So suppose that |S N U;| < 2. Then there exists j # 1 such that
SNU; #@. If SNU; =Uj, then’y(Gé) =S| >k+2. If SNU; # Uj;, then SﬁUj #+ .
Hence, if |[SNU| = 2, then v(GG) = |S| > k+2. Suppose now that |[SNU;| = 1. Suppose
further that SN (U; UU;)| = 2. Then there exists 7 # 1,5 such that |[SN (U, UT,)| > 2.
Thus, v(GG) = |S| > k + 2.

Next, suppose that S NU; # @. Suppose S NU; = @ for all j > 2. Since S is
a y-set of GG and U; C Ngyg(SNUy) for all j > 2, [SNU;| =1 for all j > 2 and
|S| = k—14|Uy|. If my = |U1| = 3, then |S| = k—1+43 = k+2. However, if m; > 4, then
|S| = k—14|Uy| > k+3, contrary to the fact that k+ 2 is an upper bound of |S|. Hence,
for my > 4, there exists j > 2 such that |SN (U; UU;)| > 2. Since [SN (U3 UUL)| > 2, S
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is a y-set, Y(GG) = |S| > k + 2. Note that we obtain the same implications if m; = 3 and
SNU; # @ for some j > 2.
Accordingly, v(GG) = k + 2. O

Given a graph G with v(G) = 1, we denote by Dom(G) the set {v € V(G) :
{v} is a dominating set of G}.

Lemma 1. Let G be a graph with v(G) = 1 and let S be a global hop dominating set of
GG. Ifv € Dom(G), thenv € S orv € S.

Proof. Let v € Dom(G) and suppose that v,7 ¢ S. Since S is a global hop dominating
set of GG, it is a hop dominating set of GG. As D € V(@) \ S, there exists z € S such
that d-=(v,z) = 2. However, d—=(v,z) = 1 for all z € V(GG) \ {v,v}. Since v & S, it
follows that such a vertex z does not exist, contrary to the assumption that S is a hop
dominating set of of GG. Therefore, v € S or v € S. O

Corollary 3. For each positive integer n > 2, yyn(KnK,) =n

Proof. By Theorem 5(1’@, Vgh(ann) < n. Let S be a vyy,-set of [&fn. Since
Dom(Ky,) = V(K,), Ygn(KnKy) = |S| > n by Lemma 1. Therefore, ygp(KnKy) =n. O

Theorem 7. Let G = Ky mo,....m,, be a complete multipartite graph such that 1 < my <
ma < ... <my, where k > 2 and m; > 2 for some j with 1 < j < k. Then

— k ifm=mo=1and k>4
1(GC) {k‘ +1 otherwise.

Proof. Let Uy,Us,...,Ux be the partite sets of G with |U;] = m; for each i €
{1,2,...,k}. Again, for each i € {1,2,...,k}, let U; = {v : v € U;}. Choose any
v; € U; for each i € {1,2,...,k}. Suppose m; = mg =1 and k > 4. Then U; = {v;} and
Uy = {v2}. Let S = {v1,v2,73,73,...,0;}. Then d, z(v1,v2) = 2 and d5(v2,v1) = 2.
For each j € {3,4,...,k}, we have d (W, v1) = 2 for each w € U; \ S and d5(z,7,) = 2
for each x € Uj, where r > 3 and r # j. Thus, S is a hop dominating set of GG. On
the other hand, d=(v1,v1) = 2 and d=(v2,v2) = 2. For each j € {3,4,...,k}, we have

d=(w, v5) = 2 for each each w € U; \S and d=(z,v1) = 2 for each each z € U;. Thus,

S is a hop dominating set of GG. Therefore, S is a global hop dominating set of GG and
1n(GG) < |S] = k. _

Next, let Sop be a 7g,-set of GG. Suppose there exists j € {1 2,...,k} such that
SoN(U;UU;) = @. Let w € U,. It follows from the adjacency in GG that doz (w p) = 1 for

all p € V(@)\(Uu{w}) Hence, by assumption, there exists no ¢ € Sy Wlth do=(w,q) =

2, contrary to the fact that Sy is a hop dominating set of GG. Therefore, SyN (U uU ; j) # O
for each j € {1,2,...,k}. Consequently, v,,(GG) = |S| > k. Accordingly, 'ygh(GG) = k.
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Suppose now that the conditions m; = ms = 1 and k& > 4 do not hold. Let S’ =
{v1,1,V9,D3, ...,V }. By Theorem 5(ii), {vi,v1} is a hop dominating set of GG. Hence,
S is a hop dominating set of GG. L

Let v' € U; \ {v1}, where j € {1,2,...,k}. Then [v/,v1,72] is a v/-Uy geodesic in GG.
Hence, d—=(v",v2) = 2. Let j € {1,2,...,k} and pick any i € {1,2,...,k} \ {j}. Then for
y € U;\{v,}, we find that [y, v;,7,] is a J-v; geodesic in GG. Hence, d@@, v;j) = 2. This
shows that S’ is a hop dominating set of GG. Therefore, S’ is a global hop dominating
set of GG and v, (GG) < |S'| =k + 1.

Let So be a vgp-set of GG. As shown and seen earlier Sy N (U; U Uj) # & for each
Jj € {1,2,...,k}. Next, suppose there exists j € {1,2,...,k} with m; > 2 such that
|So NU;j| = 0. Let @ € Uj. Since dz=(a,p) = 1 for p € V(GG) \ (U; U {a}) and
|So N U,| = 0, it follows that a € Sy. Thus, U; C Sp. Since m; > 2, it follows that
Yo (GG) = |So| > k + 1. Suppose that |So N U;| # 0 for each j with m; > 2. If
|So N U;| > 2 for some j with m; > 2, then v,,(GG) = |So| > k + 1. Suppose that
|So NU;| =1 for each j with m; > 2. For a j satisfying this property, pick ¥ € U; \ Sp.
Since S is a hop dominating set of GG and the induced graph of U; is a complete graph
in GG, it follows that there exists r # j such z € U, NSy and d 5 (Y, 2) = 2. If an r exists
such that m, > 2, then this would imply that v4,(GG) = |So| > k + 1. So suppose that
there exists no such r with m, > 2. Then m,, =l andr=1orr =2, say U, = Uy. If
zZ € Sp, then 'ygh(Gé) = [So| > k + 1. Suppose zZ ¢ Sy. Then there exists p € Us N Sy for
some s > 2 such that d.5(Z,p) = 2. If my = 1, then s = 2 and j = k = 3 by assumption.
If p € Sp, then 4, (GG) = |So| > k+ 1. Suppose D ¢ Sp and let Sy N U; = {q}. Since
So is a hop dominating set of GG, z,p ¢ Sp, and k = 3, we must have ¢ € Sp. Hence,
Yor(GG) = |So| > k + 1. Now, if ms > 2, then s = k by assumption. This implies that
|SoN(U;UU ;)| > 2, showing that v,,(GG) = |So| > k+1. Therefore, v4,(GG) = k+1. O

The shadow graph Ds(G) of a graph G is the graph obtained by taking two copies of G,
say GG1 and G2, and joining each vertex u € V(G1) to the neighbors of the corresponding
vertex u’ € V(Ga).

Lemma 2. Let G be a non-trivial connected graph and let G1 and G2 be copies of G in
the graph Da(G). If w € V(G1) and w' € V(G2) is the corresponding vertex of w, then

Np,lw,2] = Ng, [w,2] U Ng,[w',2] = Np,@)[w', 2].

Proof. Clearly, Ng, [w, 2] U Ng,[w',2] € Np,@)[w,2]. Now let € Np,(y[w,2]. Then
r = w or dp,(g)(w,x) = 2. Suppose first that x € V(G1). If x = w, then x € Ng,[w,2].
Suppose that dp,q)(w,z) = 2 and let y € V(D2(G)) such that [w,y, z] is w-r geodesic in
Dy(G). Ify € V(Gh), then [w, y, 2] is a w-x geodesic in G1. Suppose y € V(Ga), say y = u'.
By definition of Dy(G), it follows that uw € V(G1) and [w,u,z] is a w-z geodesic in Gy.
Hence, € Ng, [w,2]. Next, suppose that x = 2’ € V(G2). If y € V(G1), then [/, v/, 7]
is a w-x geodesic in Gy. Suppose y € V(G2), say y = «'. Then [w',u/, 2] is w’-z geodesic
in Go. Hence, x € Ng,[w',2]. Thus, Np,a)[w,2] € Ng,[w,2] U Ng,[w', 2], showing that
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Np,@)lw,2] € Ng,[w,2] U Neg,[w',2]. Similarly, NDQ(G)[w’,Q] C Ng, [w,2] U Ng, [w', 2].
Therefore, Np,(e[w,2] = Ng, [w,2] U Ng,[w',2] = Np,)[w', 2]. O

A result in [13] says that v,(D2(G)) = ,(G) for any graph G. This, however, is
not true if G contains an isolated vertex. Indeed, if G is the trivial graph and H is the
(disjoint) union K; U K1 U Py, then Do(G) = Ko and Do(G) = Ko U K2 U Cy. Hence,
MW(D2(G)) =2 # 1 =(G) and y(D2(H)) = 6 # 4 = 1 (G).

Theorem 8. Let G be a non-trivial graph. Then the following hold.
(i) If G is connected, then vp(D2(G)) = Y (G).

(13) If G is disconnected with r trivial components and k non-trivial components G1,G2,
Gs, ..., G, then y,(D2(G)) = 2r + Y1y v (Gr).

Proof. (i) Let G1 and G2 be the two copies of G in the definition of Dy(G). Let
S be a yp-set of G; and let v € V(G3). If the corresponding vertex v € V(Gy) is in
S, then dp,(g)(v,v") = 2. So suppose v ¢ S. Since S is a hop dominating set of Gi,
there exists w € S such that dg, (v, w) = 2. Let [v, z,w] be a v-w geodesic in G;. Then
vz, zw € E(Da(G)). Since v ¢ Ng,(w), v'w ¢ E(D2(G)). Thus, dp,q)(w,v") = 2.
Therefore, S is a hop dominating set of Do(G) and v, (D2(G) < |S| = y(G).

Next, suppose that S’ is a y-set of Do(G). Let S;1 = S'NV(G;) and Sy = S'NV(G2).
If S; = 5" or Sy =5, then S’ is a hop dominating set of G; or Go. Hence, v,(D2(G) =
|S’| > v (G). Suppose S1 # @ and Sy # @. If S; is a hop dominating set of G or Sy is a
hop dominating set of G, then, as seen earlier, S or S is a hop dominating set of Ds(G),
contrary to the assumption that S’ is a yp,-set of D2(G). Hence, none of these two sets is
a hop dominating set. Let Dg = {v € V(G1) \ S1:v ¢ Ng, (S1,2)} = V(G1) \ Ne, [S1, 2]
and let Sg = {v € V(G1) \ S1 : v/ € S3}. Clearly, if v € Sg, then v/ € Sy. Now let
y' € Sa. Then Np,)[¥',2] = Np,()ly,2] by Lemma 2. Since S’ is a p-set of Do(G),
it follows that y € V(G1) \ Si, that is, y € Sg. Hence, |Sg| = |S2|. Since S’ is a hop
dominating set of D2(G), Dg € Np,(c)[S2,2]. This means that if w € Dg, then there
exists 2’ € 7 such that w € Np,()[?/,2]. Consequently, z € Sg and by Lemma 2, we
have w € Np,(@)l2,2] = Ng,[2,2]. Thus, Dg € Ng,[Sq,2], showing that S U S¢ is a
hop dominating set of G;. Therefore, 7,(G) = v,(G1) < |S1 U Sg| = v1(D2(G)). This
establishes the desired equality.
(74) This follows from (i) and the fact that the hop domination of a (disconnected) graph
is the sum of the hop domination numbers of its components. ]

Theorem 9. Let G be a non-trivial connected graph. Then ygn(D2(G)) < 2v4n(G).

Proof. Let Gy and G4 be the two copies of G in the definition of Dy(G). Let S; be
a Ygn-set of G1 and let Sy = {v' € V(G2) : v € S1}. Then Sy is a yg,-set of Go. Hence,
S = 51 U8, is a hop dominating set of Do(G). Since S; and Sy are also vy,p-sets of Gy

and Gy, respectively, it follows that S = S;USs is a hop dominating set of Do(G). Hence,
S = 51U Sy is a global hop dominating set of Da(G) and vy, (D2(G)) < S| = 2741 (G).

The next result is easy.
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Lemma 3. Let G be a non-trivial graph. Then each of the following statements is true.
(1) D2(G) is not a complete graph.
(11) D2(G) is connected if and only if G is connected.
Lemma 4. Let G be a graph of order n. Then each of the following statements is true.

(i) Every component of Da2(G) is a complete graph if and only if G = K.

(ii) Every component of Da(G) is a complete graph if and only if G = K, or

k
G = Ky mo,...,my» Where Zmz =n.
i=1
Proof. Let G1 and G3 be the two copies of G in the definition of Da(G).
(i) Suppose every component of Ds(G) is a complete graph. Suppose further that G has
a non-trivial component H. Then Dy(H) is a component of Dy(G) which is not complete
by Lemma 3, a contradiction to our assumption of Dy(G). Therefore, every component of
G is trivial, i.e., G = K,,. The converse is clear.
(74) Suppose that every component of Dy(G) is a complete graph. If Do(G) is connected,
then Do(G) = Ka,. Hence, G = K,. Next, suppose that Do(G) is disconnected with
components Cy,Cy,...,Ck. For each ¢ € {1,2,...,k}, let S1;, = V(G1) NV (Cy), S2; =
V(G2) NV (C;) and m; = [S1,|. Note that v € Sy, if and only if v' € Sy; and that
C; = (S1,:USy;) foreach i € {1,2,...,k}. Leti,j € {1,2,...,k} with ¢ # j. Since C; and
C; are complete subgraphs (components) of Dy(G), it follows that in graph Do(G), S1,
and S ; are independent subsets of V(G1) and xy € E(G) for each x € S1; and y € Sy ;.
It follows that G is a complete multipartite graph with partite sets S11,512,...,51 k-
Hence, G = Ky ma,....my -
The converse is clear. O

Theorem 10. Let G be a graph of order n. Then v4,(D2(G)) = 2n if and only if G = K,
k
or G = Ky mo,...,m,, where Zml =n.
i=1

Proof. By Theorem 2, v4,(D2(G)) = 2n if and only if every component of Do(G)
or Dy(G) is complete. Thus by Lemma 4, v4,(D2(G)) = 2n if and only if G = K, or

k
G = Kml,mg,...,mka where Z m; = n. .
i=1
Note that Theorem 10 shows that the bound given in Theorem 9 is tight.

Conclusion: The domination and hop domination parameters are, in general, not com-
parable. However, a result shows that the absolute difference of the domination number
and hop domination number can be made arbitrarily large. On the other hand, a result
shows a relationship of the hop domination and global hop domination numbers.
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For any non-trivial connected graph G, it is proved that that 2v,,(G) is a tight bound
for the global hop domination number of the shadow graph Ds(G) of G. The authors are
still unable to show that the strict inequality in Theorem 9 is also attainable. We leave to
the interested readers to verify whether or not equality in this result holds.
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