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Abstract. The known exact expression for an octuple integral relating to research in the fields of
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1. Significance Statement

Octuple integrals are used and evaluated in may areas of mathematics and physics.
Some areas of interest where these integrals are used are in multipupil in phase microscopy,
where pairs of Fourier transforms are evaluated [8], the kinetic theory of simple and com-
posite monatomic gases : viscosity, thermal conduction, and diffusion [1], statistical char-
acteristics of the laser-radiation-intensity fluctuations in rainfall [6], the velocity distribu-
tion function, and on the stresses in a non-uniform rarefied monatomic gas [5], and some
applications of Marcel Riesz’s Integrals of Fractional Order [2].

In current literature octuple integrals expressed in terms of a closed form solution do
not appear to be tabulated. In this work the authors derive and evaluate a octuple inte-
gral in terms of the Lerch function and derive special cases of this integral transform in
terms of special constants. It is our hope that researchers will find such evaluations useful
for potential research requiring these formulae.
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2. Introduction

The octuple integral derived in this manuscript is given by

∫
R8
+

(rs)
m−1

2 (r + s)−m/2(tz)−
m
2
−1(t+ z)

m+1
2 (uv)−

m
2
− 1

2

(u+ v)m/2(xy)m/2(x+ y)
1
2
(−m−1)e−p(r+u+x+z)−q(s+t+v+y)

logk
(
a
√
rs
√
t+ z

√
u+ v

√
xy

√
r + s

√
tz
√
uv

√
x+ y

)
dxdydzdrdsdtdudv (1)

where the parameters k, a ∈ C, Re(p, q) > 0 are general complex numbers with −1/2 ≥
Re(m) ≥ −1. The derivation of the definite integral follows the method used by us in [10]
which involves Cauchy’s integral formula. The generalized Cauchy’s integral formula is
given by
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where C is in general an open contour in the complex plane where the bilinear concomitant
[10] has the same value at the end points of the contour. The method in [10] involves using
a form of equation (2) then multiply both sides by a function, then take a definite integral
of both sides. This yields a definite integral in terms of a contour integral. A second
contour integral is derived by multiplying equation (2) by a function and performing some
substitutions and taking the infinite sum so that the contour integrals are the same.

3. Definite integral of the contour integral

We use the method in [10]. The variable of integration in the contour integral is
z = w+m. The cut and contour are in the second quadrant of the complex z-plane. The
cut approaches the origin from the interior of the first or second quadrant and the contour
goes round the origin with zero radius and is on opposite sides of the cut. Using equation
(2) we replace y by
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then multiply by both sides by
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and take the definite octuple integral over x, y, z, r, s, t, u, v ∈ [0,∞) to get;



R. Reynolds, A. Stauffer / Eur. J. Pure Appl. Math, 15 (2) (2022), 335-341 337∫
R8
+

(rs)
m−1

2 (r + s)−m/2(tz)−
m
2
−1(t+ z)

m+1
2 (uv)−

m
2
− 1

2

(u+ v)m/2(xy)m/2(x+ y)
1
2
(−m−1)e−p(r+u+x+z)−q(s+t+v+y)

logk
(
a
√
rs
√
t+ z

√
u+ v

√
xy

√
r + s

√
tz
√
uv

√
x+ y

)
dxdydzdrdsdtdudv

Γ(k + 1)

=
1

2πi

∫
C

∫
R8
+

aww−k−1(rs)
1
2
(m+w−1)(r + s)

1
2
(−m−w)

(tz)
1
2
(−m−w)−1(t+ z)

1
2
(m+w+1)(uv)

1
2
(−m−w)− 1

2 (u+ v)
m+w

2

(xy)
m+w

2 (x+ y)
1
2
(−m−w−1)e−p(r+u+x+z)−q(s+t+v+y)dwdxdydzdrdsdtdudv

=
1

2πi

∫
R8
+

∫
C
aww−k−1(rs)

1
2
(m+w−1)(r + s)

1
2
(−m−w)

(tz)
1
2
(−m−w)−1(t+ z)

1
2
(m+w+1)(uv)

1
2
(−m−w)− 1

2 (u+ v)
m+w

2

(xy)
m+w

2 (x+ y)
1
2
(−m−w−1)e−p(r+u+x+z)−q(s+t+v+y)dxdydzdrdsdtdudvdw

= − 1

2πi

∫
C

2π4aww−k−1 csc(π(m+ w))

p2q2
dw (5)

from equation (3.1.3.9) in [9] where −1 < Re(w+m) < 1 and using the reflection formula
for the gamma function. The logarithmic function is given for example in section (4.2) in
[3]. We are able to switch the order of integration over w +m and x, y, z, r, s, t, u, v using
Fubini’s theorem since the integrand is of bounded measure over the space C × [0,∞) ×
[0,∞)× [0,∞)× [0,∞)× [0,∞)× [0,∞)× [0,∞)× [0,∞).

4. The Lerch function

We use section (25.14) in [3] where Φ(z, s, v) is the Lerch function which is a generaliza-
tion of the Hurwitz zeta ζ(s, v) and Polylogarithm functions Lin(z). The Lerch function
has a series representation given by
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where |z|< 1, v ̸= 0,−1, .. and is continued analytically by its integral representation given
by
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where Re(v) > 0, and either |z|≤ 1, z ̸= 1, Re(s) > 0, or z = 1, Re(s) > 1.

5. Infinite sum of the contour integral

In this section we will again use Cauchy’s integral formula (2) and take the infinite
sum to derive equivalent sum representations for the contour integrals. We proceed using
equation (2) and replace y by log(a) + iπ(2y + 1) and multiply both sides by 4iπ4

p2q2
then

take the infinite sum over y ∈ [0,∞) simplifying in terms of the Lerch function to get
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from equation(1.232.3) in [4] where Im(w +m) > 0 in order for the sum to converge.

Theorem 1. For all k, a ∈ C, Re(p, q) > 0,−1/2 < Re(m) < −1,∫
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Proof. Observe the right-hand side of equation (5) is equal to the right-hand side of
equation (8) so we may equate the left-hand sides and simplify the gamma function to
yield the stated result.
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= −2π4 csc(πm)
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Proof. Use equation (9) and set k = 0 and simplify using entry (2) in Table below
(64:12:7) in [7].
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Proof. Use equation (9) and set a = −1, p = 1, q = 2,m = −1/2 and simplify in
terms of the Riemann zeta function using entry (2) in Table below (64:7) and entry (4) in
Table below (64:12:7) in [7]. Next apply l’Hopital’s rule to the right-hand side as k → −1
rationalize the denominator equate real and imaginary parts and simplify.
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Proof. Use equation (9) and set k = −1, a = −1, p = 1, q = 2,m = −1/2 and simplify
in terms of the polylogarithm function Lin(z) function using entry (2) in in Table below
(64:12:7) in [7] and equation (25.12.10) in [3] and rationalize the denominator equate real
and imaginary parts and simplify.

Example 4.∫
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Proof. Use equation (9) and set k = −1/2, a = −1, p = q = 1,m = −3/4 and simplify
in terms of the Hurwitz zeta function using entry (4) in Table below (64:12:7) in [7].

6. Discussion

In this paper, we have presented a novel method for deriving a new octuple integral
along with some interesting definite integrals using contour integration. The results pre-
sented were numerically verified for both real and imaginary and complex values of the
parameters in the integrals using Mathematica by Wolfram. Some of the challenges en-
countered were in the numerical evaluation of the integrals. We know from our method
the definite integral is equal to the Lerch function so this is a new way of computing this
octuple integral. We tried various numerical methods in the Mathematica software to
achieve the best possible result relative to the Lerch function.
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