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Abstract. We find quantum systems having finite distinct discrete energy levels can reflect infinite
distinct energy levels under suitable form of position dependent mass systems. A model example
has been investigated considering the fractional Harmonic Oscillator [6].In addition to this,we also
notice the same behaviour in other quantum models. In all the cases, we find finite distinct discrete
levels becoming infinite distinct discrete levels under position dependent mass quantum systems
without the change in the potential energy.
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1. Introduction

Bounded quantum structures are associated with actual strength levels [2]—. These
systems can have infinite or finite distinct discrete levels. A model infinite quantum system
is [6]:

h = p2 + λx2 +
x2

(1 + gx2)
(1)
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This systems reflect infinite levels as long as λ ≫ 0. However a drastic change in energy
levels is noticed in the limit λ = 0. Under this condition model Hamiltonian becomes

H = p2 +
x2

(1 + x2)
(2)

The model potential satisfies the condition V (x) = x2

(1+x2)
≪ 1 ,which is basically the

reason for ”distinct discrete levels”(DDL). This mannequin has been studied detail by
Rath and Kaabar [11]. However, we consider here a slightly modified DDL as:

H1 = p2 +
x2

(1 + 2x2)
(3)

which is recast as
= [p2 +M(x)x2] (4)

where M(x) = 1
(1+2x2)

. Energy levels of this oscillator has been reflected in Fig. 1. Below,

we focus our attention on new models without the change in potential energy as follows.
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Figure 1: Energy levels of H = [p2 +Mx2]; withM = 1
(1+2x2)
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2. Position dependent mass system without potential change

At the outset, we would like to state that all our equations are valid subject to validity
of commutation relation

[x, p] = i (5)

HPDM = p2/M(x) +M(x)x2N =
p2

M
+ V (x) (6)

Hence, the corresponding M(x) can be written as

M(x) = M =
V (x)

x2N
N = 1, 2, 3... (7)

and so on. In fact, for N=1 model Hamiltonian was also previously proposed by Mathews
and Lakshnman for the study of nonlinear analysis in view of its potential applications in
quantum field theory [4]. As such the Hamiltonian is not self-adjoint(HPDM ̸= H†

PDM )
[1, 3, 7, 9, 13–15]. In its self adjoint form, it is expressed as [15]:

HPDMS = H(2) = [− 1

M1/4
∂x

1

M1/2
∂x

1

M1/4
+M(x)x2] (8)

Hence the resultant Hamiltonian becomes von Roos model Hamiltonian [13, 14]. Energy
levels of this Hamiltonian are reflected in Fig. 2.

In subsequent applications of von Roos model we use

p2/M = T = [− 1

M1/4
∂x

1

M1/2
∂x

1

M1/4
] (9)

Hence in all the PDM calculations, the corresponding Hamiltonian is self-adjoint in nature(T =
T †). Apart from this we present a few models as

Case-I: Trivial exponential model

H(3) = p2 + 10(1− exp(−x2))) (10)

Hence, the corresponding PDM operator can be written as

H
(4)
PDM = H(4) =

p2

M
+ 10(1− exp(−x2)); withM = 10

[1− exp(−x2)]

x2
(11)

The respective energy levels are reflected in Fig. 3 and Fig. 4, respectively.
Similarly, we select a model PDM Hamiltonian as

H(5) =
p2

M
+ 10(1− exp(−x4)); withM =

10[1− exp(−x4))]

x4
(12)

The respective energy levels are reflected in Fig. 5. One can also extend this approach to

H(6) =
p2

M
+ 10(1− exp(−x6)); withM =

10[1− exp(−x6))]

x6
(13)
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Figure 2: Energy levels of H = [p2/M +Mx2]; withM = 1
(1+2x2)

The respective energy levels are reflected in Fig. 6.

Case-II:Non-trivial exponential model

Here, we consider the model Hamiltonian as

H(7) = p2 +
(1− exp(−x2))

(1 + exp(−x2))
(14)

whose energy levels has finite distinct discrete levels as seen in Fig. 7.
The corresponding PDM operators as

H(8) =
p2

M
+

(1− exp(−x2))

(1 + exp(−x2))
; withM

(1− exp(−x2))

x2(1 + exp(−x2))
(15)

whose energy levels are reflected in Fig. 8. Apart from this we also consider similar cases
as
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Figure 3: Energy levels of H = p2 +Mx2; withM = 10 (1−exp(−x2)

x2

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis:Spectra of H=p
2
/M +(1−exp(−x

2
))/(1+exp(−x

2
);M=(1−exp(−x

2
))/x

2
 (1+exp(−x

2
)

Im
 a

x
is

Figure 8: Energy levels ofH = p2/M +Mx2; M = (1−exp(−x2)

x2(1+exp−x2)
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Figure 4: Energy levels of H = p2/M +Mx2; withM = 10 (1−exp(−x2)

x2

H(9) =
p2

M
+

(1− exp(−x2))

(1 + exp(−x2))
; withM

(1− exp(−x2))

x4(1 + exp(−x2))
(16)

and

H(10) =
p2

M
+

(1− exp(−x2))

(1 + exp(−x2))
; withM

(1− exp(−x2))

x6(1 + exp(−x2))
(17)

Here, the energy levels are reflected in Figs. 9,10, respectively. These models are non-
trivial because of the potential nature. The finite levels are due to the validity of condition
V (x) ≪ 1.



J. Asad et al. / Eur. J. Pure Appl. Math, 15 (1) (2022), 238-248 244

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real axis:Spectra of H=p
2
/M+10(1−exp(−x

2
));M=10(1−exp(−x

2
))/x

4
  

Im
 a

x
is

Figure 5: Energy levels of H = p2/M +Mx4; withM = 10 (1−exp(−x2)

x4
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Figure 9: Energy levels ofH = p2/M +Mx4; M = (1−exp(−x2)

x4(1+exp−x2)
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Figure 6: Energy levels of H = p2/M +Mx6; with M = 10 (1−exp(−x2)

x6
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Figure 10: Energy levels ofH = p2/M +Mx6; M = (1−exp(−x2)

x6(1+exp−x2)
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Figure 7: Energy levels of H = p2 + (1−exp−x2)

(1+exp−x2)

3. Method of calculation

In order to calculate the energy levels of above Hamiltonians, we use matrix diago-
nalisation method [10, 12] to mirror convergent energy levels, on solving the eigenvalue
relation

H|Ψ >= E|Ψ > (18)

with
|Ψ >=

∑
m

Am|m > (19)

where |m > satisfies the relation

[H0 = p2 + x2]|m >= (2m+ 1)|m > (20)

4. Conclusion

In this paper we have shown that DDL quantum systems can reflect infinite distinct
discrete energy levels under suitable form of position dependent mass. The model mass
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Table 1 : Fractional Harmonic Oscillator and energy levels comparison
n g Present Previous [6]

0 0.1 1.380 531 8 1.380 53
1 4.079 883 0 4.079 8
2 6.667 919 1 6.667
3 9.166 567 4

0 1 1.232 350 7 1.232 35
1 3.507 388 3 3.507 38
2 5.589 778 9 5.589 77

7.648 201 2

was actually proposed by Cruz et al. [15] and used by others [1, 3, 7, 9]. It is worth
mentioning that only this typical form of T can be derived [8]. No other form of von Roos
model Hamiltonian [13, 14] has that advantage. In other words, all other forms can only
be based on approximation [5]. This universality feature has been exploited in the above
model Hamiltonians. All figures have plotted from the respective numerical calculation of
energy levels. It should be borne in mind that all the figures on PDM actually we have

plotted with T i.e p2

M = T . In order to convince the reader about our method [1, 3], we
consider two simple models as

H
(1)
Mitra = p2 + x2 +

x2

(1 + 0.1x2)
(21)

and

H
(2)
Mitra = p2 + x2 +

x2

(1 + x2)
(22)

and compare the present result with that of earlier computation by Mitra [6] in Table 1.
Summarizing the above, we conclude that FDL( Finite Discrete Levels) =⇒ IDLPDM(Infinite

Discrete Levels in Position Dependent Mass ) in quantum operators.
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