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Abstract. A closed form expression of a quadruple integral involving the Legerndre polynomial
Pn(x) is derived. Special cases are expressed in terms of special functions and fundamental con-
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1. Significance Statement

The Legendre functions are the most well known particular cases of the hypergeometric
function. They have been discovered by Laplace and Legendre as early as in the 18th
century. Later on their importance has grown substantially due to their connections
with many problems of mathematical physics [3]. In this present work we investigate
the quadruple integral involving the Legendre polynomial Pn(x) and the invariance of the
parameter n with respect to the Hurwitz-Lerch zeta function.

2. Introduction

In this paper we derive the quadruple definite integral given by∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
xm−1Pv(x) log

−m

(
1

t

)
log

1
2
(m−v−1)

(
1

y

)
log

m+v
2

(
1

z

)

logk

ax

√
log
(
1
y

)√
log
(
1
z

)
log
(
1
t

)
 dxdydzdt (1)

∗Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v15i3.4237

Email addresses: milver@my.yorku.ca (R. Reynolds), stauffer@yorku.ca (A. Stauffer)

https://www.ejpam.com 1113 © 2022 EJPAM All rights reserved.



R. Reynolds, A. Stauffer / Eur. J. Pure Appl. Math, 15 (3) (2022), 1113-1119 1114

where the parameters k, a, v,m are general complex numbers and Re(v) < Re(m) < 1/2.
This definite integral will be used to derive special cases in terms of special functions and
fundamental constants. The derivations follow the method used by us in [6]. This method
involves using a form of the generalized Cauchy’s integral formula given by
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∫
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where C is in general an open contour in the complex plane where the bilinear concomitant
has the same value at the end points of the contour. We then multiply both sides by a
function of x, y, z and t, then take a definite quadruple integral of both sides. This
yields a definite integral in terms of a contour integral. Then we multiply both sides of
Equation (2) by another function of x, y, z and t and take the infinite sums of both sides
such that the contour integral of both equations are the same.

3. Definite Integral of the Contour Integral

We use the method in [6]. The variable of integration in the contour integral is
u = w + m. The cut and contour are in the first quadrant of the complex u-plane.
The cut approaches the origin from the interior of the first quadrant and the contour
goes round the origin with zero radius and is on opposite sides of the cut. Using a
generalization of Cauchy’s integral formula we form the triple integral by replacing y by
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then taking the definite integral with respect to x ∈ [0, 1], y ∈ 0, 1], z ∈ 0, 1] and t ∈ 0, 1]
to obtain
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from equation (1.8.8.1) in [4] and equation (4.215.1) in [2] where Re(π(m + w)) > 0 and
using the reflection formula (8.334.3) in [2] for the Gamma function. We are able to switch
the order of integration over x, y, z and t using Fubini’s theorem since the integrand is of
bounded measure over the space C× [0, 1]× [0, 1]× [0, 1]× [0, 1].

4. The Hurwitz-Lerch zeta Function and Infinite Sum of the Contour
Integral

In this section we use Equation (2) to derive the contour integral representations for
the Hurwitz-Lerch zeta function.

4.1. The Hurwitz-Lerch zeta Function

The Hurwitz-Lerch zeta function (25.14) in [1] has a series representation given by
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n=0

(v + n)−szn (4)

where |z|< 1, v ̸= 0,−1, .. and is continued analytically by its integral representation
given by
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where Re(v) > 0, and either |z|≤ 1, z ̸= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4.2. Infinite sum of the Contour Integral

Using equation (2) and replacing y by log(a) + iπ(2y + 1) − log(2) then multiplying
both sides by
−iπ3/221−meiπm(2y+1) taking the infinite sum over y ∈ [0,∞) and simplifying in terms of
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the Hurwitz-Lerch zeta function we obtain

(6)
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from equation (1.232.3) in [2] where Im(π(m+ w)) > 0 in order for the sum to converge.

5. Definite Integral in terms of the Lerch Function and invariant index
forms

Theorem 1. For all k, a, v,m ∈ C, Re(v) < Re(m) ≤ 1/2,∫ 1
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Proof. The right-hand sides of relations (3) and (6) are identical; hence, the left-hand
sides of the same are identical too. Simplifying with the Gamma function yields the desired
conclusion.

Example 1. The degenerate case.∫ 1
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Proof. Use equation (7) and set k = 0 and simplify using entry (2) in Table below
(64:12:7) in [5].
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Example 2. The Hurwitz zeta function ζ(k, a), where the right-hand side is invariant
with respect to v,
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Proof. Use equation (7) and set m = 1/2 and simplify using entry (4) in Table below

(64:12:7) in [5].

Example 3. The zeta function of Riemann ζ(k),
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Proof. Use equation 9 and set a = −2 and simplify using entry (2) in Table below
(64:7) in [5].

Example 4. The fundamental constant log(2),
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Proof. Use equation (10) and apply l’Hopital’s rule as k → −1 and simplify using
equation (25.6.11) in [1].
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Example 5. Apéry’s constant ζ(3),

(12 )
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Proof. Use equation (10) and set k = −3 and simplify.

Example 6.
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Proof. Use equation (7) and form a second equation by replacing m → p and taking
their difference and setting k = −1, a = 1 and simplify.

Example 7.
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Proof. Use equation (13) and set p = 1/2,m = 1/4 and simplify.
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6. Discussion

In this paper, we have presented a novel method for deriving a new integral involving
the Legendre polynomial Pn(x) along with some interesting definite integrals using contour
integration. The results presented were numerically verified for both real and imaginary
and complex values of the parameters in the integrals using Mathematica by Wolfram.
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