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1. Significance Statement

Named for the Frenchman, Charles Hermite (1822-1901) these polynomials are orthog-
onal on the infinite interval −∞ < x < ∞ with a weight function of e−x2 . They arise
in physics, as in the solution of Schrödinger’s differential equation for a simple harmonic
oscillator, which belongs to a broad class of second order differential equations [4]. In
this present work we investigate the quadruple integral involving the Hermite polynomial
Hn(x) and the parameter n dependence on a constant factor raised to a power and its
invariance with respect to the Hurwitz-Lerch zeta function.

2. Introduction

In this paper we derive the quadruple definite integral given by
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where the parameters k, a, n,m are general complex numbers and Re(n) < Re(m). This
definite integral will be used to derive special cases in terms of special functions and
fundamental constants. The derivations follow the method used by us in [5]. This method
involves using a form of the generalized Cauchy’s integral formula given by

yk

Γ(k + 1)
=

1

2πi

∫
C

ewy

wk+1
dw. (2)

where C is in general an open contour in the complex plane where the bilinear concomitant
has the same value at the end points of the contour. We then multiply both sides by a
function of x, y, z and t, then take a definite quadruple integral of both sides. This
yields a definite integral in terms of a contour integral. Then we multiply both sides of
Equation (2) by another function of x, y, z and t and take the infinite sums of both sides
such that the contour integral of both equations are the same.

3. Definite Integral of the Contour Integral

We use the method in [5]. The variable of integration in the contour integral is
u = w+m. The cut and contour are in the first quadrant of the complex u-plane. The cut
approaches the origin from the interior of the first quadrant and the contour goes round
the origin with zero radius and is on opposite sides of the cut. Using a generalization of
Cauchy’s integral formula we form the triple integral by replacing y by log
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tz

)
and multi-

plying by t−mxm−1z1−mym−nHn(xα)e
α2

(
−x2

)
−b
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)
then taking the definite integral

with respect to x ∈ [0,∞), y ∈ [0,∞), z ∈ [0,∞) and t ∈ [0,∞) to obtain
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from equation (3.22.2.2) in [1] and equation (3.326.2) in [3] where Re(π(m + w)) >
0, Re(n) < Re(m), |argα|< π/4 and using the reflection formula (8.334.3) in [3] for the
Gamma function. We are able to switch the order of integration over x, y, z and t using
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Fubini’s theorem since the integrand is of bounded measure over the space C × [0,∞) ×
[0,∞)× [0,∞)× [0,∞).

4. The Hurwitz-Lerch zeta Function and Infinite Sum of the Contour
Integral

In this section we use Equation (2) to derive the contour integral representations for
the Hurwitz-Lerch zeta function.

4.1. The Hurwitz-Lerch zeta Function

The Hurwitz-Lerch zeta function (25.14) in [2] has a series representation given by

Φ(z, s, v) =

∞∑
n=0

(v + n)−szn (4)

where |z|< 1, v 6= 0,−1, .. and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1
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where Re(v) > 0, and either |z|≤ 1, z 6= 1, Re(s) > 0, or z = 1, Re(s) > 1.

4.2. Infinite sum of the Contour Integral

Using equation (2) and replacing y by log(a) + iπ(2y + 1) − log(2) then multiplying
both sides by
−iπ221−meiπm(2y+1) taking the infinite sum over y ∈ [0,∞) and simplifying in terms of
the Hurwitz-Lerch zeta function we obtain
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from equation (1.232.3) in [3] where Im(π(m+ w)) > 0 in order for the sum to converge.
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5. Definite Integral in terms of the Lerch Function

Theorem 1. For all k, a, b, α, n,m ∈ C, Re(n) < Re(m), |argα|< π/4,
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Proof. The right-hand sides of relations (3) and (6) are identical; hence, the left-hand

sides of the same are identical too. Simplifying with the Gamma function yields the desired
conclusion.

Example 1. The degenerate case.
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Proof. Use equation (7) and set k = 0 and simplify using entry (2) in Table below
(64:12:7) in [4].

Example 2.
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ζ(s, v) then apply l’Hopital’s rule as k → −1 and simplify in terms of the digamma function
ψ(0)(x) using equation (64:4:1) in [4].
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Example 3.
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Proof. Use equation (9) and set a = −1, b = 1 and simplify in terms of the Harmonic
number function Hn.

Example 4.∫ ∞
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Proof. Use equation (7) and form a second equation by replacing m → p and taking
their difference and setting k = −1, a = 1, b = 1, α = 1 and simplify.

Example 5.
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Proof. Use equation (11) and set m = 1/2, p = 2/3 and simplify.

6. Discussion

In this paper, we have presented a novel method for deriving a new integral involving
the Hermite polynomial Hn(x) along with some interesting definite integrals using contour
integration. The results presented were numerically verified for both real and imaginary
and complex values of the parameters in the integrals using Mathematica by Wolfram.
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