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Abstract. In this work, a numerical study of two dimensional steady, incompressible Newtonian
laminar flow of blood through a stenosed (constricted) artery is investigated. The Variational
Iteration Method (VIM) is employed to obtain the analytic expressions for the velocity profile and
pressure gradient. The results obtained are graphically discussed for mild stenosis (25%) for low
Reynolds number in the range 20–100. The significance of the analysis is identified by comparing
the results obtained with similar studies in existing literature, and established a good agreement.
The results obtained reveal alterations in blood flow due to presence of stenosis in arterial wall
and the implications are discussed.

2020 Mathematics Subject Classifications: 58J05, 65B10, 65K10, 76D05

Key Words and Phrases: Hemodynamic, Newtonian fluid, Cardiovascular disease, Atheroscle-
rosis, Stenosis, Artery, Laminar flow

1. Introduction

The study of flow of blood through the human circulatory system has been a subject
of attention for scientific research for about a couple of centuries. Like so many problems
of nature including life sciences, hemodynamics is a rigorous one due to complex nature
of blood, the circulatory system and their constituent elements. Hemodynamics is the
study of blood mechanical and physiological characteristics and how it flows in the body,
as well as the forces involved. It describes the physical laws that govern blood flow
in the blood vessels. Proper blood circulation (blood flow) is a condition necessary for
adequate supply of oxygen to all body tissues, which thereafter support cardiovascular
health, longevity, high quality of life and survival of surgical patients. There are numerus
factors influencing hemodynamics ranging from circulatory volume of blood, viscosity of
blood, resistance, vascular diameter, respiration, density, obstruction and so on. There are
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various diseases and disorders of the cardiovascular system associated with hemodynamic
dysfunction, due to mild or intense narrowing or blockage of arteries. Some disease of
the cardiovascular system includes atherosclerosis, aneurysm, thrombosis, stenosis, etc.
Majority of cardiovascular diseases and disorders are connected to systemic dysfunction of
which heart failure, stroke and hypertension are prominent known ones. In this work, we
shall focus on blood flow through an artery with presence of stenosis, and effect on flow
properties such as velocity profile and pressure gradient.
Blood is a fluid which circulates through the hearts, arteries, veins and capillaries of
the circulatory system. Blood is composed of two parts; a solid portion which is about
(40 − 45%) formed element, consisting of the Red blood cells (for oxygen and carbon
dioxide transportation), the white blood cells (for defense and immunity) and Platelets
(blood clothing) all suspended in plasma. The liquid portion (Plasma) makes up the
majority (45 − 60%) of the blood volume. Plasma is mainly made up of (about 90%) of
water. The density of blood is approximately 1060kg/m3 at 370C. Blood Plasma has
a density of 1025kg/m3 which is predominantly about 93% by volume of water. The
viscosity of a fluid describes the internal friction between fluid particles as they slide past
one another. Generally, the viscosity of blood is a function of plasma viscosity (which
is relatively constant). When the viscosity is constant, blood behaves like a Newtonian
fluid since the blood cells do not deform. The viscosity of plasma is approximately µ =
3.2× 10−1kg.m−1s−1 [1].

The study of blood flow through the cardiovascular system has gained tremendous
interest in scientific research. A number of theoretical and scientific efforts has been
made in literature to explain the behavior of blood when it flows through the vessels of
circulatory system of living beings. Several researchers such as [2], have reported that the
fluid dynamics and rheological properties of blood and its flow could play an important
role in the fundamental understanding, treatment and diagnosis of many cerebrovascular,
cardiovascular and arterial diseases. Yamaguchi [3] gave an insight to the cardiovascular
system, its physical nature, pathological role, measurements and analysis. Mark [5] have
used the poiseuille’s law and Bernoulli’s equation in a flow tube with changing cross
sectional area to conclude that pressure drops as velocity increases in the narrowed portion
of the tube.

Several other investigators have presented some theoretical and numerical analysis to
study blood flow characteristics due to the presence of stenosis in the arteries. Young [4]
investigated the effects of a time-dependent stenosis on flow passing through a tube and
analyzed the effects of stenosis on flow characteristics of blood by treating blood as a New-
tonian fluid. The work of [6] also reports that, an increase in the size of stenosis increases
both the wall shear stress and impedance. An approximate solution is presented in [5]
to the problem of incompressible flow passing through an axisymmetric constriction. The
study found theoretical results for velocity distribution, wall shearing stress, pressure drop
and separation phenomena for both mild and severe stenosis for Reynolds numbers below
transition. The results reveal significant alterations in flow caused by stenosis. A detailed
description is given in [6] of the effect of varying degrees of stenosis on arterial pulsatile
waveforms. Blood flow measurements were made using the electromagnetic blood flow
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meter proximal and distal to the stenosis. Kapur [7] gave a survey on some mathematical
models for the problems – pulsatile blood flows in rigid and elastic tubes, flow of blood in
arteries with stenosis etc.

Pralhad and Schultz [8] presented a blood flow model in a stenosed tube by representing
blood flow by a couple stress fluid. The study found expressions for flow parameters such as
velocity, resistance to flow, and shear stress. The results compared with the case of normal
blood and other models. Ponalgusam [9] presented a study on the effects of slip (at the
stenotic wall) and the influence of body acceleration on the flow variables such as velocity
profiles, shear stress, flow rate and effective viscosity for pulsatile Newtonian blood flow
through a stenosed vessel. Verma [10] has proposed the study of the effect of mild stenosis
on the flow of blood represented as a Newtonian fluid, by using the momentum integral
techniques to solve the equation governing the flow. The study found analytic expressions
for the pressure gradient, velocity profile, shearing stress and separation phenomena at
varying Reynolds number.

In this work, we study the two dimensional steady, incompressible Newtonian lami-
nar flow of blood through a stenosed (constricted) artery using the Variational Iteration
Method (VIM). Several methods have recently been introduced to solve the governing
equations of blood flow such as the homotopy analysis, perturbation analysis, momentum
integral techniques, the Galerkin Finite Element method etc. The Variational Iteration
Method (as proposed by [11] in 1999 ) is capable of solving the non-linear governing
equations of the Newtonian Blood flow.

2. Flow Geometry

In this section, we study the axisymmetry steady flow in a stenotic tube. For clarity
of purpose, we assumed the blood flow to be laminar, two dimensional, viscous, fully
developed, incompressible and Newtonian flow through an artery with a mild stenosis
(constriction).
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3. Flow Analysis and Co-ordinate System

The constricted wall of this artery is assumed to be rigid and impermeable. The
equation of the stenosis surface in figure 1 is mathematically modeled [4] as

R̃ ˜(Z)
= R0 −

δ̃

2

(
1 + cos

2π

L0
Z̃

)
(1)

where,
R̃(Z): The radius of the artery in the stenotic region.
R0: The constant radius of the normal artery in the non-stenotic region.
L: The length of the artery.
L̃0: The length of the stenosis.
Z̃: The axial coordinate.
δ̃: The maximum height of the stenosis.
Note: (∼) represents dimensional variables which make it different from the corresponding
dimensionless variables.

Blood flow has been assumed to be a homogeneous Newtonian fluid and the flow is in
two dimensions, in axial and radial directions (coordinates). The incompressible Navier-
Stokes equations along with the continuity equations have been used as the governing
equations for modeling the fluid flow.

Since the tube carries blood in horizontal direction, we neglect gravity and the Navier-
Stokes equation for a 2-dimensional steady, incompressible laminar flow takes the form

ũ
∂ũ

∂z̃
+ ṽ

∂ũ

∂Γ̃
= −1

ρ

(
∂p̃

∂z̃

)
+

µ

ρ

(
∂2ũ

∂Γ̃2
+

1

Γ

∂ũ

∂Γ̃
+

∂2ũ

∂z̃2

)
(2)

and

ũ
∂ṽ

∂z̃
+ ṽ

∂ṽ

∂Γ̃
= −1

ρ

(
∂p̃

∂ Γ

)
+

µ

ρ

(
∂2ṽ

∂Γ̃2
+

1

Γ

∂ṽ

∂Γ̃
+

∂2ṽ

∂z̃2
− ṽ

Γ̃2

)
(3)

Where equation (2) and (3) are in the axial and radial directions respectively. Also, for
2-dimensional axisymmetric geometries, the continuity equation is given by

∂ũ

∂z̃
+

∂ṽ

∂Γ̃
+

ṽ

Γ̃
= 0 (4)

where, ũ is the axial velocity, ṽ is the radial velocity, Γ̃ is the radial coordinate, z̃ is the
axial coordinate, ρ is the density, ρ̃ is the blood pressure and µ is the viscosity coefficient
of blood.

4. Non-Dimensional Variable Transformation

We introduce the following non-dimensional variables using the transformations

ũ = uŨ0, ũ = vŨ0, z̃ = zR0, Γ̃ = ΓR0, p̃ = pρŨ2
0 , Ũ = UŨ0, δ̃ = δR0, L̃ = L0R0,
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where Ũ0 denotes the average velocity in the unobstructed artery and Ũ is the centerline
velocity. Therefore, the geometry of the obstruction in equation (1) in dimensionless form
becomes

R(zR0) = R0 −
δR0

2

(
1 + cos

2π

L0
zR0

)
This implies that

Rz = 1− δ

2

(
1 + cos

2π

L0
z

)
(5)

Substituting the above non-dimensional variables into equation (2) and multiplying through
by R0

Ũ2
0

, we obtain,

uŨ
∂uŨ0

∂zR0
.
R0

Ũ2
0

+ vŨ
∂uŨ0

∂ΓR0
.
R0

Ũ2
0

= −∂p

∂z

Ũ2
0

R0
.
R0

Ũ2
0

+
µ

ρU0

(
∂2u

∂Γ2R0
+

1

ΓR0

∂u

∂Γ
+

∂2u

∂z2R0

)
u
∂u

∂z
+ v

∂u

∂Γ
= −∂p

∂z
+

µ

ρU0

(
∂2u

∂Γ2R0
+

1

ΓR0

∂u

∂Γ
+

∂2u

∂z2R0

)
For

Re =
2ρŨ0R0

µ
⇒ µ =

2ρŨ0R0

Re
.

Then, u∂u
∂z + v ∂u

∂Γ = −∂p
∂z + 2ρŨ0R0

ρReU0

(
∂2u

∂Γ2R0
+ 1

ΓR0

∂u
∂Γ + ∂2u

∂z2R0

)
This implies that

u
∂u

∂z
+ v

∂u

∂Γ
= −∂p

∂z
+

2

Re

(
∂2u

∂Γ2R0
+

1

ΓR0

∂u

∂Γ
+

∂2u

∂z2R0

)
(6)

where Re =
2ρŨ0R0

µ is the Reynolds number. Equation (6) is the Navier-Stoke equation in
the axial direction.
Also, substituting the above non-dimensional variables into equation (3) and multiplying
through by R0

Ũ2
0

we obtain,

uŨ0
∂uŨ0

∂zR0
.
Ũ0

R0
+ vŨ0

∂vŨ0

∂ΓR0
.
Ũ2
0

R0
= −∂pŨ2

0

∂ΓR0
.
Ũ2
0

R0
+

µ

ρ
.
Ũ2
0

R0

(
∂2u

∂Γ2R0
+

1

ΓR0

∂u

∂Γ
+

∂2u

∂z2R0

)
u
∂u

∂z
+ v

∂u

∂Γ
= − ∂p

∂Γ
+

2ρU0R0

ρReU0

(
∂2v

∂Γ2R0
+

1

ΓR0

∂v

∂Γ
+

∂2v

∂z2R0 − vU0
Γ2R0

)

This implies that

u
∂v

∂z
+ v

∂v

∂Γ
= − ∂p

∂Γ
=

2

Re

(
∂2v

∂Γ2
+

1

Γ

∂v

∂Γ
+

∂2v

∂z2 − v
Γ2

)
(7)

where Re =
2ρŨ0R0

µ is the Reynolds number. Equation (7) is the Navier-Stoke equation in
the radial direction.
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Now, we consider the continuity equation as follows:
Substituting the above non-dimensional variables into equation (4) and multiplying through
by R0

Ũ
, we obtain

∂uŨ0

∂zR0
.
R0

Ũ0

+
∂vŨ0

∂ΓR0
.
R0

Ũ0

+ v
Ũ0

ΓR0
.
R0

Ũ0

∂u

∂z
+

∂v

∂Γ
+

v

Γ
= 0

(8)

4.1. Boundary Conditions

The velocity profile constrains for axisymmetric tube flow are given as

i. u = U at r = 0, is the centre line velocity.

ii. Within the Artery: a “no slip” boundary condition prevails at the walls, i.e, the
speed of the blood along the walls vessel is zero, in other words, u = 0, at r = R,

iii. For a finite pressure and inertia forces, as the radius of the element tends to zero,
the viscous forces proportional to ∂u

∂Γ tends to zero. That is, ∂u
∂Γ = 0 at r = 0.

iv. Eliminating pressure term between (6) and (7) and considering the resulting equa-
tions as r → 0
∂3u
∂Γ3 at Γ = 0.

v. Neglecting the viscous term of the normal stress retarding the flow in the axial
direction of equation (6) ∂2u

∂z2
, which is an assumption used in the analysis of non-

uniform flow and with u = v= 0 at the wall, we have

∂p

∂z
=

2

Re

1

Γ

∂

∂Γ

(
r
∂u

∂Γ

)
, r = R.

5. Method of Solution

Various numerical methods have been explored in the course of solving the governing
equation subject to the prescribed boundary conditions for the problem considered. For
example, the Galerkin finite element method was adopted by [12] to solve the considered
problem. The variational iteration method (VIM) is a numerical scheme employed here
in this research to solve the considered problem. This method was first conceived by a
Chinese mathematician [11] in 1999. Since then, the method has been used in seeking
approximate solutions to many problems in applied mathematics, see for examples [13-17]
and literature cited therein.

The VIM is applied to solve the equations (6), (7) and (8) subject to the boundary
conditions in section 4.1. Here, it is assumed that the continuity equation satisfies the
velocity profile conditions. The velocity profile, u and the pressure gradients are obtained
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recursively. The VIM converges with high level precision based on the Reynold number,
Re.

The convergence of solution is obtained when the error recorded for each consecutive
iterations is |un+1 − un| ⩽ 10−5, n is the number of iterations of u. Applying the VIM to
equation (6) and (7), we construct a correction functional for the axial and radial directions
as follows:

u(n+1) = un+

∫ R

0
λ(Γ)

(
un

∂un
∂z

+ vn
∂un
∂Γ

+
∂p

∂z
− 2

Re

(
∂2un
∂Γ2

+
1

Γ

∂un
∂Γ

+
∂2un
∂z2

))
ds, n ⩾ 0

(9)

v(n+1) = vn+

∫ R

0
λ(Γ)

(
un

∂v

∂z
+ vn

∂vn
∂Γ

+
∂p

∂Γ
− 2

Re

(
∂2vn
∂Γ2

+
1

Γ

∂vn
∂Γ

+
∂2vn

∂z2 − vn
Γ2

))
dΓ, n ⩾ 0

(10)
where λ(Γ) is the general Lagrange multiplier, which can be obtained using the generalized
formula [18]

λn(Γ) = (−1)n
(Γ− z)(n−1)

(n− 1)!
(11)

where n is the highest occurring derivative in (11).
Since, the equations (6) and (7) are of second order, we have λ(Γ) = (Γ − z). Therefore,
equation (9) becomes

u(n+1) = un+

∫ R

0
(Γ−z)

(
un

∂un
∂z

+ vn
∂un
∂Γ

+
∂p

∂z
− 2

Re

(
∂2un
∂Γ2

+
1

Γ

∂un
∂Γ

+
∂2un
∂z2

))
ds, n ⩾ 0

(12)
where vn is obtained from the continuity equation, given as;

vn = r

(
∂

∂z
un +

∂

∂Γ
un

)
Equation (12) is used to derive its component parts such as un, n ⩾ 0.

5.1. Determination of Initial Approximation

Since our interest is only in the axial flow, we only seek the initial approximation to
kick-off the iterative scheme in Equation (12).

Let the initial approximation be given as a power series of the form

u0 = U [

n∑
1=0

αix
i] (13)

where x =
(
Γ
R

)
defines the velocity profile in the axial direction, and n is the degree of

the velocity profile polynomials.
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If we choose n = 4 arbitrarily, then

u0 =
(
α0 + α1(x) + α2(x)

2 + α3(x)
3 + α4(x)

4
)
U

⇒ u0 =

(
α0 + α1

(
Γ

R

)
+ α2

(
Γ

R

)2

+ α3

(
Γ

R

)3

+ α4

(
Γ

R

)4
)
U

(14)

Hence, the iterative scheme (VIM) becomes

u0 =

(
α0 + α1

(
Γ

R

)
+ α2

(
Γ

R

)2

+ α3

(
Γ

R

)3

+ α4

(
Γ

R

)4
)
U,

u(n+ 1) = un

∫ R

0

(
un

∂un
∂z

+ Γ

(
∂

∂z
un +

∂

∂Γ
un

)
∂un
∂Γ

+
∂p

∂z
− 2

Re

(
∂2un
∂Γ2

+
1

Γ

∂un
∂Γ

+
∂2un
∂z2

))
dΓ, n ⩾ 0

(15)
Since our interest is axial direction, the flow in radial direction is assumed constants.
Hence, we execute equation (15) with the aid of Maple 18 software for n = 0, 1, 2, 3, · · · .
Thus for every value of n ⩾ 0, we obtain un+1 = un. That is,

u0 = u1 = u2 = · · · =

(
α0 + α1

(
Γ

R

)
+ α2

(
Γ

R

)2

+ α3

(
Γ

R

)3

+ α4

(
Γ

R

)4
)
U (16)

This implies our approximate solution for n ⩾ 0 is the velocity profile polynomial of the
fourth-degree, that is,

u

U
= α0 + α1

(
Γ

R

)
+ α2

(
Γ

R

)2

+ α3

(
Γ

R

)3

+ α4

(
Γ

R

)4

(17)

Now, applying the prescribed boundary conditions to equation (17) to get αi, i = 0, 1, 2, 3, 4.
At the boundary u = U,Γ = 0, we have α0 = 1.
At the boundary u = 0,Γ = R, we have

1 + α1 + α2 + α3 + α4 = 0 (18)

At the boundary ∂u
∂Γ = 0, Γ = 0, we have α1 = 0.

At the boundary ∂2u
∂Γ2 = 0, r = 0, we have

∂3u
∂Γ3 = 6α3

R3 + 24Γα4
R4 = 0.

But r = 0 ⇒ 6α3
R3 = 0 ⇒ α3 = 0.

Since, α0 = 1, α1 = 0, α3 = 0, then we have from equation (17),

α2 = −1− α4 (19)
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At the boundary ∂p
∂z = 2

Re

1
Γ

∂
∂Γ

(
Γ ∂u

∂Γ

)
, Γ = R, we have

ReΓ∂p

2∂z
=

∂

∂Γ

(
Γ
∂u

∂Γ

)
= Γ

∂2u

∂Γ2
+ Γ

∂u

∂Γ
, r = R

⇒ ReRΓ∂p

2∂z
=

∂

∂Γ

(
Γ
∂u

∂Γ

)
= R

(
2Uα2

R2
+

12α4

R2
+

2Uα2

R
+

4Uα2

R

)
⇒ ReRΓ∂p

2∂z
=

2Uα2 + 12α4 + 2Uα2 + 4Uα4

R

⇒ ReR
2Γ∂p

2U∂z
= 2α2 + 16α4

⇒ ReR
2Γ∂p

8U∂z
= α2 + 4α4

(20)

Since, α2 = −1− α4, equation (20) becomes

ReR
2Γ∂p

8U∂z
+ 1 = 3α4 (21)

From equation (21), we have that

α4 =
ReΓR2∂p
8U∂z + 1

3
(22)

Similarly,

α2 = −4

3
−

ReR2Γ∂p
8U∂z

3
(23)

Substituting αn, n = 0(1)4, into equation (17), we obtain

u

U
= 1− 4

3
−

ReR2Γ∂p
8U∂z

3

(
Γ

R

)2

+
ReR2Γ∂p
8U∂z + 1

3

(
Γ

R

)4

. (24)

If we let

Ψ =
ReΓR2∂p
8U∂z

3

then equation (24) can be written as

u

U
= 1− 4

3
− Ψ

3

(
Γ

R

)2

+
(−Ψ− 1)

3

(
Γ

R

)4

. (25)

Evidently, if Ψ = 1[12], we have a parabolic velocity profile which corresponds to the
Poiseuille profile

u

U
= 1−

(
Γ

R

)2

(26)
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5.2. The Flow Flux

The flow flux denoted by Q is defined as [12]

Q = 2π

∫ R

0
ΓudΓ (27)

From equation (25), we have

u = U

(
1− 4

3
− Ψ

3

(
Γ

R

)2

+
(−Ψ− 1)

3

(
Γ

R

)4
)

Thus, equation (27) can be written as

Q = 2π

∫ R

0
Γ

(
1− 4

3
− Ψ

3

(
Γ

R

)2

+
(−Ψ− 1)

3

(
Γ

R

)4
)
dΓ (28)

Q = 2πU [
R2

2
− 1

12
(4−Ψ)R2 +

1

18
(1−Ψ)R2]

⇒ Q = 2πUR2[1− 1

12
(4−Ψ) +

1

18
(1−Ψ)]

⇒ Q =
1

18
πUR2[(8 + Ψ)]

(29)

Since Ψ = −ReR2Γ∂p
8U∂z , equation (29) becomes

Q =
1

18
πUR2[8− (ReR

2∂p)

8U∂z
] =

4

9
πUR2 − (πReR

4∂p)

144∂z
(30)

From equation (26), we have that

U =
9

4

1

R2
[Q+

(πReR
4∂p)

144∂z
] (31)

Equation (31) is called the centerline velocity.

Now, using U = 9
4

1
R2 [Q+ (πReR4∂p)

144
∂p
∂z ] in equation (25), we have,

u =
9

4

1

R2
[Q+

(πReR
4)

144

∂p

∂z
][1− 4

3
− Ψ

3

(
Γ

R

)2

+
(−Ψ− 1)

3

(
Γ

R

)4

] (32)

But Ψ = −ReR2Γ∂p
8U∂z ,

then equation (32) becomes

u =
9

4

1

R2
[Q+

(πReR
4)

144

∂p

∂z
][1− 4

3
− 1

3

(
−ReR

2Γ∂p

8U∂z

)(
Γ

R

)2

+
1

3

(
ReR

2Γ∂p

8U∂z
+ 1

)(
Γ

R

)4

]

(33)
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Equation (33) is the velocity profile equation.
Similarly, substituting (26) and (31) in ∂p

∂z = 2
Re

1
Γ

∂
∂Γ

(
Γ ∂u

∂Γ

)
, Γ ⩾ R, we have

∂p

∂z
=

2

Re

1

Γ

(
R
∂2u

∂Γ2
+

∂u

∂Γ

)
, (34)

u = U

(
1−

(
Γ

R

)2
)

=
9

4

1

R2
[Q+

(πReR
4∂p)

144∂z
][1−

(
Γ

R

)2

] (35)

Evaluating ∂u
∂Γ and ∂2u

∂Γ2using equation (35) with the aid of Maple 18 software at ,r=R, and
substituting in equation (33) yield the result,

∂p

∂z
=

39

9

Q2

π2

1

R5

dR

dz
− 16

π

Q

ReR4
. (36)

Equation (36) is called the pressure gradient and |∂p∂z | is the absolute pressure gradient.

5.3. Results and Discussion

In order to demonstrate the applicability of the mathematical model derived and an-
alyzed in the preceding sections, expressions for pressure and velocity profile (axial direc-
tion) are conditioned in the no velocity-slip condition at the arterial wall. For us to have a
vivid insight of the axisymmetric steady flow of blood in an embolic table, the variations
of u, Ψ, Q and ∂p

∂x have been derived and the solutions are presented graphically with
the aid of the computer application software Maple 18. The axisymmetric steady flow of
blood is modeled as Newtonian and incompressible through an artery with a fixed solid
stenosis. The variation iteration method was used to solve the governing equations with
the assumption that the initial approximation is defined as a polynomial of the velocity
profile of fourth-degree. Implementing the VIM on equation (17) for n ⩾ 0 with Maple 18
software, we observe that u0 = u1 = u2 = · · · = u. In our analysis, the maximum height of
the stenosis is taken as 0.25 or 1

4 . However, the maximum height of the stenosis is defined
in the range 0 to 0.6 to enable us analyze the effect pronounce. The absolute pressure
gradient parameter, |∂p∂z | is defined in the range in 0 to 1. The velocity slip parameter is
defined in the range 0 to 0.6. In this work, the Reynold number is taken in the range 20,
60 and 100 for δ = 1

4 , to enable us analyze the effect pronounce.
The Figures 2-3 illustrate the axial velocity profile for different values of Reynold

numbers for δ = 1
4 in the analysis of axisymmetric steady flow of blood in an embolus

tube. It is observed in figure 1 that the no velocity slip at the walls of the arteries perturbs
the velocity due to the obstructed arterial segments of the tube. It is also observed at
the throat of the stenosis (u=1.6), the axial velocity increases with R=0.1 and 0.2 with
increase in the radial distance. However, for R = 0.3 and 0.4, the trend is metamorphosed.
Similarly, at u = 1.8 and 1.9 (the throat of the stenosis) the axial velocity profile drastically
increases as shown in the Figures 3 and 4. Figures 5-7 illustrate the absolute values of the
dimensionless pressure gradient | ∂p∂x | defined in the range 0 to 1 for δ = 1

4 for the Reynold
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numbers 20, 30 and 50. It is observed that the pressure gradient is at the throat of stenosis
as the Reynold number increases. However, the variation of the pressure gradient is mostly
felt at the downstream of the tube.

Figure 2. Velocity Profile for 𝑹𝒆 = 𝟐𝟎, 𝜹 =
𝟏

𝟒
                                                                       Figure 3. Velocity Profile for 𝑹𝒆 = 𝟔𝟎, 𝜹 =

𝟏

𝟒
 

Figure 4. Velocity Profile for 𝑹𝒆 = 𝟏𝟎𝟎𝟎, 𝜹 =
𝟏

𝟒
                                                       Figure 5. Absolute pressure gradient for 𝛅 =

𝟏

𝟒
. 

 Figure 6. Absolute pressure gradient for 𝛅 =
𝟏

𝟒
.                                                          Figure 7. Absolute pressure gradient for 𝛅 =

𝟏

𝟒
. 
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6. Conclusion

In this research work, we presented the numerical approach for modeling the axisym-
metric flow of blood in an embolus tube involving two dimensional Navier-Stoke equations.
The VIM coincides with the integral momentum equation method [12], which yields the
same sets of equations for the velocity profile and pressure gradient equations. Results
from this model corresponds with that of the most resent experimental data that explain
how the effect of obstruction to the flow of blood in the artery of the human body with
reference to pressure and velocity of the blood flow pass an embolus.
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