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Abstract. As a result of the importance of topological space in data analysis and some applica-
tions, many researches have used various methods to expand that space, including the concept of
ditopology. T. Dizman and et al. presented soft ditopolgical spaces in 2016. We define new types
of nearly soft open sets in soft ditopology as soft β - open, soft β - closed, soft preopen, soft semi
- open, and some related properties in this paper. Soft β - continuous and soft β - cocontinuous
functions were also introduced . Finally, soft β - compact, soft β - stable and soft β - irresolute
concepts were discussed, and some of the concepts were studied in this field.
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1. Introduction and Preliminaries

In the late twentieth century, Molodtsov[11] introduced the theory of soft set as a
generalization of the set theory, which widely used to deal with incomplete, insufficient
information for its study and analysis, which similar to the rough set theory. Soft set the-
ory and its applications are now advancing rapidly in a variety of fields[5, 7, 8, 13–15, 19].
Maji et al.[21, 22] presented some new definitions of soft sets as well as an application of
soft sets in decision making problems. Jose Carlos et al.[6] participated in the development
and improvement of soft topology. The idea of a generalization of the topological space by
using novel concepts as ideal, grill, filter[3, 9, 16, 24] coming as a result of the importance
of topological space and used it to solve some of the measures things that were previously
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difficult to solve. The mysterious set theory and other uncertain knowledge models have
led to new approaches to decision - making as [2, 4]. So, Brown et al.[12] introduced the
concept of ditopological space as a generalization of topological spaces. The concept of
ditopological space via the soft set theory with separation axioms of soft ditopological
space introduced by Senel in 2016 [23]. Where the idea of ditopological spaces depends
on two structures soft topology and soft cotopology. Also, Senel [23] introduced soft di-
topological spaces as a soft generalization of ditopology concept, which depends on two
structures a soft topology and a soft subspace topology. S. Dost et al. In[12] introduced
the concept of β - open and β - closed in ditopological texture spaces. In this paper, we
will introduce some of the nearly soft β - open sets, the study of soft β - compactness and
soft β - cocompactness. Also, soft β - stable and soft β - irresolute were introduced in soft
ditopological spaces and study some of their properties.

Through this section, we recall several basic notions related to soft set, soft topologi-
cal space, soft cotopological space, and some of the nearly soft open sets through soft
topological space, which handled in mentioned in [10–12, 17, 18, 20]. Through this paper,
we notice that U refers to an universal set, E is the soft parameters and P (U) is the power
set of U . .

Definition 1. [11] On universal set U , a pair (f,E) is called a soft set if and only if f
is a mapping from E into the power set P (U). To put it another way, the soft set is a
parametrized family of subsets of the set U . Every setf(e), e ∈ E in this family can be
thought of as the set of e-elements of the soft set (f,E), or as the set of e-approximate
elements of the soft set..

Definition 2. [20] If τ is defined as the collection of soft sets over X, then τ is said to
be a soft topology on X if it fulfills the following axioms: (1)X,Φ ∈ τ , where Φ(e) = Φ
and X(e) = X, ∀e ∈ E. (2) The union of any number of soft sets in τ belongs to τ . (3)
The intersection of any two soft sets in τ belongs to τ . The triple (X, τ,E) is referred to
as a soft topological space, and the members of τ are referred to as soft open sets.

Definition 3. Let (X, τ,E) represent a soft topological space over X and (F,A) represent
a soft set over X. (1) The soft interior of (F,A) [18] is the soft set int (F,A) = X̃{(O,A) :
(O,A) is the soft open and (O,A)⊆̃(F,A)}.
(2) The soft closure of (F,A) [20] is the soft set cl (F,A) = ∩̃{(C,A) : (C,A) is soft closed
and (F,A)⊆̃(C,A)}.

Definition 4. [12] If κ is the collection of complement soft sets over X, then κ is said to
be a soft cotopology on X if it obeys the following axioms: (1) Φ and X̃ ∈ κ.
(2) The intersection of any number of soft sets in κ ∈ κ.
(3) The union of any two soft sets in κ ∈ κ. The triple (X,κ,E) is referred to as a soft
cotopological space, and the members of κ are referred to as soft closed sets.

Definition 5. A soft set(F,E) of a soft topological space(X, τ,E) is said to be:
(1) Soft β - open [17] if (F,A) ⊆̃ cl(int(cl(F,A))).
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(2) Soft preopen [17] if (F,A) ⊆̃ int(cl(F,A)).
(3) Soft α - open [20] if (F,A) ⊆̃ int(cl(intl(F,A))).
(4) Soft semi- open [10] if (F,A) ⊆̃ cl(int(F,A)).
(5) Soft open [20] if its complement is soft closed.

Definition 6. [1] A function f : (X, τ) → (Y, σ) is said to be β - irresolute if the preimages
of β - open sets are β - open.

2. Soft β - open and soft β - closed sets

Definition 7. Let U be a universel set and E be the parameters. A family (τ, κ) of a
subsets of ŨE is called a soft ditopology on a soft subspace ŨE, where τ is a soft topology,
κ is a soft cotopology and the space (ŨE , τ, κ) is called soft ditopological space. If we take
(τ, κ) = Ω, then (ŨE ,Ω) is said to be soft ditopological space.

Definition 8. Let (ŨE , τ, κ) be a soft ditopological space over ŨE and f be a soft set over
ŨE such that f = {(e,A) : e ∈ E,A ∈ P (U) and (e,A) = F : E → P (U)}.

Definition 9. Let ŨE ∈ S. The power soft set of ŨE is defined by P (ŨE) = {fi⊆̃ŨE : i ∈
I} and its cardinality is defined by |P (ŨE)| = 2

∑
e∈E |ŨE(e)| where |ŨE(e)| is the cardinality

ŨE(e)

Example 1. Let U = {u1, u2}, E = {e1, e2} and ŨE = {(e1, {u1, u2}), (e2, {u1, u2})} then
the soft sets are: f1 = {(e1, {u1})}, f2 = {(e1, {u2})}, f3 = {(e1, {u1, u2})}, f4 =
{(e2, {u1})}, f5 = {(e2, {u2})}, f6 = {(e2, {u1, u2})}, f7 = {(e1, {u1}), (e2, {u1})},
f8 = {(e1, {u1}), (e2, {u2})}, f9 = {(e1, {u2}), (e2, {u1})}, f10 = {(e1, {u2}), (e2, {u2})},
f11 = {(e1, {u1}), (e2, {u1, u2})},
f12 = {(e1, {u2}), (e2, {u1, u2})}, f13 = {(e1, {u1, u2}), (e2, {u1})}, f14 = {(e1, {u1, u2}),
(e2, {u2})}, f15 = ŨE, f16 = Φ. And we get the complement the soft sets are:
f c1 = {(e1, {u2})}, f c2 = {(e1, {u1})}, f c3 = {(e1,Φ)}, f c4 = {(e2, {u2})}, f c5 = {(e2, {u1})},
f c6 = {(e2,Φ)}, f c7 = {(e1, {u2}), (e2, {u2})}, f c8 = {(e1, {u2}), (e2, {u1})}, f c9 = {(e1, {u1}),
(e2, {u2})}, f c10 = {(e1, {u1}), (e2, {u1})}, f c11 = {(e1, {u2}), (e2,Φ)}, f c12 = {(e1, {u1}),
(e2,Φ)}, f c13 = {(e1,Φ), (e2, {u2})}, f c14 = {(e1,Φ), (e2, {u2})}, f c15 = Φ, f c16 = ŨE.
Also we get a soft ditopological space (τ, κ) = {Φ, ŨE , {(e1, {u2})}, {(e1, {u1})}} on ŨE,
such that τ = {ŨE ,Φ, {(e1, {u2})}} and κ = {Φ, ŨE , {(e1, {u1})}.

Definition 10. A soft β interior of a soft set f is denoted by sβ - int (f) which is defined
by.
sβ - int (f) = ∪̃{h : h is a soft β - open and h⊆̃f}.

A soft β closure of a soft set f is denoted by sβ - cl (f) which is defined by.
sβ - cl (f) = ∩̃{k : k is a soft β - closed and f⊆̃k}.

Definition 11. Let (ŨE , τ, κ) be a soft ditopological space and f ∈ P (ŨE) then:
(1) f is a soft β - open if f⊆̃cl(int(cl(f))).
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(2) f is a soft β - closed if int(cl(int(f)))⊆̃f .
(3) f is a soft α - open if f⊆̃int(cl(int(f))).
(4) f is a soft preopen if f⊆̃int(cl(f)).
(5) f is a soft preclosed if cl(int(f))⊆̃f .
(6) f is a soft semi - open if f⊆̃cl(int(f)).
(7) f is a soft β - open if the complement of f is a soft β - closed.

Remark 1. In a soft ditopological space it is easy to see the set of all soft β - open con-
tains each of a soft semi - open, soft preopen and soft α - open, as shown in the following
diagram but the converse need not be true in general as Example 2

.

Example 2. Let (ŨE , τ, κ) be a soft ditopological space, U = {u1, u2}, E = {e1, e2} such
that
ŨE = {(e1, {u1, u2}), (e2, {u1, u2})}, τ = {ŨE ,Φ, {(e1, {u2})}, {(e2, {u1, u2})}, {(e1, {u1, u2}),
(e2, {u1)}, {(e1, {u2}), (e2, {u1})}, κ = {Φ, ŨE , {(e1, {u1}), (e2,Φ)}, {(e1,Φ), (e2, {u2})},
{(e1, {u1}), (e2, {u2})}, we notice that the soft set {(e1,Φ), (e2, {u1})} in soft ditopological
space is soft preopen set and not soft α - open set. Also it is soft β - open and not soft
semi - open set.

Theorem 1. If h is a soft closed and f is a soft β - open then f ∪̃ h is a soft β - open.
Proof: Since f ⊆̃ cl(int(cl(f))), (h ∪̃ f) ⊆̃ h ∪̃ cl(int(cl(f))) = cl(int(cl(h))) ∪̃ cl(int(cl(f)))
⊆̃ cl(int(cl((h)∪̃ (f)))). This show that f ∪̃ h is soft β - open.

The class of all soft β - open ( resp. soft β - closed, soft preopen, soft semi - open, soft
α - open, soft α - closed and soft preclosed )in ditopological spaces (ŨE , τ, κ) denoted by
SβO ( resp. SβC , SPO, SSO, SαO, SαC and SPC).

Theorem 2. Let (ŨE , τ, κ) be a soft ditopological space we have:
(1) If f ∈ SPO, f ⊆̃ h ⊆̃ scl(f) then h ∈ SβO.
(2) If f ∈ SPC, sint(f) ⊆̃ h ⊆̃f then h ∈ SβC.
Proof: (1) Since f is soft preopen ⇒ f⊆̃int(cl(f))⊆̃h⊆̃∩̃{f : f is soft closed } ⊆̃cl(int(cl(f))) ⇒
h ∈ SβO .
(2) Since f is soft preclosed ⇒ cl(int(f))⊆̃f , sint(f)⊆̃h⊆̃f ⇒ h ∈ SβC.

Lemma 1. Let (ŨE , τ, κ) be a soft ditopological space, then
(1) τ ⊆̃ SPO ⊆̃ SβO and κ ⊆̃ SPC ⊆̃ SβC.
(2) SPO and SβO are closed under arbitrary unions.
(3) SPC and SβC are closed under arbitrary intersections.
Proof: (1) Since the element of τ is a soft open then, τ ⊆̃ SPO and SPO ⊆̃ SβO, that is
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τ ⊆̃ SPO ⊆̃ SβO. Similary, the element of κ is a soft closed then, κ ⊆̃ SPC and SPC ⊆̃
SβC, that is κ ⊆̃ SPC ⊆̃ SβC.
(2) and (3)are obvious.

Lemma 2. Let (ŨE , τ, κ) be a soft ditopological space and f is a soft set on ŨE then :
(1) f ∈ SβO ⇔ f = sβ - int(f).
(2) f ∈ SβC ⇔ f = sβ - cl(f).
Proof: (1) Let f = sβ - int(f). Since sβ - int(f) = ∪̃{h : h is a soft β - open and h⊆̃f}
this show that f ∈ {h : h is a soft β - open and h⊆̃f} hance f is a soft β - open .
Conversely let f ∈ SβO, since f⊆̃f , f ∈ {h : h is a soft β - open and h⊆̃f} further,
h⊆̃f ∀ f , since
f = ∪̃{h : h is a soft β - open and h⊆̃f}.
(2) Similar (1)

Lemma 3. Let (ŨE ,Ω) be a soft ditopological space the following hold for soft β - closure.
(1) sβ - cl (Φ) = Φ.
(2) If f ⊆̃ h⇒ sβ - cl(f) ⊆̃ sβ - cl(h).

Definition 12. A soft ditopological space (ŨE ,Ω) is called .
(1) Soft β - compact if every cover of ŨE by soft β - open sets has a finite subcover.
(2) Soft β - cocompact if every cocover of Φ by soft β - closed sets has a finite subcocover.

Proposition 1. Let (ŨE ,Ω) be a soft ditopological space and (ŨE ,Ω
c) is a complement of

soft ditopological space. Then h ∈ SβC ⇐⇒ hc ∈ SβO, h ∈ ŨE.

Proposition 2. Let Ωc be a complement soft ditopology on ŨE. Then (ŨE ,Ω
c) is soft β

- compact if and only if it is soft β - cocompact.
Proof: Let Ω be soft β - compact and f = {fi : i ∈ J} ∈ SβC with ∩̃f = Φ. that
G = {f ci : i ∈ J}
∈ SβO, Moreover ∪̃G = ∪̃{f ci : i ∈ J} = {∩̃fi : i ∈ J}c = Φc = ŨE.
Similary, if Ω is soft β - compact then it is soft β -cocompact.

Definition 13. Let (τ, κ) be a soft ditopology on ŨE.
(1) (τ, κ) will be called sβ - stable if every sβ - closed set h ∈ Ω \ {ŨE} is sβ - compact
in ŨE.
(2) (τ, κ) will be called sβ - costable if every sβ - open set f ∈ Ω \Φ is sβ - cocompact in
ŨE.

Example 3. Let (τ, κ) be a soft ditopological space on ŨE such that U = {u1, u2, u3},
E = {e1, e2, e3}, ŨE = {(e1, {u1, u2}), (e2, {u2, u3})}, τ = {Φ, ŨE} and κ = {Φ, {(e1, {u1}),
(e2, {u2})}}.
Firstly, we notice that, the only soft β - open are Φ, ŨE in soft ditopolgical space (ŨE , τ, κ),
that is it is soft β - compact. Also, the soft h = {(e1, {u1}), (e2, {u2})} is soft closed and
soft β - closed, so it is not soft compact and not soft β - compact. If follows that (τ, κ) is
not sβ - stable.
Secondly, we show that the space may be sβ - compact but not soft β - costable.
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Let τ = {(e1, {u1}), (e2, {u2})}, κ = {Φ, ŨE}, the soft ditopology (τ, κ) is not sβ - compact
since it is not soft compact. On the other hand (τ, κ) is sβ - stable since every sβ - closed
set is closed and the only closed sets ŨE and Φ which is sβ - compact.
Thirdly, also we can choose τ and κ such that the soft ditopological space is sβ - costable
but not sβ - compact.

Definition 14. A soft ditopological space is called Sβ - dicompact if it is Sβ - compact,
Sβ - cocompact, Sβ - stable and Sβ - costable.

Proposition 3. Let (τ, κ) be a soft ditopology on ŨE:
(1) Soft β - compact =⇒ strongly soft compact =⇒ soft compact.
(2) Soft β - cocompact =⇒ strongly soft cocompact =⇒ soft cocompact.
Proof: It is obvious, since every soft open set is soft preopen and every soft closed set is
soft preclosed.

Proposition 4. For a soft ditopological space:
(1) Soft β - stable =⇒ soft strongly stable =⇒ soft stable.
(2) Soft β - costable =⇒ strongly soft costable =⇒ soft costable.
Moreover, the converse is not true in general, as the following example:

Proposition 5. Let Ω be a complemented soft ditopology on (ŨE)
c. Then (ŨE ,Ω

c) is soft
β - compact if and only if it is soft β - cocompact.
Proof: Let (ŨE ,Ω) be a soft β - compact and let K = {κi | i ∈ J} be a family of
soft β - closed sets with ∩̃K = Φ. Obvious G = {κi | i ∈ J}c is a family of soft β
open sets. Moreover , ∪̃G = ∪̃{κi | i ∈ J}c = ŨE, and so we have J 8 ⊆ J finite with
∪̃{κi | i ∈ J 8}c = ŨE . That is ∩̃{κi | i ∈ J 8 = Φ, and so (ŨE ,Ω) is soft β - cocompact.
Similarly, if (ŨE ,Ω) is soft β - compact, then it is soft β - compact.

Definition 15. A soft ditopological space will be called soft β - dicompact if it is soft β -
compact, soft β - cocompact, soft β - stable and soft β - costable.

Example 4. (1) Let (τ, κ) be a soft ditopological space on ŨE such that U = {u1, u2, u3},
E = {e1, e2}, ŨE ∈ S , ŨE = {(e1, {u1, u2}), (e2, {u2, u3})}, τ = {ŨE ,Φ}, {(e1, {u1, u2}),
(e2, {u3})} and κ = {Φ, ŨE}.
Since the only soft β - open sets are ŨE ,Φ in soft ditopology (ŨE , τ, κ), we have that it is
soft β - compact.
(2) Let τ = {ŨE ,Φ} and κ = {Φ, ŨE , {(e1, {u1, u2}), (e2, {u3})}, then the soft ditopology
(ŨE , τ, κ) is soft β - cocompact but not soft β - compact.
This example show that in general soft β - compact and soft β - cocompact are independent.

Definition 16. Let Ω1 = (τ1, κ1) and Ω2 = (τ2, κ2) are two soft ditopological spaces on
ŨE.Then Ω2 is called coarser than Ω1 (denoted by Ω2 ⊆̃ Ω1 if f ∈ τ1 whenever f ∈ τ2 and
h ∈ κ1 whenever f ∈ κ2.

Theorem 3. If (ŨE ,Ω1) and (ŨE ,Ω2) are two soft ditopological spaces. Then (ŨE ,Ω1∩̃ Ω2)
is a soft ditopological space.
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Proof: Since Ω1 = (τ1, κ1) and Ω2 = (τ2, κ2) are two a soft ditopological space on ŨE then
(ŨE , τ1) and (ŨE , τ2) are two soft topological space ⇒ (ŨE , (τ1∩̃τ2)) is a soft topological
space (1). Also, (ŨE , κ1) and (ŨE , κ2) are two a soft cotopological space ⇒ (ŨE , (κ1∩̃κ2))
is a soft ctopological space (2). From (1) and (2), we get (ŨE ,Ω1) and (ŨE ,Ω2) are two
soft ditopological spaces.

3. Soft β - continuous mappings

Definition 17. Let (ŨE ,Ω1) and (ṼE ,Ω2) be two soft ditopological spaces. A soft function
(ϕ,ψ) : (ŨE ,Ω1) → (ṼE ,Ω2) where ϕ : (ŨE , τ1) → (ṼE , , τ2) and ψ : (ŨE , κ1) → (ṼE , κ2)
then, a mapping (ϕ,ψ) is called continuous function at a soft point xp ∈ ŨE if ϕ :
(ŨE , τ1) → (ṼE , τ2) is continuous function at xp, and ψ : (ŨE , κ1) → (ṼE , κ2) is continuous
function at xp.

Definition 18. A soft function Γ = (ϕ,ψ) : (ŨE ,Ω1) → (ṼE ,Ω2) is soft continuous if and
only if the inverse image of soft open in Ω2 is soft open in Ω1.

Definition 19. The soft function (ϕ,ψ) : (ŨE , τ1, κ1) → (ŨE , τ2, κ2) is called :
(1) Soft β - continuous if ϕ−1(f) ∈ SβO(ŨE) ∀ f ∈ τ2.
(2) Soft β - cocontinuous if ψ−1(h) ∈ SβC(ŨE) ∀ h ∈ κ2.
(3) Soft β - bicontinuous if it is both soft β - continuous and soft β - cocontinuous.
(4) Soft semi - continuous if ϕ−1(f) ∈ SSO(ŨE) ∀ f ∈ τ2.
(5) Soft semi - cocontinuous if ψ−1(h) ∈ SSC(ŨE) ∀ h ∈ κ2.
(6) Soft semi - bicontinuous if it semi - continuous and semi - cocontinuous.

Example 5. Let (ŨE ,Ω1), (ŨE ,Ω2) be two soft ditopiogical spaces, such that U = {u1, u2, u3},
E = {e1, e2}, ϕ : (ŨE , τ1) → (ŨE , τ2) and ψ : (ŨE , κ1) → (ŨE , κ2), τ1 = {Φ, ŨE , {(e1, {u1}),
(e2, {u1})},
{(e1, {u2}), (e2, {u2})}, {(e1, {u1, u2}), (e2, {u1, u2})}, κ1 = {Φ, ŨE , {(e1, {u1}),
(e2, {u2})}, {(e1, {u1}),
(e2, {u2})}}, and τ2 = {Φ, ŨE , {(e1, {u1}), (e2, {u1})}, {(e1, {u1, u2}), (e2, {u1, u2})},
κ2 = {Φ, ŨE , {(e1, {u2}), (e2, {u2})}}, if we defined the mapping as ϕ(u1) = u1, ϕ(u2) =
u3, ϕ(u3) = u2 and ψ(u1) = u1, ψ(u2) = u3, ψ(u3) = u2, then ϕ is a soft β - continuous
and ψ is a soft β - cocontinuous, Consequently Ω is a soft β - bicontinuous.

Definition 20. A soft function Γ = (ϕ,ψ) : (ŨE , τ1, κ1) → (ŨE , τ2, κ2) is called :
(1) Soft β - irresolute if ϕ−1(f) is sβo(ŨE) ∀f is sβo(ŨE) and ψ−1(f) is sβc(ŨE) ∀f is
sβc(ŨE).
(2) Strongly soft β - irresolute if ϕ−1(f) is sso(ŨE) ∀f is sβo(ŨE) and ψ−1(f) is ssc(ŨE)
∀f is sβc(ŨE).

Proposition 6. Let a soft function Γ1 : (ŨE , τ1, κ1) → (ṼE , τ2, κ2) and Γ2 : (ṼE , τ2, κ2) →
(W̃E , τ3, κ3) are both soft β irresolute. Then Γ1 ◦ Γ2 : (ŨE , τ1, κ1) → (W̃E , τ3, κ3) is soft β
irresolute.
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Definition 21. Let a soft function (ϕ,ψ) : (ŨE , τ1, κ1) → (ŨE , τ2, κ2), then:
(1) ϕ is called soft β - open if the image of each soft β open in τ1 is soft β - open in τ2.
(2) ψ is called soft β - closed if the image of each soft β - closed in κ1 is soft β - closed
in κ2.

4. Conclusion

In recent decades, many applications of topology have merged in different fields. There-
fore we have had to expand the topological space in many ways as a result of its contri-
bution to solving some issues. So, in this paper, we generalized some of the concepts via
soft ditopology, and some properties are obtained.
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