EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 2, 2022, 626-634 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On almost $\alpha(\Lambda, sp)$ -continuous multifunctions

Chawalit Boonpok¹, Jeeranunt Khampakdee^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. Our main purpose is to introduce the notion of almost $\alpha(\Lambda, sp)$ -continuous multifunctions. Moreover, some characterizations of almost $\alpha(\Lambda, sp)$ -continuous multifunctions are established.

2020 Mathematics Subject Classifications: 54C08, 54C60

Key Words and Phrases: $\alpha(\Lambda, sp)$ -open set, almost $\alpha(\Lambda, sp)$ -continuous multifunction

1. Introduction

The notion of continuity is an important concept in topological spaces. Many mathematicians studied the various types of generalizations of continuity. In 1988, Noiri [6] introduced and studied the notion of almost α -continuity in topological spaces as a generalization of α -continuity due to Mashhour et al. [5]. In 1998, Popa and Noiri [8] extended the concept of almost α -continuous functions to multifunctions and defined almost α continuous multifunctions and obtained several characterizations of almost α -continuous multifunctions. Abd El-Monsef et al. [4] introduced a weak form of open sets called β -open sets. This notion was also called semi-preopen sets in the sense of Andrijević [1]. In 2004, Noiri and Hatir [7] introduced the notion of Λ_{sp} -sets in terms of the concept of β -open sets and investigated the notion of Λ_{sp} -closed sets by using Λ_{sp} -sets. In [3], the author introduced the concepts of (Λ, sp) -open sets and (Λ, sp) -closed sets which are defined by utilizing the notions of Λ_{sv} -sets and β -closed sets. In particular, some characterizations of upper and lower (Λ, sp) -continuous multifunctions are investigated in [3]. The purpose of the present paper is to introduce the notion of almost $\alpha(\Lambda, sp)$ -continuous multifunctions. Furthermore, several characterizations of almost $\alpha(\Lambda, sp)$ -continuous multifunctions are discussed.

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4277

Email addresses: chawalit.b@msu.ac.th (C. Boonpok), jeeranunt.k@msu.ac.th (J. Khampakdee)

^{*}Corresponding author.

2. Preliminaries

Throughout this paper, spaces (X,τ) and (Y,σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space (X,τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X,τ) is said to be β -open [4] if $A \subseteq Cl(Int(Cl(A)))$. The complement of a β -open set is called β -closed. The family of all β -open sets of a topological space (X,τ) is denoted by $\beta(X,\tau)$. A subset $\Lambda_{sp}(A)$ [7] is defined as follows: $\Lambda_{sp}(A) = \bigcap \{U \mid A \subseteq U, U \in \beta(X,\tau)\}$. A subset A of a topological space (X,τ) is called a Λ_{sp} -set [7] if $A = \Lambda_{sp}(A)$. A subset A of a topological space (X,τ) is called (Λ,sp) -closed [3] if $A = T \cap C$, where T is a Λ_{sp} -set and C is a β -closed set. The complement of a (Λ,sp) -closed set is called (Λ,sp) -open.

Let A be a subset of a topological space (X, τ) . A point $x \in X$ is called a (Λ, sp) cluster point [3] of A if $A \cap U \neq \emptyset$ for every (Λ, sp) -open set U of X containing x. The
set of all (Λ, sp) -cluster points of A is called the (Λ, sp) -closure [3] of A and is denoted by $A^{(\Lambda, sp)}$. The union of all (Λ, sp) -open sets contained in A is called the (Λ, sp) -interior [3]
of A and is denoted by $A_{(\Lambda, sp)}$.

Lemma 1. [3] Let A and B be subsets of a topological space (X, τ) . For the (Λ, sp) -closure, the following properties hold:

- (1) $A \subseteq A^{(\Lambda,sp)}$ and $[A^{(\Lambda,sp)}]^{(\Lambda,sp)} = A^{(\Lambda,sp)}$.
- (2) If $A \subseteq B$, then $A^{(\Lambda,sp)} \subseteq B^{(\Lambda,sp)}$.
- (3) $A^{(\Lambda,sp)} = \bigcap \{F | A \subseteq F \text{ and } F \text{ is } (\Lambda,sp)\text{-}closed\}.$
- (4) $A^{(\Lambda,sp)}$ is (Λ,sp) -closed.
- (5) A is (Λ, sp) -closed if and only if $A = A^{(\Lambda, sp)}$.

Lemma 2. [3] Let A and B be subsets of a topological space (X, τ) . For the (Λ, sp) -interior, the following properties hold:

- (1) $A_{(\Lambda,sp)} \subseteq A$ and $[A_{(\Lambda,sp)}]_{(\Lambda,sp)} = A_{(\Lambda,sp)}$.
- (2) If $A \subseteq B$, then $A_{(\Lambda,sp)} \subseteq B_{(\Lambda,sp)}$.
- (3) $A_{(\Lambda,sp)}$ is (Λ,sp) -open.
- (4) A is (Λ, sp) -open if and only if $A_{(\Lambda, sp)} = A$.
- (5) $[X A]^{(\Lambda, sp)} = X A_{(\Lambda, sp)}$.
- (6) $[X A]_{(\Lambda, sp)} = X A^{(\Lambda, sp)}$.

A subset A of a topological space (X, τ) is said to be $s(\Lambda, sp)$ -open (resp. $p(\Lambda, sp)$ -open, $r(\Lambda, sp)$ -open, $\alpha(\Lambda, sp)$ -open, $\beta(\Lambda, sp)$ -open) if $A \subseteq [A_{(\Lambda, sp)}]^{(\Lambda, sp)}$ (resp. $A \subseteq [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$, $A = [A^{(\Lambda, sp)}]_{(\Lambda, sp)}$, $A \subseteq [[A_{(\Lambda, sp)}]^{(\Lambda, sp)}]_{(\Lambda, sp)}$, $A \subseteq [[A^{(\Lambda, sp)}]_{(\Lambda, sp)}]_{(\Lambda, sp)}$ [3]. The complement of a $s(\Lambda, sp)$ -open (resp. $p(\Lambda, sp)$ -open, $r(\Lambda, sp)$ -

Lemma 3. Let A be a subset of a topological space (X, τ) . Then, $x \in A^{s(\Lambda, sp)}$ if and only if $U \cap A \neq \emptyset$ for every $U \in s\Lambda_{sp}O(X, \tau)$ containing x.

Lemma 4. Let A be a subset of a topological space (X, τ) . Then,

$$A^{\alpha(\Lambda,sp)} = A \cup [[A^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}.$$

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F: X \to Y$, following [2] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$. Let $\mathcal{P}(Y)$ be the collection of all nonempty subsets of Y. For any (Λ, sp) -open set V of a topological space (Y, σ) , we denote $V^+ = \{B \in \mathcal{P}(Y) \mid B \subseteq V\}$ and $V^- = \{B \in \mathcal{P}(Y) \mid B \cap V \neq \emptyset\}$.

3. Almost $\alpha(\Lambda, sp)$ -continuous multifunctions

In this section, we introduce the notion of almost $\alpha(\Lambda, sp)$ -continuous multifunctions. Moreover, some characterizations of almost $\alpha(\Lambda, sp)$ -continuous multifunctions are discussed.

Definition 1. A multifunction $F:(X,\tau)\to (Y,\sigma)$ is said to be almost $\alpha(\Lambda,sp)$ -continuous at $x\in X$ if, for any (Λ,sp) -open sets G_1,G_2 of Y such that $F(x)\in G_1^+\cap G_2^+$ and each $s(\Lambda,sp)$ -open set U of X containing x, there exists a nonempty (Λ,sp) -open set G_U of X such that $G_U\subseteq U$, $F(G_U)\subseteq G_1^{s(\Lambda,sp)}$ and $F(z)\cap G_2^{s(\Lambda,sp)}\neq\emptyset$ for every $z\in G_U$. A multifunction $F:(X,\tau)\to (Y,\sigma)$ is said to be almost $\alpha(\Lambda,sp)$ -continuous if F has this property at each point of X.

Theorem 1. For a multifunction $F:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) F is almost $\alpha(\Lambda, sp)$ -continuous at a point $x \in X$;
- (2) for any (Λ, sp) -open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists an $\alpha(\Lambda, sp)$ -open set U containing x such that $F(U) \subseteq G_1^{s(\Lambda, sp)}$ and $F(z) \cap G_2^{s(\Lambda, sp)} \neq \emptyset$ for every $z \in U$;
- (3) $x \in [F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$ for any (Λ,sp) -open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$;
- (4) $x \in [[[F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}$ for any (Λ,sp) -open sets G_1,G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$.
- Proof. (1) \Rightarrow (2): Let G_1, G_2 be any (Λ, sp) -open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. For each $s(\Lambda, sp)$ -open set H containing x, there exists a nonempty (Λ, sp) -open set G_H such that $G_H \subseteq H$, $F(G_H) \subseteq G_1^{s(\Lambda, sp)}$ and $F(z) \cap G_2^{s(\Lambda, sp)} \neq \emptyset$ for every $z \in G_H$. Let

$$W = \bigcup \{G_H \mid H \in s\Lambda_{sp}O(X,\tau) \text{ containing } x\}.$$

Then, W is (Λ, sp) -open in X, $x \in W^{s(\Lambda, sp)}$, $F(W) \subseteq G_1^{s(\Lambda, sp)}$ and $F(w) \cap G_2^{s(\Lambda, sp)} \neq \emptyset$ for every $w \in W$. Put $U = W \cup \{x\}$, then $W \subseteq U \subseteq W^{s(\Lambda, sp)} = [W^{(\Lambda, sp)}]_{(\Lambda, sp)}$. Thus, U is an $\alpha(\Lambda, sp)$ -open set containing x such that $F(U) \subseteq G_1^{s(\Lambda, sp)}$ and $F(u) \cap G_2^{s(\Lambda, sp)} \neq \emptyset$ for every $u \in U$.

- $(2) \Rightarrow (3): \text{ Let } G_1, G_2 \text{ be any } (\Lambda, sp)\text{-open sets of } Y \text{ such that } F(x) \in G_1^+ \cap G_2^-. \text{ Then,}$ there exists an $\alpha(\Lambda, sp)$ -open set U of X containing x such that $F(U) \subseteq G_1^{s(\Lambda, sp)}$ and $F(z) \cap G_2^{s(\Lambda, sp)} \neq \emptyset$ for every $z \in U$. Thus, $x \in U \subseteq F^+(G_1^{s(\Lambda, sp)}) \cap F^-(G_2^{s(\Lambda, sp)})$. Since $U \in \alpha\Lambda_{sp}O(X, \tau)$, we have $x \in U \subseteq [F^+(G_1^{s(\Lambda, sp)}) \cap F^-(G_2^{s(\Lambda, sp)})]_{\alpha(\Lambda, sp)}$. $(3) \Rightarrow (4): \text{ Let } G_1, G_2 \text{ be any } (\Lambda, sp)\text{-open sets of } Y \text{ such that } F(x) \in G_1^+ \cap G_2^-.$
- (3) \Rightarrow (4): Let G_1, G_2 be any (Λ, sp) -open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Now, put $U = [F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$. Then, U is an $\alpha(\Lambda, sp)$ -open set and $x \in U \subseteq F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})$. Thus,

$$x \in U \subseteq [[U_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} \subseteq [[[F^{+}(G_{1}^{s(\Lambda,sp)}) \cap F^{-}(G_{2}^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}.$$

 $(4) \Rightarrow (1)$: Let $U \in s\Lambda_{sp}O(X,\tau)$ containing x and let G_1, G_2 be any (Λ, sp) -open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Then, $x \in [[[F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)} = [[F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{s(\Lambda,sp)}$, by Lemma 3,

$$\emptyset \neq U \cap [F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{(\Lambda,sp)}.$$

Put $G_U = [U \cap [F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{(\Lambda,sp)}]_{(\Lambda,sp)}$, then G_U is a nonempty (Λ,sp) open set of X such that $G_U \subseteq U$, $F(G_U) \subseteq G_1^{s(\Lambda,sp)}$ and $F(z) \cap G_2^{s(\Lambda,sp)} \neq \emptyset$ for each $z \in G_U$. This shows that F is almost $\alpha(\Lambda,sp)$ -continuous at x.

Theorem 2. For a multifunction $F:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) F is almost $\alpha(\Lambda, sp)$ -continuous at a point $x \in X$;
- (2) for each $x \in X$ and any (Λ, sp) -open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists an $\alpha(\Lambda, sp)$ -open set U containing x such that $F(U) \subseteq G_1^{s(\Lambda, sp)}$ and $F(z) \cap G_2^{s(\Lambda, sp)} \neq \emptyset$ for every $z \in U$;
- (3) for each $x \in X$ and any $r(\Lambda, sp)$ -open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in \alpha \Lambda_{sp}O(X, \tau)$ containing x such that $F(U) \subseteq G_1$ and $F(z) \cap G_2 \neq \emptyset$ for every $z \in U$;
- (4) $F^+(G_1) \cap F^-(G_2) \in \alpha \Lambda_{sp}O(X,\tau)$ for every $G_1, G_2 \in r\Lambda_{sp}O(Y,\sigma)$;
- (5) $F^+(K_1) \cup F^-(K_2)$ is $\alpha(\Lambda, sp)$ -closed in X for every $r(\Lambda, sp)$ -closed sets K_1, K_2 of Y;
- (6) $F^{+}(G_1) \cup F^{-}(G_2) \subseteq [F^{+}(G_1^{s(\Lambda,sp)}) \cap F^{-}(G_2^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$ for any (Λ, sp) -open sets G_1, G_2 of Y;
- (7) $[F^{-}([K_{1}]_{s(\Lambda,sp)}) \cup F^{+}([K_{2}]_{s(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \subseteq F^{-}(K_{1}) \cup F^{+}(K_{2}) \text{ for any } (\Lambda,sp)\text{-closed sets } K_{1}, K_{2} \text{ of } Y;$
- (8) $[F^-([[K_1]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^+([[K_2]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \subseteq F^-(K_1) \cup F^+(K_2)$ for any (Λ,sp) -closed sets K_1,K_2 of Y;
- (9) $[F^-([[B_1^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^+([[B_2^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \subseteq F^-(B_1^{(\Lambda,sp)}) \cup F^+(B_2^{(\Lambda,sp)})$ for any subsets B_1, B_2 of Y;
- (10) $[[[F^-([[K_1]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^+([[K_2]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq F^-(K_1) \cup F^+(K_2)$ for any (Λ,sp) -closed sets K_1,K_2 of Y;
- (11) $[[[F^{-}([K_{1}]_{s(\Lambda,sp)}) \cup F^{+}([K_{2}]_{s(\Lambda,sp)})]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq F^{-}(K_{1}) \cup F^{+}(K_{2}) \text{ for any } (\Lambda,sp)\text{-}closed sets } K_{1},K_{2} \text{ of } Y;$
- (12) $F^+(G_1) \cap F^-(G_2) \subseteq [[[F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}$ for any (Λ,sp) open sets G_1, G_2 of Y.
 - *Proof.* $(1) \Rightarrow (2)$: The proof follows from Theorem 1.
 - $(2) \Rightarrow (3)$: The proof is obvious.
 - $(3) \Rightarrow (4)$: Let $G_1, G_2 \in r\Lambda_{sp}O(Y, \sigma)$ and let $x \in F^+(G_1) \cap F^-(G_2)$. Then,

$$F(x) \in G_1^+ \cap G_2^-$$

and there exists $U \in \alpha \Lambda_{sp}O(X,\tau)$ containing x such that $F(U) \subseteq G_1$ and $F(z) \cap G_2 \neq \emptyset$ for every $z \in U$. Thus, $x \in U \subseteq F^+(G_1) \cap F^-(G_2)$ and hence

$$F^+(G_1) \cap F^-(G_2) \in \alpha \Lambda_{sp} O(X, \tau).$$

- $(4) \Rightarrow (5)$: This follows from the fact that $F^+(Y-B) = X F^-(B)$ and $F^-(Y-B) = X F^+(B)$ for every subset B of Y.
- (5) \Rightarrow (6): Let G_1, G_2 be any (Λ, sp) -open sets of Y and let $x \in F^+(G_1) \cap F^-(G_2)$. Then, $F(x) \subseteq G_1 \subseteq G_1^{s(\Lambda, sp)}$ and $\emptyset \neq F(x) \cap G_2 \subseteq F(x) \cap G_2^{s(\Lambda, sp)}$. Thus,

$$x \in F^+(G_1^{s(\Lambda, sp)}) = X - F^-(Y - G_1^{s(\Lambda, sp)})$$

and $x \in F^-(G_2^{s(\Lambda,sp)}) = X - F^-(Y - G_2^{s(\Lambda,sp)})$. Since $Y - G_1^{s(\Lambda,sp)}$ and $Y - G_2^{s(\Lambda,sp)}$ are $r(\Lambda,sp)$ -closed, $F^-(Y - G_1^{s(\Lambda,sp)}) \cup F^+(Y - G_2^{s(\Lambda,sp)})$ is $\alpha(\Lambda,sp)$ -closed in X. Since

$$F^{-}(Y - G_1^{s(\Lambda, sp)}) \cup F^{+}(Y - G_2^{s(\Lambda, sp)}) = [X - F^{+}(G_1^{s(\Lambda, sp)})] \cup [X - F^{-}(G_2^{s(\Lambda, sp)})]$$
$$= X - [F^{+}(G_1^{s(\Lambda, sp)}) \cup F^{-}(G_2^{s(\Lambda, sp)})],$$

we have $F^+(G_1^{s(\Lambda,sp)}) \cup F^-(G_2^{s(\Lambda,sp)})$ is $\alpha(\Lambda,sp)$ -open in X and hence

$$x \in [F^+(G_1^{s(\Lambda,sp)}) \cup F^-(G_2^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}.$$

Thus, $F^+(G_1) \cup F^-(G_2) \subseteq [F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$.

(6) \Rightarrow (7): Let K_1, K_2 be any (Λ, sp) -closed sets of Y. Then, $Y - K_1$ and $Y - K_2$ are (Λ, sp) -open, by (6),

$$X - [F^{-}(K_{1}) \cup F^{+}(K_{2})] = [X - F^{-}(K_{1})] \cap [X - F^{+}(K_{2})]$$

$$= F^{+}(Y - K_{1}) \cap F^{-}(Y - K_{2})$$

$$\subseteq [F^{+}([Y - K_{1}]^{s(\Lambda,sp)}) \cap F^{-}([Y - K_{2}]^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$$

$$= [F^{+}(Y - [K_{1}]_{s(\Lambda,sp)}) \cap F^{-}(Y - [K_{2}]_{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$$

$$= [[X - F^{-}([K_{1}]_{s(\Lambda,sp)})] \cap [X - F^{+}([K_{2}]_{s(\Lambda,sp)})]]_{\alpha(\Lambda,sp)}$$

$$= X - [F^{-}([K_{1}]_{s(\Lambda,sp)}) \cup F^{+}([K_{2}]_{s(\Lambda,sp)})]^{\alpha(\Lambda,sp)}.$$

Thus, $[F^{-}([K_{1}]_{s(\Lambda,sp)}) \cup F^{+}([K_{2}]_{s(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \subseteq F^{-}(K_{1}) \cup F^{+}(K_{2}).$

- (7) \Rightarrow (8): The proof is obvious since $K_{s(\Lambda,sp)} = [K_{(\Lambda,sp)}]^{(\Lambda,sp)}$ for every (Λ,sp) -closed set K.
 - $(8) \Rightarrow (9)$: The proof is obvious.
 - $(9) \Rightarrow (10)$: Let K_1, K_2 be any (Λ, sp) -closed sets of Y. Thus, by (9) and Lemma 4,

$$\begin{aligned} & [[[F^{-}([[K_{1}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^{+}([[K_{2}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \\ & \subseteq [F^{-}([[K_{1}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^{+}([[K_{2}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \\ & = [F^{-}([[K_{1}^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)}) \cup F^{+}([[K_{2}^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \\ & \subseteq F^{-}(K_{1}) \cup F^{+}(K_{2}). \end{aligned}$$

(10) \Rightarrow (11): The proof is obvious since $K_{s(\Lambda,sp)} = [K_{(\Lambda,sp)}]^{(\Lambda,sp)}$ for every (Λ,sp) -closed set K.

 $(11) \Rightarrow (12)$: Let G_1, G_2 be any (Λ, sp) -open sets of Y. Then, $Y - G_1$ and $Y - G_2$ are (Λ, sp) -closed sets of Y, by (11),

$$\begin{aligned} & [[[F^{-}([Y-G_{1}]_{s(\Lambda,sp)}) \cup F^{+}([Y-G_{2}]_{s(\Lambda,sp)})]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \\ & \subseteq F^{-}(Y-G_{1}) \cup F^{+}(Y-G_{2}) \\ & = [X-F^{+}(G_{1})] \cup [X-F^{-}(G_{2})] \\ & = X - [F^{+}(G_{1}) \cap F^{-}(G_{2})]. \end{aligned}$$

Moreover, we have

$$\begin{split} & [[[F^{-}([Y-G_{1}]_{s(\Lambda,sp)}) \cup F^{+}([Y-G_{2}]_{s(\Lambda,sp)})]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \\ & = [[[F^{-}(Y-G_{1}^{s(\Lambda,sp)}) \cup F^{+}(Y-G_{2}^{s(\Lambda,sp)})]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \\ & = [[[[X-[F^{+}(G_{1}^{s(\Lambda,sp)})]] \cup [X-[F^{-}(G_{2}^{s(\Lambda,sp)})]]]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \\ & = [[[X-[F^{+}(G_{1}^{s(\Lambda,sp)}) \cap F^{-}(G_{2}^{s(\Lambda,sp)})]]^{s(\Lambda,sp)}]_{s(\Lambda,sp)}]^{s(\Lambda,sp)} \\ & = X - [[[F^{+}(G_{1}^{s(\Lambda,sp)}) \cap F^{-}(G_{2}^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}. \end{split}$$

Thus, $F^+(G_1) \cap F^-(G_2) \subseteq [[[F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}$. (12) \Rightarrow (1): Let $x \in X$ and let G_1, G_2 be any (Λ, sp) -open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Then,

$$x \in F^+(G_1) \cap F^-(G_2) \subseteq [[[F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}$$

and hence F is almost $\alpha(\Lambda, sp)$ -continuous at x by Theorem 1. This shows that F is almost $\alpha(\Lambda, sp)$ -continuous.

Definition 2. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be almost $\alpha(\Lambda,sp)$ -continuous if $f^{-1}(V)\in \alpha\Lambda_{sp}O(X,\tau)$ for every $V\in r\Lambda_{sp}O(Y,\sigma)$.

Corollary 1. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost $\alpha(\Lambda, sp)$ -continuous;
- (2) for each $x \in X$ and any (Λ, sp) -open set G of Y containing f(x), there exists an $\alpha(\Lambda, sp)$ -open set U of X containing x such that $f(U) \subseteq G^{s(\Lambda, sp)}$;
- (3) for each $x \in X$ and any $r(\Lambda, sp)$ -open set G of Y containing f(x), there exists an $\alpha(\Lambda, sp)$ -open set U of X containing x such that $f(U) \subseteq G$;
- (4) $f^{-1}(G) \in \alpha \Lambda_{sn}O(X,\tau)$ for every $G \in r\Lambda_{sn}O(Y,\sigma)$;
- (5) $f^{-1}(K) \in \alpha \Lambda_{sp}C(X,\tau)$ for every $K \in r\Lambda_{sp}C(Y,\sigma)$;
- (6) $f^{-1}(G) \subseteq [f^{-1}(G^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$ for any (Λ,sp) -open set G of Y;

- (7) $[f^{-1}(K_{s(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \subseteq f^{-1}(K)$ for any (Λ,sp) -closed set K of Y;
- (8) $[f^{-1}([K_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \subseteq f^{-1}(K)$ for any (Λ,sp) -closed set K of Y;
- (9) $[f^{-1}([[B^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)})]^{\alpha(\Lambda,sp)} \subseteq f^{-1}(B^{(\Lambda,sp)})$ for any subset B of Y;
- (10) $[[[f^{-1}([K_{(\Lambda,sp)}]^{(\Lambda,sp)}]^{(\Lambda,sp)}]^{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq f^{-1}(K)$ for any (Λ,sp) -closed set K of Y;
- (11) $[[[f^{-1}(K_{s(\Lambda,sp)})]^{(\Lambda,sp)}]_{(\Lambda,sp)}]^{(\Lambda,sp)} \subseteq f^{-}(K)$ for any (Λ,sp) -closed set K of Y;
- (12) $f^{-1}(G) \subseteq [[[f^{-1}(G^{s(\Lambda,sp)})]_{(\Lambda,sp)}]^{(\Lambda,sp)}]_{(\Lambda,sp)}$ for any (Λ,sp) -open set G of Y.

Theorem 3. For a multifunction $F:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) F is almost $\alpha(\Lambda, sp)$ -continuous;
- (2) $[F^{-}(G_1) \cup F^{+}(G_2)]^{\alpha(\Lambda,sp)} \subseteq F^{-}(G_1^{(\Lambda,sp)}) \cup F^{+}(G_2^{(\Lambda,sp)})$ for any $G_1, G_2 \in \beta\Lambda_{sp}O(Y,\sigma)$;
- (3) $[F^{-}(G_1) \cup F^{+}(G_2)]^{\alpha(\Lambda,sp)} \subseteq F^{-}(G_1^{(\Lambda,sp)}) \cup F^{+}(G_2^{(\Lambda,sp)})$ for any $G_1, G_2 \in s\Lambda_{sp}O(Y,\sigma)$;
- (4) $F^{+}(G_1) \cap F^{-}(G_2) \subseteq [F^{+}(G_1^{s(\Lambda,sp)}) \cap F^{-}(G_2^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$ for any $G_1, G_2 \in p\Lambda_{sp}O(Y, \sigma)$.

Proof. (1) \Rightarrow (2): Let G_1, G_2 be any $\beta(\Lambda, sp)$ -open sets of Y. Since $G_1^{(\Lambda, sp)}$ and $G_2^{(\Lambda, sp)}$ are $r(\Lambda, sp)$ -closed, by Theorem 2, $F^-(G_1^{(\Lambda, sp)}) \cup F^+(G_2^{(\Lambda, sp)})$ is $\alpha(\Lambda, sp)$ -closed in X and $F^-(G_1) \cup F^+(G_2) \subseteq F^-(G_1^{(\Lambda, sp)}) \cup F^+(G_2^{(\Lambda, sp)})$. Thus,

$$[F^{-}(G_1) \cup F^{+}(G_2)]^{\alpha(\Lambda,sp)} \subseteq F^{-}(G_1^{(\Lambda,sp)}) \cup F^{+}(G_2^{(\Lambda,sp)}).$$

- (2) \Rightarrow (3): This is obvious since $s\Lambda_{sp}O(Y,\sigma)\subseteq \beta\Lambda_{sp}O(Y,\sigma)$.
- (3) \Rightarrow (1): Let $K_1, K_2 \in r\Lambda_{sp}C(Y, \sigma)$. Then, $K_1, K_2 \in s\Lambda_{sp}O(Y, \sigma)$ and hence $[F^-(K_1) \cup F^+(K_2)]^{\alpha(\Lambda, sp)} \subseteq F^-(K_1) \cup F^+(K_2)$. Thus, we have $F^-(K_1) \cup F^+(K_2)$ is $\alpha(\Lambda, sp)$ -closed in X and hence F is almost $\alpha(\Lambda, sp)$ -continuous by Theorem 2.
- $(1) \Rightarrow (4)$: Let G_1, G_2 be any $p(\Lambda, sp)$ -open sets of Y. Since $[G_1^{(\Lambda, sp)}]_{(\Lambda, sp)}$ and $[G_2^{(\Lambda, sp)}]_{(\Lambda, sp)}$ are $r(\Lambda, sp)$ -open in Y, we have $[G_1^{(\Lambda, sp)}]_{(\Lambda, sp)} = G_1^{s(\Lambda, sp)}$ and

$$[G_1^{(\Lambda,sp)}]_{(\Lambda,sp)} = G_2^{s(\Lambda,sp)},$$

by Theorem 2, $F^+(G_1^{s(\Lambda,sp)}) \cap F^-(G_2^{s(\Lambda,sp)})$ is $\alpha(\Lambda,sp)$ -open in X. Thus,

$$F^{+}(G_{1}) \cap F^{-}(G_{2}) \subseteq F^{+}(G_{1}^{s(\Lambda,sp)}) \cap F^{-}(G_{2}^{s(\Lambda,sp)})$$
$$= [F^{+}(G_{1}^{s(\Lambda,sp)}) \cap F^{-}(G_{2}^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}.$$

 $(4)\Rightarrow (1)$: Let G_1,G_2 be any $r(\Lambda,sp)$ -open sets of Y. Since $G_1,G_2\in p\Lambda_{sp}O(Y,\sigma)$, we have $F^+(G_1)\cap F^-(G_2)\subseteq [F^+(G_1^{s(\Lambda,sp)})\cap F^-(G_2^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}=[F^+(G_1)\cap F^-(G_2)]_{\alpha(\Lambda,sp)}$ and hence $F^+(G_1)\cap F^-(G_2)\in \alpha\Lambda_{sp}O(X,\tau)$. It follows from Theorem 2 that F is almost $\alpha(\Lambda,sp)$ -continuous.

REFERENCES 634

Corollary 2. For a function $f:(X,\tau)\to (Y,\sigma)$, the following properties are equivalent:

- (1) f is almost $\alpha(\Lambda, sp)$ -continuous;
- (2) $[f^{-1}(V)]^{\alpha(\Lambda,sp)} \subseteq f^{-1}(V^{(\Lambda,sp)})$ for any $V \in \beta\Lambda_{sp}O(Y,\sigma)$;
- (3) $[f^{-1}(V)]^{\alpha(\Lambda,sp)} \subseteq f^{-1}(V^{(\Lambda,sp)})$ for any $V \in s\Lambda_{sp}O(Y,\sigma)$;
- (4) $f^{-1}(V) \subseteq [f^{-1}(V^{s(\Lambda,sp)})]_{\alpha(\Lambda,sp)}$ for any $V \in p\Lambda_{sp}O(Y,\sigma)$.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] D. Andrijević. On b-open sets. Matematički Vesnik, 48:56–64, 1996.
- [2] C. Berge. Espaces topologiques fonctions multivoques. Dunod, Paris, 1959.
- [3] C. Boonpok. (Λ, sp) -closed sets and related topics in topological spaces. WSEAS Transactions on Mathematics, 19:312–322, 2020.
- [4] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud. β-open sets and β-continuous mappings. Bulletin of the Faculty of Science. Assiut University., 12:77–90, 1983.
- [5] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb. α -continuous and α -open mappings. Acta Mathematica Hungarica, 41:213–218, 1983.
- [6] T. Noiri. Almost α -continuous functions. Kyungpook Mathematical Journal, $28(1):71-77,\ 1988.$
- [7] T. Noiri and E. Hatir. Λ_{sp} -sets and some weak separation axioms. *Acta Mathematica Hungarica*, 103(3):225–232, 2004.
- [8] V. Popa and T. Noiri. Almost α -continuous multifunctions. Filomat, 12(1):39–52, 1998.