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Abstract. Our main purpose is to introduce the notion of almost α(Λ, sp)-continuous multifunc-
tions. Moreover, some characterizations of almost α(Λ, sp)-continuous multifunctions are estab-
lished.
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1. Introduction

The notion of continuity is an important concept in topological spaces. Many math-
ematicians studied the various types of generalizations of continuity. In 1988, Noiri [6]
introduced and studied the notion of almost α-continuity in topological spaces as a gener-
alization of α-continuity due to Mashhour et al. [5]. In 1998, Popa and Noiri [8] extended
the concept of almost α-continuous functions to multifunctions and defined almost α-
continuous multifunctions and obtained several characterizations of almost α-continuous
multifunctions. Abd El-Monsef et al. [4] introduced a weak form of open sets called β-open
sets. This notion was also called semi-preopen sets in the sense of Andrijević [1]. In 2004,
Noiri and Hatir [7] introduced the notion of Λsp-sets in terms of the concept of β-open
sets and investigated the notion of Λsp-closed sets by using Λsp-sets. In [3], the author
introduced the concepts of (Λ, sp)-open sets and (Λ, sp)-closed sets which are defined by
utilizing the notions of Λsp-sets and β-closed sets. In particular, some characterizations of
upper and lower (Λ, sp)-continuous multifunctions are investigated in [3]. The purpose of
the present paper is to introduce the notion of almost α(Λ, sp)-continuous multifunctions.
Furthermore, several characterizations of almost α(Λ, sp)-continuous multifunctions are
discussed.
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2. Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y ) always mean
topological spaces on which no separation axioms are assumed unless explicitly stated.
Let A be a subset of a topological space (X, τ). The closure of A and the interior of A
are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ)
is said to be β-open [4] if A ⊆ Cl(Int(Cl(A))). The complement of a β-open set is called
β-closed. The family of all β-open sets of a topological space (X, τ) is denoted by β(X, τ).
A subset Λsp(A) [7] is defined as follows: Λsp(A) = ∩{U | A ⊆ U,U ∈ β(X, τ)}. A subset
A of a topological space (X, τ) is called a Λsp-set [7] if A = Λsp(A). A subset A of a
topological space (X, τ) is called (Λ, sp)-closed [3] if A = T ∩C, where T is a Λsp-set and
C is a β-closed set. The complement of a (Λ, sp)-closed set is called (Λ, sp)-open.

Let A be a subset of a topological space (X, τ). A point x ∈ X is called a (Λ, sp)-
cluster point [3] of A if A ∩ U 6= ∅ for every (Λ, sp)-open set U of X containing x. The
set of all (Λ, sp)-cluster points of A is called the (Λ, sp)-closure [3] of A and is denoted by
A(Λ,sp). The union of all (Λ, sp)-open sets contained in A is called the (Λ, sp)-interior [3]
of A and is denoted by A(Λ,sp).

Lemma 1. [3] Let A and B be subsets of a topological space (X, τ). For the (Λ, sp)-closure,
the following properties hold:

(1) A ⊆ A(Λ,sp) and [A(Λ,sp)](Λ,sp) = A(Λ,sp).

(2) If A ⊆ B, then A(Λ,sp) ⊆ B(Λ,sp).

(3) A(Λ,sp) = ∩{F |A ⊆ F and F is (Λ, sp)-closed}.

(4) A(Λ,sp) is (Λ, sp)-closed.

(5) A is (Λ, sp)-closed if and only if A = A(Λ,sp).

Lemma 2. [3] Let A and B be subsets of a topological space (X, τ). For the (Λ, sp)-
interior, the following properties hold:

(1) A(Λ,sp) ⊆ A and [A(Λ,sp)](Λ,sp) = A(Λ,sp).

(2) If A ⊆ B, then A(Λ,sp) ⊆ B(Λ,sp).

(3) A(Λ,sp) is (Λ, sp)-open.

(4) A is (Λ, sp)-open if and only if A(Λ,sp) = A.

(5) [X −A](Λ,sp) = X −A(Λ,sp).

(6) [X −A](Λ,sp) = X −A(Λ,sp).



C. Boonpok, J. Khampakdee / Eur. J. Pure Appl. Math, 15 (2) (2022), 626-634 628

A subset A of a topological space (X, τ) is said to be s(Λ, sp)-open (resp. p(Λ, sp)-open,
r(Λ, sp)-open, α(Λ, sp)-open, β(Λ, sp)-open) if A ⊆ [A(Λ,sp)]

(Λ,sp) (resp. A ⊆ [A(Λ,sp)](Λ,sp),
A = [A(Λ,sp)](Λ,sp), A ⊆ [[A(Λ,sp)]

(Λ,sp)](Λ,sp), A ⊆ [[A(Λ,sp)](Λ,sp)]
(Λ,sp)) [3]. The comple-

ment of a s(Λ, sp)-open (resp. p(Λ, sp)-open, r(Λ, sp)-open, α(Λ, sp)-open, β(Λ, sp)-open)
set is said to be s(Λ, sp)-closed (resp. p(Λ, sp)-closed, r(Λ, sp)-closed, α(Λ, sp)-closed,
β(Λ, sp)-closed). The family of all s(Λ, sp)-open (resp. p(Λ, sp)-open, r(Λ, sp)-open,
α(Λ, sp)-open, β(Λ, sp)-open) sets in a topological space (X, τ) is denoted by sΛspO(X, τ)
(resp. pΛspO(X, τ), rΛspO(X, τ), αΛspO(X, τ), βΛspO(X, τ)). The intersection of all
α(Λ, sp)-closed (resp. s(Λ, sp)-closed) sets containing A is called the α(Λ, sp)-closure
(resp. s(Λ, sp)-closure) of A and is denoted by Aα(Λ,sp) (resp. As(Λ,sp)). The union of
all α(Λ, sp)-open (resp. s(Λ, sp)-open) sets contained in A is called the α(Λ, sp)-interior
(resp. s(Λ, sp)-interior) of A and is denoted by Aα(Λ,sp) (resp. As(Λ,sp)).

Lemma 3. Let A be a subset of a topological space (X, τ). Then, x ∈ As(Λ,sp) if and only
if U ∩A 6= ∅ for every U ∈ sΛspO(X, τ) containing x.

Lemma 4. Let A be a subset of a topological space (X, τ). Then,

Aα(Λ,sp) = A ∪ [[A(Λ,sp)](Λ,sp)]
(Λ,sp).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into Y ,
and always assume that F (x) 6= ∅ for all x ∈ X. For a multifunction F : X → Y , following
[2] we shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B),
respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x)∩B 6= ∅}.
In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x). Let P(Y ) be the collection of all nonempty subsets of Y . For any
(Λ, sp)-open set V of a topological space (Y, σ), we denote V + = {B ∈ P(Y ) | B ⊆ V }
and V − = {B ∈ P(Y ) | B ∩ V 6= ∅}.

3. Almost α(Λ, sp)-continuous multifunctions

In this section, we introduce the notion of almost α(Λ, sp)-continuous multifunctions.
Moreover, some characterizations of almost α(Λ, sp)-continuous multifunctions are dis-
cussed.

Definition 1. A multifunction F : (X, τ) → (Y, σ) is said to be almost α(Λ, sp)-continuous
at x ∈ X if, for any (Λ, sp)-open sets G1, G2 of Y such that F (x) ∈ G+

1 ∩ G+
2 and each

s(Λ, sp)-open set U of X containing x, there exists a nonempty (Λ, sp)-open set GU of
X such that GU ⊆ U , F (GU ) ⊆ G

s(Λ,sp)
1 and F (z) ∩ G

s(Λ,sp)
2 6= ∅ for every z ∈ GU . A

multifunction F : (X, τ) → (Y, σ) is said to be almost α(Λ, sp)-continuous if F has this
property at each point of X.

Theorem 1. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:
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(1) F is almost α(Λ, sp)-continuous at a point x ∈ X;

(2) for any (Λ, sp)-open sets G1, G2 of Y such that F (x) ∈ G+
1 ∩ G−

2 , there exists an
α(Λ, sp)-open set U containing x such that F (U) ⊆ G

s(Λ,sp)
1 and F (z)∩G

s(Λ,sp)
2 6= ∅

for every z ∈ U ;

(3) x ∈ [F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )]α(Λ,sp) for any (Λ, sp)-open sets G1, G2 of Y such

that F (x) ∈ G+
1 ∩G−

2 ;

(4) x ∈ [[[F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp)](Λ,sp) for any (Λ, sp)-open sets G1, G2

of Y such that F (x) ∈ G+
1 ∩G−

2 .

Proof. (1) ⇒ (2): Let G1, G2 be any (Λ, sp)-open sets of Y such that F (x) ∈ G+
1 ∩G−

2 .
For each s(Λ, sp)-open set H containing x, there exists a nonempty (Λ, sp)-open set GH

such that GH ⊆ H, F (GH) ⊆ G
s(Λ,sp)
1 and F (z) ∩G

s(Λ,sp)
2 6= ∅ for every z ∈ GH . Let

W = ∪{GH | H ∈ sΛspO(X, τ) containing x}.

Then, W is (Λ, sp)-open in X, x ∈ W s(Λ,sp), F (W ) ⊆ G
s(Λ,sp)
1 and F (w)∩G

s(Λ,sp)
2 6= ∅ for

every w ∈ W . Put U = W ∪ {x}, then W ⊆ U ⊆ W s(Λ,sp) = [W (Λ,sp)](Λ,sp). Thus, U is
an α(Λ, sp)-open set containing x such that F (U) ⊆ G

s(Λ,sp)
1 and F (u) ∩ G

s(Λ,sp)
2 6= ∅ for

every u ∈ U .
(2) ⇒ (3): Let G1, G2 be any (Λ, sp)-open sets of Y such that F (x) ∈ G+

1 ∩G−
2 . Then,

there exists an α(Λ, sp)-open set U of X containing x such that F (U) ⊆ G
s(Λ,sp)
1 and

F (z) ∩ G
s(Λ,sp)
2 6= ∅ for every z ∈ U . Thus, x ∈ U ⊆ F+(G

s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 ). Since

U ∈ αΛspO(X, τ), we have x ∈ U ⊆ [F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )]α(Λ,sp).

(3) ⇒ (4): Let G1, G2 be any (Λ, sp)-open sets of Y such that F (x) ∈ G+
1 ∩ G−

2 .
Now, put U = [F+(G

s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )]α(Λ,sp). Then, U is an α(Λ, sp)-open set and

x ∈ U ⊆ F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 ). Thus,

x ∈ U ⊆ [[U(Λ,sp)]
(Λ,sp)](Λ,sp) ⊆ [[[F+(G

s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp)](Λ,sp).

(4) ⇒ (1): Let U ∈ sΛspO(X, τ) containing x and let G1, G2 be any (Λ, sp)-open sets of
Y such that F (x) ∈ G+

1 ∩G−
2 . Then, x ∈ [[[F+(G

s(Λ,sp)
1 )∩F−(G

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp)](Λ,sp) =

[[F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )](Λ,sp)]

s(Λ,sp), by Lemma 3,

∅ 6= U ∩ [F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )](Λ,sp).

Put GU = [U ∩ [F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )](Λ,sp)](Λ,sp), then GU is a nonempty (Λ, sp)-

open set of X such that GU ⊆ U , F (GU ) ⊆ G
s(Λ,sp)
1 and F (z) ∩ G

s(Λ,sp)
2 6= ∅ for each

z ∈ GU . This shows that F is almost α(Λ, sp)-continuous at x.
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Theorem 2. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is almost α(Λ, sp)-continuous at a point x ∈ X;

(2) for each x ∈ X and any (Λ, sp)-open sets G1, G2 of Y such that F (x) ∈ G+
1 ∩ G−

2 ,
there exists an α(Λ, sp)-open set U containing x such that F (U) ⊆ G

s(Λ,sp)
1 and

F (z) ∩G
s(Λ,sp)
2 6= ∅ for every z ∈ U ;

(3) for each x ∈ X and any r(Λ, sp)-open sets G1, G2 of Y such that F (x) ∈ G+
1 ∩G−

2 ,
there exists U ∈ αΛspO(X, τ) containing x such that F (U) ⊆ G1 and F (z)∩G2 6= ∅
for every z ∈ U ;

(4) F+(G1) ∩ F−(G2) ∈ αΛspO(X, τ) for every G1, G2 ∈ rΛspO(Y, σ);

(5) F+(K1) ∪ F−(K2) is α(Λ, sp)-closed in X for every r(Λ, sp)-closed sets K1,K2 of
Y ;

(6) F+(G1) ∪ F−(G2) ⊆ [F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )]α(Λ,sp) for any (Λ, sp)-open sets

G1, G2 of Y ;

(7) [F−([K1]s(Λ,sp)) ∪ F+([K2]s(Λ,sp))]
α(Λ,sp) ⊆ F−(K1) ∪ F+(K2) for any (Λ, sp)-closed

sets K1,K2 of Y ;

(8) [F−([[K1](Λ,sp)]
(Λ,sp)) ∪ F+([[K2](Λ,sp)]

(Λ,sp))]α(Λ,sp) ⊆ F−(K1) ∪ F+(K2) for any
(Λ, sp)-closed sets K1,K2 of Y ;

(9) [F−([[B
(Λ,sp)
1 ](Λ,sp)]

(Λ,sp))∪F+([[B
(Λ,sp)
2 ](Λ,sp)]

(Λ,sp))]α(Λ,sp) ⊆ F−(B
(Λ,sp)
1 )∪F+(B

(Λ,sp)
2 )

for any subsets B1, B2 of Y ;

(10) [[[F−([[K1](Λ,sp)]
(Λ,sp)) ∪ F+([[K2](Λ,sp)]

(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp) ⊆ F−(K1) ∪ F+(K2)

for any (Λ, sp)-closed sets K1,K2 of Y ;

(11) [[[F−([K1]s(Λ,sp)) ∪ F+([K2]s(Λ,sp))]
(Λ,sp)](Λ,sp)]

(Λ,sp) ⊆ F−(K1) ∪ F+(K2) for any
(Λ, sp)-closed sets K1,K2 of Y ;

(12) F+(G1)∩F−(G2) ⊆ [[[F+(G
s(Λ,sp)
1 )∩F−(G

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp)](Λ,sp) for any (Λ, sp)-
open sets G1, G2 of Y .

Proof. (1) ⇒ (2): The proof follows from Theorem 1.
(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): Let G1, G2 ∈ rΛspO(Y, σ) and let x ∈ F+(G1) ∩ F−(G2). Then,

F (x) ∈ G+
1 ∩G−

2

and there exists U ∈ αΛspO(X, τ) containing x such that F (U) ⊆ G1 and F (z) ∩G2 6= ∅
for every z ∈ U . Thus, x ∈ U ⊆ F+(G1) ∩ F−(G2) and hence

F+(G1) ∩ F−(G2) ∈ αΛspO(X, τ).
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(4) ⇒ (5): This follows from the fact that F+(Y −B) = X−F−(B) and F−(Y −B) =
X − F+(B) for every subset B of Y .

(5) ⇒ (6): Let G1, G2 be any (Λ, sp)-open sets of Y and let x ∈ F+(G1) ∩ F−(G2).
Then, F (x) ⊆ G1 ⊆ G

s(Λ,sp)
1 and ∅ 6= F (x) ∩G2 ⊆ F (x) ∩G

s(Λ,sp)
2 . Thus,

x ∈ F+(G
s(Λ,sp)
1 ) = X − F−(Y −G

s(Λ,sp)
1 )

and x ∈ F−(G
s(Λ,sp)
2 ) = X − F−(Y − G

s(Λ,sp)
2 ). Since Y − G

s(Λ,sp)
1 and Y − G

s(Λ,sp)
2 are

r(Λ, sp)-closed, F−(Y −G
s(Λ,sp)
1 ) ∪ F+(Y −G

s(Λ,sp)
2 ) is α(Λ, sp)-closed in X. Since

F−(Y −G
s(Λ,sp)
1 ) ∪ F+(Y −G

s(Λ,sp)
2 ) = [X − F+(G

s(Λ,sp)
1 )] ∪ [X − F−(G

s(Λ,sp)
2 )]

= X − [F+(G
s(Λ,sp)
1 ) ∪ F−(G

s(Λ,sp)
2 )],

we have F+(G
s(Λ,sp)
1 ) ∪ F−(G

s(Λ,sp)
2 ) is α(Λ, sp)-open in X and hence

x ∈ [F+(G
s(Λ,sp)
1 ) ∪ F−(G

s(Λ,sp)
2 )]α(Λ,sp).

Thus, F+(G1) ∪ F−(G2) ⊆ [F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )]α(Λ,sp).

(6) ⇒ (7): Let K1,K2 be any (Λ, sp)-closed sets of Y . Then, Y −K1 and Y −K2 are
(Λ, sp)-open, by (6),

X − [F−(K1) ∪ F+(K2)] = [X − F−(K1)] ∩ [X − F+(K2)]

= F+(Y −K1) ∩ F−(Y −K2)

⊆ [F+([Y −K1]
s(Λ,sp)) ∩ F−([Y −K2]

s(Λ,sp))]α(Λ,sp)

= [F+(Y − [K1]s(Λ,sp)) ∩ F−(Y − [K2]s(Λ,sp))]α(Λ,sp)

= [[X − F−([K1]s(Λ,sp))] ∩ [X − F+([K2]s(Λ,sp))]]α(Λ,sp)

= X − [F−([K1]s(Λ,sp)) ∪ F+([K2]s(Λ,sp))]
α(Λ,sp).

Thus, [F−([K1]s(Λ,sp)) ∪ F+([K2]s(Λ,sp))]
α(Λ,sp) ⊆ F−(K1) ∪ F+(K2).

(7) ⇒ (8): The proof is obvious since Ks(Λ,sp) = [K(Λ,sp)]
(Λ,sp) for every (Λ, sp)-closed

set K.
(8) ⇒ (9): The proof is obvious.
(9) ⇒ (10): Let K1,K2 be any (Λ, sp)-closed sets of Y . Thus, by (9) and Lemma 4,

[[[F−([[K1](Λ,sp)]
(Λ,sp)) ∪ F+([[K2](Λ,sp)]

(Λ,sp))](Λ,sp)](Λ,sp)]
(Λ,sp)

⊆ [F−([[K1](Λ,sp)]
(Λ,sp)) ∪ F+([[K2](Λ,sp)]

(Λ,sp))]α(Λ,sp)

= [F−([[K
(Λ,sp)
1 ](Λ,sp)]

(Λ,sp)) ∪ F+([[K
(Λ,sp)
2 ](Λ,sp)]

(Λ,sp))]α(Λ,sp)

⊆ F−(K1) ∪ F+(K2).

(10) ⇒ (11): The proof is obvious since Ks(Λ,sp) = [K(Λ,sp)]
(Λ,sp) for every (Λ, sp)-

closed set K.
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(11) ⇒ (12): Let G1, G2 be any (Λ, sp)-open sets of Y . Then, Y −G1 and Y −G2 are
(Λ, sp)-closed sets of Y , by (11),

[[[F−([Y −G1]s(Λ,sp)) ∪ F+([Y −G2]s(Λ,sp))]
(Λ,sp)](Λ,sp)]

(Λ,sp)

⊆ F−(Y −G1) ∪ F+(Y −G2)

= [X − F+(G1)] ∪ [X − F−(G2)]

= X − [F+(G1) ∩ F−(G2)].

Moreover, we have

[[[F−([Y −G1]s(Λ,sp)) ∪ F+([Y −G2]s(Λ,sp))]
(Λ,sp)](Λ,sp)]

(Λ,sp)

= [[[F−(Y −G
s(Λ,sp)
1 ) ∪ F+(Y −G

s(Λ,sp)
2 )](Λ,sp)](Λ,sp)]

(Λ,sp)

= [[[[X − [F+(G
s(Λ,sp)
1 )]] ∪ [X − [F−(G

s(Λ,sp)
2 )]]](Λ,sp)](Λ,sp)]

(Λ,sp)

= [[[X − [F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )]]s(Λ,sp)]s(Λ,sp)]

s(Λ,sp)

= X − [[[F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp)](Λ,sp).

Thus, F+(G1) ∩ F−(G2) ⊆ [[[F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp)](Λ,sp).
(12) ⇒ (1): Let x ∈ X and let G1, G2 be any (Λ, sp)-open sets of Y such that

F (x) ∈ G+
1 ∩G−

2 . Then,

x ∈ F+(G1) ∩ F−(G2) ⊆ [[[F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )](Λ,sp)]

(Λ,sp)](Λ,sp)

and hence F is almost α(Λ, sp)-continuous at x by Theorem 1. This shows that F is
almost α(Λ, sp)-continuous.

Definition 2. A function f : (X, τ) → (Y, σ) is said to be almost α(Λ, sp)-continuous if
f−1(V ) ∈ αΛspO(X, τ) for every V ∈ rΛspO(Y, σ).

Corollary 1. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost α(Λ, sp)-continuous;

(2) for each x ∈ X and any (Λ, sp)-open set G of Y containing f(x), there exists an
α(Λ, sp)-open set U of X containing x such that f(U) ⊆ Gs(Λ,sp);

(3) for each x ∈ X and any r(Λ, sp)-open set G of Y containing f(x), there exists an
α(Λ, sp)-open set U of X containing x such that f(U) ⊆ G;

(4) f−1(G) ∈ αΛspO(X, τ) for every G ∈ rΛspO(Y, σ);

(5) f−1(K) ∈ αΛspC(X, τ) for every K ∈ rΛspC(Y, σ);

(6) f−1(G) ⊆ [f−1(Gs(Λ,sp))]α(Λ,sp) for any (Λ, sp)-open set G of Y ;
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(7) [f−1(Ks(Λ,sp))]
α(Λ,sp) ⊆ f−1(K) for any (Λ, sp)-closed set K of Y ;

(8) [f−1([K(Λ,sp)]
(Λ,sp))]α(Λ,sp) ⊆ f−1(K) for any (Λ, sp)-closed set K of Y ;

(9) [f−1([[B(Λ,sp)](Λ,sp)]
(Λ,sp))]α(Λ,sp) ⊆ f−1(B(Λ,sp)) for any subset B of Y ;

(10) [[[f−1([K(Λ,sp)]
(Λ,sp))](Λ,sp)](Λ,sp)]

(Λ,sp) ⊆ f−1(K) for any (Λ, sp)-closed set K of Y ;

(11) [[[f−1(Ks(Λ,sp))]
(Λ,sp)](Λ,sp)]

(Λ,sp) ⊆ f−(K) for any (Λ, sp)-closed set K of Y ;

(12) f−1(G) ⊆ [[[f−1(Gs(Λ,sp))](Λ,sp)]
(Λ,sp)](Λ,sp) for any (Λ, sp)-open set G of Y .

Theorem 3. For a multifunction F : (X, τ) → (Y, σ), the following properties are equiv-
alent:

(1) F is almost α(Λ, sp)-continuous;

(2) [F−(G1)∪F+(G2)]
α(Λ,sp) ⊆ F−(G

(Λ,sp)
1 )∪F+(G

(Λ,sp)
2 ) for any G1, G2 ∈ βΛspO(Y, σ);

(3) [F−(G1)∪F+(G2)]
α(Λ,sp) ⊆ F−(G

(Λ,sp)
1 )∪F+(G

(Λ,sp)
2 ) for any G1, G2 ∈ sΛspO(Y, σ);

(4) F+(G1)∩F−(G2) ⊆ [F+(G
s(Λ,sp)
1 )∩F−(G

s(Λ,sp)
2 )]α(Λ,sp) for any G1, G2 ∈ pΛspO(Y, σ).

Proof. (1) ⇒ (2): Let G1, G2 be any β(Λ, sp)-open sets of Y . Since G
(Λ,sp)
1 and G

(Λ,sp)
2

are r(Λ, sp)-closed, by Theorem 2, F−(G
(Λ,sp)
1 ) ∪ F+(G

(Λ,sp)
2 ) is α(Λ, sp)-closed in X and

F−(G1) ∪ F+(G2) ⊆ F−(G
(Λ,sp)
1 ) ∪ F+(G

(Λ,sp)
2 ). Thus,

[F−(G1) ∪ F+(G2)]
α(Λ,sp) ⊆ F−(G

(Λ,sp)
1 ) ∪ F+(G

(Λ,sp)
2 ).

(2) ⇒ (3): This is obvious since sΛspO(Y, σ) ⊆ βΛspO(Y, σ).
(3) ⇒ (1): Let K1,K2 ∈ rΛspC(Y, σ). Then, K1,K2 ∈ sΛspO(Y, σ) and hence

[F−(K1) ∪ F+(K2)]
α(Λ,sp) ⊆ F−(K1) ∪ F+(K2). Thus, we have F−(K1) ∪ F+(K2) is

α(Λ, sp)-closed in X and hence F is almost α(Λ, sp)-continuous by Theorem 2.
(1) ⇒ (4): Let G1, G2 be any p(Λ, sp)-open sets of Y . Since [G

(Λ,sp)
1 ](Λ,sp) and

[G
(Λ,sp)
2 ](Λ,sp) are r(Λ, sp)-open in Y , we have [G

(Λ,sp)
1 ](Λ,sp) = G

s(Λ,sp)
1 and

[G
(Λ,sp)
1 ](Λ,sp) = G

s(Λ,sp)
2 ,

by Theorem 2, F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 ) is α(Λ, sp)-open in X. Thus,

F+(G1) ∩ F−(G2) ⊆ F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )

= [F+(G
s(Λ,sp)
1 ) ∩ F−(G

s(Λ,sp)
2 )]α(Λ,sp).

(4) ⇒ (1): Let G1, G2 be any r(Λ, sp)-open sets of Y . Since G1, G2 ∈ pΛspO(Y, σ), we
have F+(G1)∩F−(G2) ⊆ [F+(G

s(Λ,sp)
1 )∩F−(G

s(Λ,sp)
2 )]α(Λ,sp) = [F+(G1)∩F−(G2)]α(Λ,sp)

and hence F+(G1)∩ F−(G2) ∈ αΛspO(X, τ). It follows from Theorem 2 that F is almost
α(Λ, sp)-continuous.
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Corollary 2. For a function f : (X, τ) → (Y, σ), the following properties are equivalent:

(1) f is almost α(Λ, sp)-continuous;

(2) [f−1(V )]α(Λ,sp) ⊆ f−1(V (Λ,sp)) for any V ∈ βΛspO(Y, σ);

(3) [f−1(V )]α(Λ,sp) ⊆ f−1(V (Λ,sp)) for any V ∈ sΛspO(Y, σ);

(4) f−1(V ) ⊆ [f−1(V s(Λ,sp))]α(Λ,sp) for any V ∈ pΛspO(Y, σ).
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