A Triple Integral Containing the Lommel Function su,v(z): Derivation and Evaluation
DOI:
https://doi.org/10.29020/nybg.ejpam.v15i3.4282Keywords:
Lommel Function, Triple integral, Catalan's constant, Cauchy integralAbstract
A three-dimensional integral containing the kernel g(x, y, z)su,v(z) is derived. The function g(x, y, z) is a generalized function containing the logarithmic and exponential functions and su,v(z) is the Lommel function and the integral is taken over the cube 0 ≤ y ≤ ∞, 0 ≤ x ≤∞, 0 ≤ z ≤ ∞. A representation in terms of the Lerch function is derived, from which special cases can be evaluated. Almost all Hurwitz-Lerch Zeta functions have an asymmetrical zero distribution. All the results in this work are new.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.