EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 2, 2022, 403-414
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

On Nowhere Dense Sets

Preecha Yupapin ${ }^{1,2}$, Vadakasi Subramanian ${ }^{3}$, Yasser Farhat ${ }^{4, *}$
${ }^{1}$ Computational Optics Research Group, Science and Technology Advanced Institue, Van Lang University, Ho Chi Minh City, Vietnam
${ }^{2}$ Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam
${ }^{3}$ Department of Mathematics, A.K.D.Dharma Raja Women's College, Rajapalayam
${ }^{4}$ Academic Support Department, Abu Dhabi Polytechnic, P. O. Box 111499, Abu Dhabi, UAE

Abstract

We introduce two types of strongly nowhere dense sets, namely (s, v)-strongly nowhere dense set, $(s, v)^{\star}$-strongly nowhere dense set and analyze their characteristics in a bigeneralized topological space (BGTS). Further, it is also given some relations between these two types of strongly nowhere dense sets along with its various properties for $(s, v)^{\star}$-strongly nowhere dense set. Finally, the necessary and sufficient condition is found between μ-strongly nowhere dense set and $(s, v)^{\star}$-strongly nowhere dense set in a BGTS.

2020 Mathematics Subject Classifications: 54A05, 54A10
Key Words and Phrases: Bigeneralized topological spaces, $\mu_{(s, v)}$-open, (s, v)-open, (s, v) nowhere dense

1. Introduction

The concept of a generalized topological space was introduced by Császár in [4]. Let X be any non-null set. A collection μ of subsets of X is a generalized topology [8] in X if it contains the empty set and it closed under arbitrary union. Then the pair (X, μ) is called as a generalized topological space (GTS) [8]. The pair (X, μ) is called a strong generalized topological space (sGTS) [8] if $X \in \mu$.

If $Q \in \mu$, then Q is called a μ-open set and if $X-Q \in \mu$, then Q is said to be a μ-closed set. Let D be a subset of a GTS (X, μ). The interior of D [8] denoted by $i D$, is the union of all μ-open sets contained in D and the closure of D [8] denoted by $c D$, is the intersection of all μ-closed sets containing D when no confusion can arise. Denote $\{D \in \mu \mid D \neq \emptyset\}$ by $\tilde{\mu}[7]$ and denote $\{D \in \mu \mid x \in D\}$ by $\mu(x)[7]$.

Define a generalized topology μ^{\star} as follows; $\mu^{\star}=\left\{\bigcup_{t}\left(U_{1}^{t} \cap U_{2}^{t} \cap U_{3}^{t} \cap \ldots \cap U_{n_{t}}^{t}\right) \mid\right.$ $\left.U_{1}^{t}, U_{2}^{t}, \ldots, U_{n_{t}}^{t} \in \mu\right\}$ [7]. Then $\mu \subset \mu^{\star}$ and μ^{\star} is closed under finite intersection [7].
*Corresponding author.
DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4283
Email addresses: preecha.yupapin@vlu.edu.vn (P. Yupapin), farhat.yasser.1@gmail.com (Y. Farhat)

2. Preliminaries

Let (X, μ) be a GTS and $Q \subset X$. Then Q is called a μ-nowhere dense [6] (resp. μ-dense $[6,7], \mu$-codense $[7])$ set if $i c Q=\emptyset$ (resp. $c Q=X ; c(X-Q)=X)$.

Let μ_{1} and μ_{2} be two generalized topologies on a non-null set X. Then $\left(X, \mu_{1}, \mu_{2}\right)$ is called as a bigeneralized topological space (briefly, BGTS) [2].

Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS and $D \subset X$. Then $c_{s}(D)$ denote the closure of D and $i_{s}(D)$ denote the interior of D with respect to μ_{s}, respectively, for $s=1,2[2]$.

A subset Q of a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$ is called (s, v)-closed if $c_{s}\left(c_{v}(Q)\right)=Q$, where $s, v=1$ or $2 ; s \neq v$. If $X-Q$ is (s, v)-closed, then Q is called as (s, v)-open [2] set.

In [2], let Q be a subset of a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$ is called
(1) ($s, v)$-g-preopen if $Q \subseteq i_{s}\left(c_{v}(Q)\right)$ where $s, v=1$ or $2 ; s \neq v$.
(2) $(s, v)-g$ - α-open if $Q \subseteq i_{s}\left(c_{v}\left(i_{s}(Q)\right)\right)$ where $s, v=1$ or $2 ; s \neq v$.

Lemma 1. [3] Let Q be a subset of a generalized topological space (X, μ). Then $y \in c(Q)$ if and only if $M \cap Q \neq \emptyset$ for any $M \in \mu(y)$.

Lemma 2. [8, Lemma 3.2] Let (X, μ) be a generalized topological space and $D, B \subset X$. If $B \in \tilde{\mu} ; B \cap D=\emptyset$, then $B \cap c D=\emptyset$.

3. Nowhere dense sets

In this section, we define a set namely, $(s, v)^{\star}$-nowhere dense and give some of their properties in a BGTS.

Let Q be a subset of a generalized topological space (X, μ). Then Q is called μ-semiopen if $Q \subset c_{\mu}\left(i_{\mu}(Q)\right)$ [5]. If $X-Q$ is a μ-semi-open set, then Q is called μ-semi-closed [5].

Moreover, $\sigma(\mu)$ or $\sigma(\mu(X))=\{Q \subset X \mid Q$ is μ-semi-open set in $X\}$ [8]. Also, $i_{\sigma}(Q)$ denote the μ-semi-interior of $Q \subset X$ is defined by the union of all μ-semi-open subsets of (X, μ) contained in $Q[8]$.

Let Q be a subset of a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$ is called (s, v)-nowhere dense [1] set in X if $i_{s}\left(c_{v}(Q)\right)=\emptyset$ where $s, v=1,2 ; s \neq v$.

Definition 1. Let (X, μ_{1}, μ_{2}) be a bigeneralized topological space and K be a non-null subset of X. Then K is called to be a $(s, v)^{\star}$-nowhere dense set if $i_{\sigma_{v}}\left(c_{s}(K)\right)=\emptyset$ where $s, v=1,2 ; s \neq v ; \sigma_{v}=\sigma_{\mu_{v}}$.

Moreover, $(s, v)^{\star}-\mathcal{N}(X)=\left\{Q \subset X \mid Q\right.$ is $(s, v)^{\star}$-nowhere dense set in $\left.X\right\}$ where $s, v=1,2 ; s \neq v$.

Example 2. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s\}$; $\mu_{1}=\{\emptyset,\{p, q\},\{q, r\},\{p, q, r\}\}$ and $\mu_{2}=\{\emptyset,\{p, s\},\{q, s\},\{p, q, s\}\}$. Then $\sigma_{1}=\{\emptyset,\{s\},\{p$, $q\},\{q, r\},\{p, q, r\},\{p, q, s\},\{q, r, s\}, X\}$ and $\sigma_{2}=\{\emptyset,\{r\},\{p, s\},\{q, s\},\{p, q, s\},\{p, r, s\},\{q$, $r, s\}, X\}$.

1. Take $E=\{s\}$. Then $i_{\sigma_{2}}\left(c_{1}(E)\right)=i_{\sigma_{2}}(E)=\emptyset$. Thus, E is a $(1,2)^{\star}$-nowhere dense set in X.
2. Choose $F=\{p, r\}$. Then $i_{\sigma_{1}}\left(c_{2}(F)\right)=i_{\sigma_{1}}(\{p, r\})=\emptyset$. Then F is a $(2,1)^{\star}$-nowhere dense in X.

In a bigeneralized topological space, if $K \in(s, v)^{\star}-\mathcal{N}(X)$ and $L \subset K$, then $L \in$ $(s, v)^{\star}-\mathcal{N}(X)$ where $s, v=1,2$ and $s \neq v$. Also, every $(s, v)^{\star}$-nowhere dense set where $s, v=1,2$ and $s \neq v$, is a μ_{v}-codense set for $v=1,2$ in X.

Moreover, any $(s, v)^{\star}$-nowhere dense set is a (v, s)-nowhere dense set in a bigeneralized topological space (X, μ_{1}, μ_{2}) where $s, v=1,2$ and $s \neq v$, since $\mu \subset \sigma[3]$.
Example 3. Consider the $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$ where $X=\{p, q, r, s\}$ and μ_{1}, μ_{2} are defined in Example 2.
Take $P=\{s\}$. Then P is $(1,2)^{\star}$-nowhere dense set, by Example 2. Now $i_{2}\left(c_{1}(P)\right)=$ $i_{2}(P)=\emptyset$. Therefore, P is $(2,1)$-nowhere dense set in X.
Choose $D=\{p, r\}$. In Example 2, D is $(2,1)^{\star}$-nowhere dense set in X. Here $i_{1}\left(c_{2}(D)\right)=$ $i_{1}(D)=\emptyset$. Thus, D is $(1,2)$-nowhere dense set in X.
Theorem 4. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bigeneralized topological space. Then the followings are true.
(a) If $\left(X, \mu_{1}\right)$ is a sGTS and $Q \subset X$ is a $(1,2)$-nowhere dense set, then $Q \in(2,1)^{\star}-\mathcal{N}(X)$.
(b) If $\left(X, \mu_{2}\right)$ is a sGTS and $J \subset X$ is a $(2,1)$-nowhere dense set, then $J \in(1,2)^{\star}-\mathcal{N}(X)$.

Proof. (a). Assume that, $\left(X, \mu_{1}\right)$ is a sGTS and Q is a $(1,2)$-nowhere dense set. Then $i_{1}\left(c_{2}(Q)\right)=\emptyset$. Suppose $i_{\sigma_{1}}\left(c_{2}(Q)\right) \neq \emptyset$. Then there exist $G \in \tilde{\sigma}_{1}$ such that $G \subset c_{2}(Q)$. Since $G \in \tilde{\sigma}_{1}$ we have $G \subset c_{1}\left(i_{1}(G)\right)$ which implies $c_{1}\left(i_{1}(G)\right) \neq \emptyset$ which turn implies that $i_{1}(G) \neq \emptyset$, by assumption. Thus, $i_{1}(G) \in \tilde{\mu}_{1}$ and $i_{1}(G) \subset c_{2}(Q)$. Then $i_{1}\left(c_{2}(Q)\right) \neq \emptyset$ which is not possible. Therefore, $i_{\sigma_{1}}\left(c_{2}(Q)\right)=\emptyset$.
(b). Follows from the similar arguments in (a).

In Theorem 4, the condition " μ_{1} is a sGT" is necessary as shown by the below Example 5. The condition " μ_{2} is a sGT" in Theorem 4 is necessary as shown by Example 6.

Example 5. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s$, $t\} ; \mu_{1}=\{\emptyset,\{p, q\},\{p, s\},\{p, q, s\}\} ; \mu_{2}=\{\emptyset,\{p, q\},\{q, r\},\{p, q, r\}\}$. Here μ_{1} is not a sGT. Then $\sigma_{1}=\{\emptyset,\{r\},\{t\},\{r, t\},\{p, q\},\{p, s\},\{p, q, r\},\{p, q, s\},\{p, q, t\},\{p, r, s\},\{p, s, t\},\{p, q$, $r, s\},\{p, q, r, t\},\{p, q, s, t\},\{p, r, s, t\}, X\}$.
Take $D=\{r\}$. Then $i_{1}\left(c_{2}(D)\right)=i_{1}(\{r, s, t\})=\emptyset$. Thus, D is a (1,2)-nowhere dense set in X. But $i_{\sigma_{1}}\left(c_{2}(D)\right)=i_{\sigma_{1}}(\{r, s, t\})=\{r, t\} \neq \emptyset$. Thus, $D \notin(2,1)^{\star}-\mathcal{N}(X)$.
Example 6. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s$, $t\} ; \mu_{1}=\{\emptyset,\{p, q, r\},\{p, q, s\},\{q, r, s\},\{p, q, r, s\}\}$ and $\mu_{2}=\{\emptyset,\{p, q\},\{q, r\},\{p, q, r\}\}$. Here μ_{2} is not a sGT. Then $\sigma_{2}=\{\emptyset,\{s\},\{t\},\{s, t\},\{p, q\},\{q, r\},\{p, q, r\},\{p, q, s\},\{p, q, t\},\{q, r$, $s\},\{q, r, t\},\{p, q, r, s\},\{p, q, r, t\},\{p, q, s, t\},\{q, r, s, t\}, X\}$.
Choose $D=\{s\}$. Then $i_{2}\left(c_{1}(D)\right)=i_{2}(\{s, t\})=\emptyset$. Thus, D is a $(2,1)$-nowhere dense set in X. But $i_{\sigma_{2}}\left(c_{1}(D)\right)=i_{\sigma_{2}}(\{s, t\})=\{s\} \neq \emptyset$. Thus, $D \notin(1,2)^{\star}-\mathcal{N}(X)$.
Theorem 7. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS and $E \subset X$. Then the followings are true.
(a) If $\left(X, \mu_{2}\right)$ is a sGTS and if $c_{1}(E)$ does not contain a non-null μ_{2}-open set, then $E \in$
$(1,2)^{\star}-\mathcal{N}(X)$.
(b) If $\left(X, \mu_{1}\right)$ is a sGTS and if $c_{2}(E)$ does not contain a non-null μ_{1}-open set, then $E \in$ $(2,1)^{\star}-\mathcal{N}(X)$.

Proof. (a). Assume that, $\left(X, \mu_{2}\right)$ is a sGTS. Suppose $i_{\sigma_{2}}\left(c_{1}(E)\right) \neq \emptyset$. Then there is a non-null σ_{2}-open set M such that $M \subset c_{1}(E)$. Since M is a non-null σ_{2}-open set we have $M \subset c_{2}\left(i_{2}(M)\right)$. This implies that $c_{2}\left(i_{2}(M)\right) \neq \emptyset$ which implies $i_{2}(M) \neq \emptyset$, by assumption. Thus, $c_{1}(E)$ contain a non-null μ_{2}-open set which is not possible. Therefore, $E \in(1,2)^{\star}-\mathcal{N}(X)$.
(b). By similar arguments in (a), we get the proof.

Theorem 8. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bigeneralized topological space. If $\mu_{s} \subset \mu_{v}$ and $Q \in$ $(s, v)^{\star}-\mathcal{N}(X)$, then Q is a μ_{v}-nowhere dense set in X where $s, v=1,2 ; s \neq v$.

Proof. Take $s=1$ and $v=2$. Suppose $\mu_{1} \subset \mu_{2}$ and $Q \in(1,2)^{\star}-\mathcal{N}(X)$. Then $i_{\sigma_{2}}\left(c_{1}(Q)\right)=\emptyset$. This implies that $i_{\mu_{2}}\left(c_{\mu_{1}}(Q)\right)=\emptyset$ which implies $i_{\mu_{2}}\left(c_{\mu_{2}}(Q)\right)=\emptyset$, by hypothesis. Hence Q is a μ_{2}-nowhere dense set in X.
Similarly, we can prove the result for $s=2$ and $v=1$.
In Theorem 8, the conditions " $\mu_{1} \subset \mu_{2}$ " and " $\mu_{2} \subset \mu_{1}$ " are can not be dropped as shown by the below Example 9.

Example 9. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s\}$; $\mu_{1}=\{\emptyset,\{p, q\},\{q, r\},\{r, s\},\{p, q, r\},\{p, q, s\},\{q, r, s\}, X\}$ and $\mu_{2}=\{\emptyset,\{p, s\},\{q, s\},\{p, q$, $s\}\}$. Here $\mu_{1} \nsubseteq \mu_{2}$. Now $\sigma_{2}=\{\emptyset,\{r\},\{p, s\},\{q, s\},\{p, q, s\},\{p, r, s\},\{q, r, s\}, X\}$. Take $Q=\{p, q\}$. Then $i_{\sigma_{2}}\left(c_{1}(Q)\right)=i_{\sigma_{2}}(\{p, q\})=\emptyset$. Thus, Q is a $(1,2)^{\star}$-nowhere dense set in X. Here $i_{2}\left(c_{2}(Q)\right)=i_{2}(X)=\{p, q, s\} \neq \emptyset$. Thus, Q is not a μ_{2}-nowhere dense set in X.
(b) Consider the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ where $X=\{p, q, r, s\} ; \mu_{1}=$ $\{\emptyset,\{p, r\},\{q, r\},\{p, q, r\}\}$ and $\mu_{2}=\{\emptyset,\{p, q\},\{q, s\},\{p, q, s\}\}$. Here $\mu_{2} \nsubseteq \mu_{1}$. Now $\sigma_{1}=$ $\{\emptyset,\{s\},\{p, r\},\{q, r\},\{p, q, r\},\{p, r, s\},\{q, r, s\}, X\}$. Choose $H=\{r\}$. Then $i_{\sigma_{1}}\left(c_{2}(H)\right)=$ $i_{\sigma_{1}}(\{r\})=\emptyset$. Thus, H is a $(2,1)^{\star}$-nowhere dense set in X. But $i_{1}\left(c_{1}(H)\right)=i_{1}(X)=$ $\{p, q, r\} \neq \emptyset$. Thus, H is not a μ_{1}-nowhere dense set in X.

Theorem 10. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bigeneralized topological space. If $\mu_{v} \subset \mu_{s}$ and if μ_{v} is a strong generalized topology, then any μ_{v}-nowhere dense set in X is a $(s, v)^{\star}$-nowhere dense set in X where $s, v=1,2$ and $s \neq v$.

Proof. Take $s=1$ and $v=2$. Assume that, $\mu_{2} \subset \mu_{1}$ and Q is a μ_{2}-nowhere dense set in X. Then $i_{\mu_{2}}\left(c_{\mu_{2}}(Q)\right)=\emptyset$. Suppose $i_{\sigma_{2}}\left(c_{1}(Q)\right) \neq \emptyset$. Then there exists $M \in \tilde{\mu}_{\sigma_{2}}$ such that $M \subset c_{1}(Q)$. Since $M \in \tilde{\mu}_{\sigma_{2}}$ we have $c_{2}\left(i_{2}(M)\right) \neq \emptyset$. Then by hypothesis, $i_{2}(M) \neq \emptyset$ and so $i_{2}\left(c_{1}(Q)\right) \neq \emptyset$. By hypothesis, $i_{2}\left(c_{2}(Q)\right) \neq \emptyset$, which is not possible. Therefore, $i_{\sigma_{2}}\left(c_{1}(Q)\right)=\emptyset$. Hence $Q \in(1,2)^{\star}-\mathcal{N}(X)$.
Similarly, we can prove the result for $s=2$ and $v=1$.
The following Example 11 shows that the hypothesis of Theorem 10 can not be dropped.

Example 11. (a). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=$ $\{p, q, r, s\} ; \mu_{1}=\{\emptyset,\{p, s\},\{q, s\},\{p, q, s\}\}$ and $\mu_{2}=\{\emptyset,\{p, r\},\{p, s\},\{q, r\},\{p, r, s\},\{p, q$, $r\}, X\}$. Here $\mu_{2} \nsubseteq \mu_{1}$ but μ_{2} is a sGT. Now $\sigma_{2}=\{\emptyset,\{p, r\},\{p, s\},\{q, r\},\{p, r, s\},\{p, q, r\}, X\}$. Take $H=\{s\}$. Then $i_{2}\left(c_{2}(H)\right)=i_{2}(H)=\emptyset$ and so H is μ_{2}-nowhere dense set in X. But $i_{\sigma_{2}}\left(c_{1}(H)\right)=i_{\sigma_{2}}(X)=X \neq \emptyset$. Thus, H is not a $(1,2)^{\star}$-nowhere dense set in X.
(b). Consider the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ where $X=\{p, q, r, s\} ; \mu_{1}=$ $\{\emptyset,\{p, q\},\{p, s\},\{q, s\},\{p, q, s\}\}$ and $\mu_{2}=\{\emptyset,\{p, s\},\{q, s\},\{p, q, s\}\}$. Here $\mu_{2} \subset \mu_{1}$ but μ_{2} is not a sGT. Now $\sigma_{2}=\{\emptyset,\{r\},\{p, s\},\{q, s\},\{p, q, s\},\{p, r, s\},\{q, r, s\}, X\}$. Choose $P=\{r\}$. Then $i_{2}\left(c_{2}(P)\right)=i_{2}(P)=\emptyset$ so that P is a μ_{2}-nowhere dense set in X. But $i_{\sigma_{2}}\left(c_{1}(P)\right)=i_{\sigma_{2}}(P)=P \neq \emptyset$. Thus, P is not a $(1,2)^{\star}$-nowhere dense set in X.
(c). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s\} ; \mu_{1}=$ $\{\emptyset,\{p, q\},\{q, r\},\{p, q, r\}, X\}$ and $\mu_{2}=\{\emptyset,\{p, r\},\{q, r\},\{p, q, r\}\}$. Clearly, $\mu_{1} \nsubseteq \mu_{2}$ but μ_{1} is a sGT. Here $\sigma_{1}=\{\emptyset,\{p, q\},\{q, r\},\{p, q, r\},\{p, q, s\},\{q, r, s\}, X\}$. Take $Q=\{r, s\}$. Then $i_{1}\left(c_{1}(Q)\right)=i_{1}(Q)=\emptyset$ so that Q is a μ_{1}-nowhere dense set in X. But $i_{\sigma_{1}}\left(c_{2}(Q)\right)=$ $i_{\sigma_{1}}(X)=X \neq \emptyset$. Hence Q is not a $(2,1)^{\star}$-nowhere dense set in X.
(d). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s\} ; \mu_{1}=$ $\{\emptyset,\{q, r\},\{q, s\},\{q, r, s\}\}$ and $\mu_{2}=\{\emptyset,\{p, q\},\{q, r\},\{q, s\},\{p, q, r\},\{p, q, s\},\{q, r, s\}, X\}$. Here $\mu_{1} \subset \mu_{2}$ but μ_{1} is not a sGT. Now $\sigma_{1}=\{\emptyset,\{p\},\{q, r\},\{q, s\},\{q, r, s\},\{p, q, r\},\{p, q, s\}$, $X\}$. Let $K=\{p, r\}$. Then $i_{1}\left(c_{1}(K)\right)=i_{1}(K)=\emptyset$ so that K is a μ_{1}-nowhere dense set in X. But $i_{\sigma_{1}}\left(c_{2}(K)\right)=i_{\sigma_{1}}(K)=\{p\} \neq \emptyset$. Hence K is not a $(2,1)^{\star}$-nowhere dense set in X.

4. (s, v)-strongly nowhere dense sets

In this section, we define a set namely, (s, v)-strongly nowhere dense set and give some of its properties in a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$.

Let Q be a subset of a GTS (X, μ). Then Q is called μ-strongly nowhere dense [7] set if for every $K \in \tilde{\mu}$, there is $P \in \tilde{\mu}$ such that $P \subset K$ and $P \cap Q=\emptyset$.

A generalized topology μ on X is said to satisfy the \mathcal{I}-property [9] whenever W_{1}, W_{2}, \ldots, $W_{n} \in \mu$ with $W_{1} \cap W_{2} \cap \cdots \cap W_{n} \neq \emptyset, i_{\mu}\left(W_{1} \cap W_{2} \cap \cdots \cap W_{n}\right) \neq \emptyset$.

A GTS (X, μ) is called as a hyperconnected space [6] if $c_{\mu}(Q)=X$ for each $Q \in \tilde{\mu}$.
Definition 12. Let B be a non-null subset of a bigeneralized topological space (X, μ_{1}, μ_{2}). Then B is said to be (s, v)-strongly nowhere dense if for every $P \in \tilde{\mu}_{v}$ there is $Q \in \tilde{\mu}_{s}$ such that $Q \subset P$ and $Q \cap B=\emptyset$ where $s, v=1,2 ; s \neq v$.

Moreover, $(s, v)-\mathfrak{S}(X)=\{Q \subset X \mid Q$ is a (s, v)-strongly nowhere dense set in $X\}$ where $s, v=1,2 ; s \neq v$.

In a bigeneralized topological space, if $P \in(s, v)-\mathfrak{S}(X)$ and $Q \subset P$, then $Q \in$ $(s, v)-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$. Moreover, every non-null μ_{v}-open set is need not be a (s, v)-strongly nowhere dense set in X where $s, v=1,2 ; s \neq v$.

Example 13. (a). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=$ $\{p, q, r, s\} ; \mu_{1}=\{\emptyset,\{p, q\},\{q, r\},\{p, q, r\}\}$ and $\mu_{2}=\{\emptyset,\{p, q, r\},\{p, q, s\},\{q, r, s\}, X\}$. Let $P=\{s\}$. Then $P \in(1,2)-\mathfrak{S}(X)$.
(b). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s\} ; \mu_{1}=$ $\{\emptyset,\{p, q\},\{p, r\},\{p, q, r\}\}$ and $\mu_{2}=\{\emptyset,\{p\},\{q, r\},\{q, s\},\{p, q, r\},\{p, q, s\},\{q, r, s\}, X\}$. Let $J=\{q, r\}$. Then $J \in(2,1)-\mathfrak{S}(X)$.

Proposition 14. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bigeneralized topological space and $D \subset X$. Then $D \in(s, v)-\mathfrak{S}(X)$ if and only if $c_{s}(D) \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2 ; s \neq v$.

Example 15 shows that the collection $(s, v)-\mathfrak{S}(X)$ is need not be closed under finite union in a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$ where $s, v=1,2$ and $s \neq v$.

Example 15. (a). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=$ $\{p, q, r, s, t\} ; \mu_{1}=\{\emptyset,\{s\},\{p, q\},\{p, r\},\{p, q, r\},\{p, q, s\},\{p, r, s\},\{p, q, r, s\}\}$ and $\mu_{2}=\{\emptyset$, $\{p, q, r\},\{p, r, s\},\{p, q, r, s\}\}$. Take $K=\{q, s\}, L=\{r, t\}$. Then $K, L \in(1,2)-\mathfrak{S}(X)$. Now $K \cup L=\{q, r, s, t\}$. But $K \cup L \notin(1,2)-\mathfrak{S}(X)$. Because, Here, for every $G \in \tilde{\mu}_{2}$ there is no $J \in \tilde{\mu}_{1}$ such that $J \subset G$ and $J \cap(K \cup L)=\emptyset$.
(b). Consider the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ where $X=\{p, q, r, s, t\} ; \mu_{1}=$ $\{\emptyset,\{p, q, s\},\{p, r, s\},\{p, q, r, s\}\}$ and $\mu_{2}=\{\emptyset,\{r\},\{p, q\},\{p, s\},\{p, q, r\},\{p, q, s\},\{p, r, s\}$, $\{p, q, r, s\}\}$. Take $L=\{q, r\}, M=\{s, t\}$. Then $L, M \in(2,1)-\mathfrak{S}(X)$. Now $L \cup M=$ $\{q, r, s, t\}$. But $L \cup M \notin(2,1)-\mathfrak{S}(X)$. Here, for every $H \in \tilde{\mu}_{1}$ there is no $K \in \tilde{\mu}_{2}$ such that $K \subset H$ and $K \cap(L \cup M)=\emptyset$.

Theorem 16. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS where $\mu_{2}=\mu_{1}^{\star}$. Then the family $(s, v)-\mathfrak{S}(X)$ is closed under finite union where $s, v=1,2 ; s \neq v$.

Theorem 17. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bigeneralized topological space. If $\left(X, \mu_{s}\right)$ is hyperconnected and μ_{s} satisfy the \mathcal{I}-property, then $A_{1} \cup A_{2} \in(s, v)-\mathfrak{S}(X)$ whenever $A_{1}, A_{2} \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2 ; s \neq v$.

Proof. Take $s=1$ and $v=2$. Assume that, $\left(X, \mu_{1}\right)$ is hyperconnected and μ_{1} satisfy the \mathcal{I}-property. Suppose that, A_{1} and A_{2} are (1,2)-strongly nowhere dense sets in X. Take $D=A_{1} \cup A_{2}$. Let $G \in \tilde{\mu}_{2}$. Then there exists $H_{i} \in \tilde{\mu}_{1}$ such that $H_{i} \subset G$ and $H_{i} \cap A_{i}=\emptyset$ for $i=1,2$. By our assumption, $i_{\mu_{1}}\left(H_{1} \cap H_{2}\right) \neq \emptyset$. Take $J=i_{\mu_{1}}\left(H_{1} \cap H_{2}\right)$. Then $J \in \tilde{\mu}_{1}$. Thus, there is $J \in \tilde{\mu}_{1}$ such that $J \subset G$ and $J \cap D=\emptyset$. Hence $D \in(1,2)-\mathfrak{S}(X)$.
Similarly, we can prove the result for $s=2$ and $v=1$.

Corollary 18. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bigeneralized topological space. If $\left(X, \mu_{s}\right)$ is a hyperconnected space and μ_{s} satisfy the \mathcal{I}-property, then the family $(s, v)-\mathfrak{S}(X)$ is closed under finite union where $s, v=1,2 ; s \neq v$.

The following Example 19 shows that (s, v)-strongly nowhere dense and (s, v)-nowhere dense sets are not comparable in a BGTS.

Example 19. (a). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=$ $[0,3] ; \mu_{1}=\left\{\emptyset,[0,1),\left\{\frac{3}{2}\right\},[1,2],[0,1) \cup\left\{\frac{3}{2}\right\},[0,2]\right\}$ and $\mu_{2}=\left\{\emptyset,\left[0, \frac{3}{2}\right),[1,3],[0,3]\right\}$. Let $G=(2,3]$. Then $G \in(1,2)-\mathfrak{S}(X)$. But G is not a $(1,2)$-nowhere dense set in X.
(b). Consider the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ where $X=[0,3] ; \mu_{1}=$ $\{\emptyset,[0,2),(1,3],[0,3]\}$ and $\mu_{2}=\{\emptyset,[0,1),(1,2),\{2\},[0,1) \cup\{2\},(1,2],[0,1) \cup(1,2),[0,1) \cup$
$(1,2]\}$. Let $H=(2,3]$. Then $H \in(2,1)-\mathfrak{S}(X)$. But H is not a $(2,1)$-nowhere dense set in X.
(c). Consider the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ where $X=[0,3] ; \mu_{1}=$ $\{\emptyset,[0,2),(1,3],[0,3]\}$ and $\mu_{2}=\{\emptyset,[0,1),[1,2),[0,2)\}$. Let $K=[2,3]$. Then K is a $(s, v)-$ nowhere dense set in X where $s, v=1,2$ and $s \neq v$. But $K \notin(s, v)-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.

Theorem 20. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a $B G T S$ and $Q \subset X$. If $Q \in(s, v)-\mathfrak{S}(X)$, then Q is a (v, s)-nowhere dense set in X where $s, v=1,2 ; s \neq v$.

Proof. Suppose $Q \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2 ; s \neq v$. Assume that, $i_{v}\left(c_{s}(Q)\right) \neq \emptyset$ where $s, v=1,2 ; s \neq v$. Then there is a set $J \in \tilde{\mu}_{v}$ such that $J \subset c_{s}(Q)$ where $s, v=1,2$ and $s \neq v$ which implies that $Q \notin(s, v)-\mathfrak{S}(X)$ where $s, v=1,2 ; s \neq v$ which is not possible. Therefore, Q is a (v, s)-nowhere dense set in X where $s, v=1,2 ; s \neq v$.

Definition 21. Let Q be a non-null subset of a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$. Then for $s, v=1,2$ and $s \neq v$,
(a) Q is called (s, v)-meager if $Q=\bigcup_{m \in \mathbb{N}} D_{m}$ where each D_{m} is a (s, v)-nowhere dense set in X.
(b) Q is called (s, v)-residual if $X-Q$ is a (s, v)-meager set in X.
(c) Q is of (s, v)-second category set if Q is not a (s, v)-meager set in X.

Definition 22. Let B be a non-null subset of a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$. Then for $s, v=1,2$ and $s \neq v$,
(a) B is said to be a (s, v)-s-meager set if $B=\bigcup_{m \in \mathbb{N}} B_{m}$ for each $B_{m} \in(s, v)-\mathfrak{S}(X)$.
(b) B is called as a (s, v)-s-residual set if $X-B$ is a (s, v)-s-meager set in X.
(c) B is of (s, v)-s-second category set if B is not a (s, v)-s-meager set in X.

Corollary 23. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a $B G T S$ and $D \subset X$. For $s, v=1,2$ and $s \neq v$, the followings are true.
(a) If D is (s, v)-s-meager, then it is a (v, s)-meager set.
(b) If D is (s, v)-s-residual, then it is a (v, s)-residual set.
(c) If D is of (s, v)-second category set, then it is of (v, s)-s-second category set.

Corollary 24. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. Then the followings are true.
(a) If μ_{2} is a strong generalized topology, then $(1,2)-\mathfrak{S}(X) \subset(1,2)^{\star}-\mathcal{N}(X)$.
(b) If μ_{1} is a strong generalized topology, then $(2,1)-\mathfrak{S}(X) \subset(2,1)^{\star}-\mathcal{N}(X)$.

Proof. (a). Assume that, μ_{2} is a strong generalized topology. Let $Q \in(1,2)-\mathfrak{S}(X)$.
By Theorem 20, Q is a $(2,1)$-nowhere dense set in X. By our assumption and Theorem 4 (b), Q is a $(1,2)^{\star}$-nowhere dense set in X.
(b). Suppose that, μ_{1} is a strong generalized topology. Let $D \in(2,1)-\mathfrak{S}(X)$. By Theorem 20 and Theorem $4(\mathrm{a}), D \in(2,1)^{\star}-\mathcal{N}(X)$.

Definition 25. Let $\left(X, \mu_{1}, \mu_{2}\right)$ satisfy the condition;
if $B_{1} \in \tilde{\mu}_{s}, B_{2} \in \tilde{\mu}_{v}$ and $B_{1} \cap B_{2} \neq \emptyset$, then $i_{s}\left(B_{1} \cap B_{2}\right) \neq \emptyset$
where $s, v=1,2$ and $s \neq v$. Then the BGTS $\left(X, \mu_{1}, \mu_{2}\right)$ is said to satisfy the \mathcal{I}_{S}-property.
Theorem 26. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS which has the \mathcal{I}_{S}-property and $K, L, Q \subset X$. Then
(a) If $K \in(s, v)-\mathfrak{S}(X)$ and $L \in(v, s)-\mathfrak{S}(X)$, then $K \cup L \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2 ; s \neq v$.
(b) If L is a (v, s)-nowhere dense set, then $L \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2 ; s \neq v$.
(c) If $Q \in(s, v)^{\star}-\mathcal{N}(X)$, then $Q \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2 ; s \neq v$.

Proof. (a). Let $G \in \tilde{\mu}_{v}$ for $v=1,2$. Then there is a set $J \in \tilde{\mu}_{s}$ such that $J \subset G$ and $J \cap K=\emptyset$ for $s=1,2$. By hypothesis, there is a set $M_{1} \in \tilde{\mu}_{v}$ such that $M_{1} \subset J$ and $M_{1} \cap L=\emptyset$ for $v=1,2$. Take $P=J \cap M_{1}$. Then $P \subset G$ and $i_{s}(P) \neq \emptyset$, by hypothesis for $s=1,2$. Also, $i_{s}(P) \cap(K \cup L)=\emptyset$ for $s=1,2$. Thus, there is $i_{s}(P) \in \tilde{\mu}_{s}$ such that $i_{s}(P) \subset G$ and $i_{s}(P) \cap(K \cup L)=\emptyset$ where $s, v=1,2 ; s \neq v$. Therefore, $K \cup L \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.
(b). Suppose L is a (v, s)-nowhere dense set where $s, v=1,2$ and $s \neq v$. Then $X-c_{s}(L)$ is μ_{v}-dense and also μ_{s}-open set where $s, v=1,2$ and $s \neq v$. Let $V \in \tilde{\mu}_{v}$ for $v=1,2$. Then $V \cap\left(X-c_{s}(L)\right) \neq \emptyset$ for $s=1,2$. By hypothesis, $i_{s}\left(V \cap\left(X-c_{s}(L)\right) \neq \emptyset\right.$ for $s=1,2$. Take $P=i_{s}\left(V \cap\left(X-c_{s}(L)\right)\right.$ for $s=1,2$. Then $P \subset V$ and $P \cap L=\emptyset$. Therefore, L is a (s, v)-strongly nowhere dense set in X where $s, v=1,2 ; s \neq v$.
(c). It follows from (b) and the fact that every $(s, v)^{\star}$-nowhere dense set is a (v, s)-nowhere dense set where $s, v=1,2 ; s \neq v$.

Theorem 27. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. If $\mu_{s} \subset \mu_{v}$ and $Q \in(s, v)-\mathfrak{S}(X)$, then Q is a μ_{s}-strongly nowhere dense set in X where $s, v=1,2$ and $s \neq v$.

Definition 28. Let (X, μ_{1}, μ_{2}) satisfy the condition;

$$
\text { if } B_{1} \in \tilde{\mu}_{s}, B_{2} \in \tilde{\mu}_{v} \text { and } B_{1} \cap B_{2} \neq \emptyset \text {, then } i_{v}\left(B_{1} \cap B_{2}\right) \neq \emptyset
$$

where $s, v=1,2$ and $s \neq v$. Then the BGTS $\left(X, \mu_{1}, \mu_{2}\right)$ is said to satisfy the \mathcal{I}_{V}-property.
Theorem 29. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS which has the \mathcal{I}_{V}-property. If $D \in(s, v)-\mathfrak{S}(X)$, then D is a μ_{v}-strongly nowhere dense set in X where $s, v=1,2$ and $s \neq v$.

Proof. Take $s=1$ and $v=2$. Assume that, the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ satisfy the \mathcal{I}_{V}-property. Let $D \in(1,2)-\mathfrak{S}(X)$ and $G \in \tilde{\mu}_{2}$. Then there is a set $J \in \tilde{\mu}_{1}$ such that $J \subset G$ and $J \cap D=\emptyset$. Here $G \in \tilde{\mu}_{2}, J \in \tilde{\mu}_{1}$ and $J \cap G \neq \emptyset$. By our assumption, $i_{\mu_{2}}(G \cap J) \neq \emptyset$. Take $K=i_{\mu_{2}}(G \cap J)$. Then $K \in \tilde{\mu}_{2}$. Thus, there is $K \in \tilde{\mu}_{2}$ such that $K \subset G$ and $K \cap D=\emptyset$. Therefore, D is a μ_{2}-strongly nowhere dense set in X. Similarly, we can prove that the result is true for the case $s=2$ and $v=1$.

Theorem 30. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bigeneralized topological space. If $\mu_{v} \subset \mu_{s}$ where $s, v=1,2$ and $s \neq v$, then the following hold.
(a) If Q is a μ_{v}-strongly nowhere dense set, then $Q \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.
(b) If J is a μ_{s}-strongly nowhere dense set, then $J \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.

Proof. Assume that, $\mu_{v} \subset \mu_{s}$ where $s, v=1,2$ and $s \neq v$.
(a). Suppose that, Q is a μ_{v}-strongly nowhere dense set where $v=1,2$. Take $s=1$ and $v=2$. Then Q is a μ_{2}-strongly nowhere dense set and $\mu_{2} \subset \mu_{1}$. Let $G \in \tilde{\mu}_{2}$. Then there is $H \in \tilde{\mu}_{2}$ such that $H \subset G$ and $H \cap Q=\emptyset$. By hypothesis, $H \in \tilde{\mu}_{1}$. Thus, there is a set $H \in \tilde{\mu}_{1}$ such that $H \subset G$ and $H \cap Q=\emptyset$. Therefore, $Q \in(1,2)-\mathfrak{S}(X)$.
Similarly, we can prove that the result is true for the case $s=2$ and $v=1$.
(b). Let J be a μ_{s}-strongly nowhere dense set for $s=1,2$. Choose $s=1$ and $v=2$. Then J is a μ_{1}-strongly nowhere dense set and $\mu_{2} \subset \mu_{1}$. Let $H \in \tilde{\mu}_{2}$. Then $H \in \tilde{\mu}_{1}$ and so there is a set $K \in \tilde{\mu}_{1}$ such that $K \subset H$ and $K \cap J=\emptyset$. Thus, there is a set $K \in \tilde{\mu}_{1}$ such that $K \subset H$ and $K \cap J=\emptyset$. Hence $J \in(1,2)-\mathfrak{S}(X)$.
By Similar arguments, we can prove that the result is true for the case $s=2$ and $v=1$.

5. ($\mathrm{s}, \mathrm{v})^{\star}$-strongly nowhere dense sets

In this section, we introduce $(s, v)^{\star}$-strongly nowhere dense set and analzye its nature in a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$.
Definition 31. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS and B be a non-null subset of X. Then B is called $(s, v)^{\star}$-strongly nowhere dense if for every $K \in \tilde{\mu}_{s}$ there is $M \in \tilde{\sigma}_{v}$ such that $M \subset K$ and $M \cap B=\emptyset$ where $s, v=1,2 ; s \neq v$.

Moreover, $(s, v)^{\star}-\mathfrak{S}(X)=\left\{Q \subset X \mid Q\right.$ is a $(s, v)^{\star}$-strongly nowhere dense set in $\left.X\right\}$ where $s, v=1,2 ; s \neq v$.

Moreover, every non-null μ_{s}-open set is need not be an element of $(s, v)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.

Definition 32. Let D be a non-null subset of a $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$. Then for $s, v=1,2$ and $s \neq v$,
(a) D is said to be a $(s, v)^{\star}-s$-meager set if $D=\bigcup_{m \in \mathbb{N}} D_{m}$, for each $D_{m} \in(s, v)^{\star}-\mathfrak{S}(X)$.
(b) D is called $(s, v)^{\star}$-s-residual if $X-D$ is a $(s, v)^{\star}$-s-meager set in X.
(c) D is of a $(s, v)^{\star}-s$-second category set if D is not a $(s, v)^{\star}$-s-meager set in X.

In a bigeneralized topological space, if $P \in(s, v)^{\star}-\mathfrak{S}(X)$ and $Q \subset P$, then $Q \in$ $(s, v)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.

Moreover, $(s, v)-\mathfrak{S}(X) \subset(v, s)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.
Theorem 33. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bigeneralized topological space. Then the following hold.
(a) If μ_{2} is a strong generalized topology, then $(1,2)^{\star}-\mathfrak{S}(X) \subset(2,1)-\mathfrak{S}(X)$.
(b) If μ_{1} is a strong generalized topology, then $(2,1)^{\star}-\mathfrak{S}(X) \subset(1,2)-\mathfrak{S}(X)$.

Proof. (a). Suppose μ_{2} is a strong generalized topology and $Q \in(1,2)^{\star}-\mathfrak{S}(X)$. Let $G \in \tilde{\mu}_{1}$. Then there is a set $P \in \tilde{\sigma}_{2}$ such that $P \subset G$ and $P \cap Q=\emptyset$. Since $P \in \tilde{\sigma}_{2}$ we have $i_{2}(P) \in \tilde{\mu}_{2}$, by assumption. Take $J=i_{2}(P)$. Then $J \in \tilde{\mu}_{2}$ and $J \subset G$. Also, $J \cap Q=\emptyset$.

Thus, there is a set $J \in \tilde{\mu}_{2}$ such that $J \subset G$ and $J \cap Q=\emptyset$. Therefore, $Q \in(2,1)-\mathfrak{S}(X)$. By Similar arguments, we get the proof for (b).

Moreover, the family $(s, v)^{\star}-\mathfrak{S}(X)$ is need not be closed under finite union where $s, v=1,2$ and $s \neq v$ as shown by Example 34 .

Example 34. (a). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=$ $\{p, q, r, s\} ; \mu_{1}=\{\emptyset,\{p, q\},\{q, r\},\{p, q, r\}\} ; \mu_{2}=\{\emptyset,\{p\},\{q\},\{p, q\},\{p, s\},\{q, s\},\{p, q, s\}\}$. Then $\sigma_{2}=\{\emptyset,\{p\},\{q\},\{r\},\{p, q\},\{p, r\},\{q, r\},\{p, s\},\{q, s\},\{p, q, r\},\{p, q, s\},\{p, r, s\},\{q$, $r, s\}, X\}$. Take $P=\{q, s\}$ and $Q=\{r, s\}$. Then P and Q are $(1,2)^{\star}$-strongly nowhere dense sets in X. But $P \cup Q=\{q, r, s\} \notin(1,2)^{\star}-\mathfrak{S}(X)$.
(b). Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r, s\} ; \mu_{1}=$ $\{\emptyset,\{r\},\{p, s\},\{q, s\},\{p, q, s\},\{p, r, s\},\{q, r, s\}, X\} ; \mu_{2}=\{\emptyset,\{q, r\},\{r, s\},\{q, r, s\},\{p, q, s\}$, $X\}$. Then $\sigma_{1}=\{\emptyset,\{r\},\{p, s\},\{q, s\},\{p, q, s\},\{p, r, s\},\{q, r, s\}, X\}$. Take $K=\{p\}$ and $L=\{q\}$. Then K and L are $(2,1)^{\star}$-strongly nowhere dense sets in X. But $K \cup L=$ $\{p, q\} \notin(2,1)^{\star}-\mathfrak{S}(X)$.

The following Example 35 shows that
a. $P \cup Q \notin(s, v)^{\star}-\mathfrak{S}(X)$ even if $P \in(s, v)^{\star}-\mathfrak{S}(X)$ and $Q \in(v, s)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.
b. $P \cup Q \notin(v, s)^{\star}-\mathfrak{S}(X)$ even if $P \in(s, v)^{\star}-\mathfrak{S}(X)$ and $Q \in(v, s)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.

Example 35. Consider the bigeneralized topological space (X, μ_{1}, μ_{2}) where $X=\{p, q, r$, $s\} ; \mu_{1}=\{\emptyset,\{p\},\{r\},\{p, r\},\{p, q\},\{q, r\},\{p, q, r\}\}$ and $\mu_{2}=\{\emptyset,\{p\},\{p, q\},\{p, s\},\{q, s\}$,
$\{p, q, s\}\}$. Then $\sigma_{1}=\{\emptyset,\{p\},\{r\},\{s\},\{p, r\},\{p, q\},\{p, s\},\{q, r\},\{r, s\},\{p, q, r\},\{p, q, s\}$,
$\{p, r, s\},\{q, r, s\}, X\}$ and $\sigma_{2}=\{\emptyset,\{p\},\{r\},\{p, q\},\{p, r\},\{p, s\},\{q, s\},\{p, q, r\},\{p, q, s\},\{p$, $r, s\},\{q, r, s\}, X\}$.
Take $P=\{q, s\}$ and $Q=\{q, r\}$. Then $P \in(1,2)^{\star}-\mathfrak{S}(X)$ and $Q \in(2,1)^{\star}-\mathfrak{S}(X)$. Here $P \cup Q=\{q, r, s\}$. But $P \cup Q \notin(1,2)^{\star}-\mathfrak{S}(X)$. Also, $P \cup Q \notin(2,1)^{\star}-\mathfrak{S}(X)$.

Theorem 36. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. If μ_{1} and μ_{2} are strong generalized topologies, then the followings are true.
(a) $(1,2)^{\star}-\mathfrak{S}(X) \subset(2,1)^{\star}-\mathcal{N}(X)$.
(b) $(2,1)^{\star}-\mathfrak{S}(X) \subset(1,2)^{\star}-\mathcal{N}(X)$.

Proof. It is enough to prove (a) only. Let $E \in(1,2)^{\star}-\mathfrak{S}(X)$. Suppose $i_{\sigma_{1}}\left(c_{2}(E)\right) \neq \emptyset$. Then there exist $G \in \tilde{\sigma}_{1}$ such that $G \subset c_{2}(E)$. Since $G \in \tilde{\sigma}_{1}$ we have $i_{1}(G) \neq \emptyset$, by assumption. Thus, $i_{1}(G) \in \tilde{\mu}_{1}$. Since $G \subset c_{2}(E)$ we have $H \cap E \neq \emptyset$ for every $H \in \tilde{\sigma}_{2}$ such that $H \subset i_{1}(G)$ which is a contradiction to hypothesis. For, $H \in \tilde{\sigma}_{2}$ which implies $H \subset c_{2}\left(i_{2}(H)\right)$. Since μ_{2} is a strong generalized topology, $i_{2}(H) \in \tilde{\mu}_{2}$. Here $i_{2}(H) \subset$ $i_{1}(G) \subset c_{2}(E)$. This implies $i_{2}(H) \cap c_{2}(E) \neq \emptyset$ which implies that $i_{2}(H) \cap E \neq \emptyset$, by Lemma 2. Thus, $H \cap E \neq \emptyset$. Therefore, $E \in(2,1)^{\star}-\mathcal{N}(X)$.

Theorem 37. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS which has the \mathcal{I}_{S}-property. Then $(s, v)^{\star}-$ $\mathcal{N}(X) \subset(v, s)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.

Proof. Assume that, $\left(X, \mu_{1}, \mu_{2}\right)$ satisfy the \mathcal{I}_{S}-property. Let $Q \in(s, v)^{\star}-\mathcal{N}(X)$ where $s, v=1,2$ and $s \neq v$. By hypothesis and Theorem 26, $Q \in(s, v)-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$. Also, $(s, v)-\mathfrak{S}(X) \subset(v, s)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$. Therefore, $Q \in(v, s)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$.

Theorem 38. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS. If $\mu_{v} \subset \mu_{s}, \mu_{v}$ is a $s G T$ and $Q \in(s, v)^{\star}-\mathfrak{S}(X)$, then Q is a μ_{v}-strongly nowhere dense set where $s, v=1,2$ and $s \neq v$.

Proof. Assume that, $\mu_{v} \subset \mu_{s}, \mu_{v}$ is a sGT and $Q \in(s, v)^{\star}-\mathfrak{S}(X)$ where $s, v=1,2$ and $s \neq v$. Take $s=1$ and $v=2$. Then $Q \in(1,2)^{\star}-\mathfrak{S}(X) ; \mu_{2} \subset \mu_{1}$ and μ_{2} is a $s G T$. Let $H \in \tilde{\mu}_{2}$. Then $H \in \tilde{\mu}_{1}$. By assumption, there is $K \in \tilde{\sigma}_{2}$ such that $K \subset H$ and $K \cap Q=\emptyset$. Since $K \in \tilde{\sigma}_{2}$ we have $K \subset c_{2}\left(i_{2}(K)\right)$. This implies $i_{2}(K) \neq \emptyset$, since μ_{2} is a sGT which implies that $i_{2}(K) \in \tilde{\mu}_{2}$. Take $B=i_{2}(K)$. Thus, there $i s B \in \tilde{\mu}_{2}$ such that $B \subset H$ and $B \cap Q=\emptyset$. Hence Q is a μ_{2}-strongly nowhere dense set in X.
By similar arguments, we can prove the result for the case $s=2$ and $v=1$.
Theorem 39. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a BGTS which has the \mathcal{I}_{S}-property. If μ_{v} is a sGT and $D \in(s, v)^{\star}-\mathfrak{S}(X)$, then D is a μ_{s}-strongly nowhere dense set where $s, v=1,2 ; s \neq v$.

Proof. We give the detailed proof only for $s=2$ and $v=1$. Assume that, the bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$ satisfy the \mathcal{I}_{S}-property and μ_{1} is a strong generalized topology. Let D be $(2,1)^{\star}$-strongly nowhere dense set and $G \in \tilde{\mu}_{2}$. Then there is a set $P \in \tilde{\sigma}_{1}$ such that $P \subset G$ and $P \cap D=\emptyset$. Since $P \in \tilde{\sigma}_{1}$ we have $i_{\mu_{1}}(P) \neq \emptyset$, by our assumption. Take $J=i_{\mu_{1}}(P)$. Then $J \in \tilde{\mu}_{1}$. Here $G \in \tilde{\mu}_{2}, J \in \tilde{\mu}_{1}$ and $J \cap G \neq \emptyset$. By our assumption, $i_{\mu_{2}}(J \cap G) \neq \emptyset$. Take $E=i_{\mu_{2}}(J \cap G)$. Then $E \in \tilde{\mu}_{2}$. Thus, there exists $E \in \tilde{\mu}_{2}$ such that $E \subset G$ and $E \cap D=\emptyset$. Hence D is μ_{2}-strongly nowhere dense in X.

References

[1] Santanu Acharjee, Binod Chandra Tripathy, and Kyriakos Papadopoulos. Two forms of pairwise lindelöfness and some results related to hereditary class in a bigeneralized topological space. New Mathematics and Natural Computation, 13(02):181-193, 2017.
[2] Chawalit Boonpok. Weakly open functions on bigeneralized topological spaces. Int. Journal of Math. Analysis, 4(18):891-897, 2010.
[3] A Csaszar. Extremally disconnected generalized topologies. In Annales Univ. Sci. Budapest, volume 47, pages 151-161, 2004.
[4] Akos Császár. Generalized open sets. Acta mathematica hungarica, 75, 1997.
[5] Akos Császár. Generalized open sets in generalized topologies. Acta mathematica hungarica, 106, 2005.
[6] Erdal Ekici. Generalized hyperconnectedness. Acta Mathematica Hungarica, 133, 2011.
[7] Ewa Korczak-Kubiak, Anna Loranty, and Ryszard J Pawlak. Baire generalized topological spaces, generalized metric spaces and infinite games. Acta Mathematica Hungarica, 140(3):203-231, 2013.
[8] Zhaowen Li and Funing Lin. Baireness on generalized topological spaces. Acta Mathematica Hungarica, 139(4), 2013.
[9] V Renukadevi and S Vadakasi. On lower and upper semi-continuous functions. Acta Mathematica Hungarica, 160(1):1-12, 2020.

