EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 2, 2022, 403-414 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On Nowhere Dense Sets

Preecha Yupapin^{1,2}, Vadakasi Subramanian³, Yasser Farhat^{4,*}

 1 Computational Optics Research Group, Science and Technology Advanced Institue,

Van Lang University, Ho Chi Minh City, Vietnam

² Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam

³ Department of Mathematics, A.K.D.Dharma Raja Women's College, Rajapalayam

⁴ Academic Support Department, Abu Dhabi Polytechnic, P. O. Box 111499, Abu Dhabi, UAE

Abstract. We introduce two types of strongly nowhere dense sets, namely (s, v)-strongly nowhere dense set, $(s, v)^*$ -strongly nowhere dense set and analyze their characteristics in a bigeneralized topological space (BGTS). Further, it is also given some relations between these two types of strongly nowhere dense sets along with its various properties for $(s, v)^*$ -strongly nowhere dense set. Finally, the necessary and sufficient condition is found between μ -strongly nowhere dense set and $(s, v)^*$ -strongly nowhere dense set in a BGTS.

2020 Mathematics Subject Classifications: 54A05, 54A10

Key Words and Phrases: Bigeneralized topological spaces, $\mu_{(s,v)}$ -open, (s,v)-open, (s,v)-nowhere dense

1. Introduction

The concept of a generalized topological space was introduced by Császár in [4]. Let X be any non-null set. A collection μ of subsets of X is a generalized topology [8] in X if it contains the empty set and it closed under arbitrary union. Then the pair (X, μ) is called as a generalized topological space (GTS) [8]. The pair (X, μ) is called a strong generalized topological space (sGTS) [8] if $X \in \mu$.

If $Q \in \mu$, then Q is called a μ -open set and if $X - Q \in \mu$, then Q is said to be a μ -closed set. Let D be a subset of a GTS (X, μ) . The interior of D [8] denoted by iD, is the union of all μ -open sets contained in D and the closure of D [8] denoted by cD, is the intersection of all μ -closed sets containing D when no confusion can arise. Denote $\{D \in \mu \mid D \neq \emptyset\}$ by $\tilde{\mu}$ [7] and denote $\{D \in \mu \mid x \in D\}$ by $\mu(x)$ [7].

Define a generalized topology μ^* as follows; $\mu^* = \{\bigcup_t (U_1^t \cap U_2^t \cap U_3^t \cap ... \cap U_{n_t}^t) \mid U_1^t, U_2^t, ..., U_{n_t}^t \in \mu\}$ [7]. Then $\mu \subset \mu^*$ and μ^* is closed under finite intersection [7].

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4283

Email addresses: preecha.yupapin@vlu.edu.vn (P. Yupapin), farhat.yasser.10gmail.com (Y. Farhat)

https://www.ejpam.com

© 2022 EJPAM All rights reserved.

^{*}Corresponding author.

2. Preliminaries

Let (X, μ) be a GTS and $Q \subset X$. Then Q is called a μ -nowhere dense [6] (resp. μ -dense [6, 7], μ -codense [7]) set if $icQ = \emptyset$ (resp. cQ = X; c(X - Q) = X).

Let μ_1 and μ_2 be two generalized topologies on a non-null set X. Then (X, μ_1, μ_2) is called as a *bigeneralized topological space* (briefly, BGTS) [2].

Let (X, μ_1, μ_2) be a BGTS and $D \subset X$. Then $c_s(D)$ denote the *closure of* D and $i_s(D)$ denote the *interior of* D with respect to μ_s , respectively, for s = 1, 2 [2].

A subset Q of a BGTS (X, μ_1, μ_2) is called (s, v)-closed if $c_s(c_v(Q)) = Q$, where s, v = 1or 2; $s \neq v$. If X - Q is (s, v)-closed, then Q is called as (s, v)-open [2] set.

In [2], let Q be a subset of a BGTS (X, μ_1, μ_2) is called

(1) (s, v)-g-preopen if $Q \subseteq i_s(c_v(Q))$ where s, v = 1 or 2; $s \neq v$.

(2) (s, v)-g- α -open if $Q \subseteq i_s(c_v(i_s(Q)))$ where s, v = 1 or 2; $s \neq v$.

Lemma 1. [3] Let Q be a subset of a generalized topological space (X, μ) . Then $y \in c(Q)$ if and only if $M \cap Q \neq \emptyset$ for any $M \in \mu(y)$.

Lemma 2. [8, Lemma 3.2] Let (X, μ) be a generalized topological space and $D, B \subset X$. If $B \in \tilde{\mu}; B \cap D = \emptyset$, then $B \cap cD = \emptyset$.

3. Nowhere dense sets

In this section, we define a set namely, $(s, v)^*$ -nowhere dense and give some of their properties in a BGTS.

Let Q be a subset of a generalized topological space (X, μ) . Then Q is called μ -semiopen if $Q \subset c_{\mu}(i_{\mu}(Q))$ [5]. If X - Q is a μ -semi-open set, then Q is called μ -semi-closed [5].

Moreover, $\sigma(\mu)$ or $\sigma(\mu(X)) = \{Q \subset X \mid Q \text{ is } \mu\text{-semi-open set in } X\}$ [8]. Also, $i_{\sigma}(Q)$ denote the μ -semi-interior of $Q \subset X$ is defined by the union of all μ -semi-open subsets of (X, μ) contained in Q [8].

Let Q be a subset of a BGTS (X, μ_1, μ_2) is called (s, v)-nowhere dense [1] set in X if $i_s(c_v(Q)) = \emptyset$ where s, v = 1, 2; $s \neq v$.

Definition 1. Let (X, μ_1, μ_2) be a bigeneralized topological space and K be a non-null subset of X. Then K is called to be a $(s, v)^*$ -nowhere dense set if $i_{\sigma_v}(c_s(K)) = \emptyset$ where s, v = 1, 2; $s \neq v; \sigma_v = \sigma_{\mu_v}$.

Moreover, $(s, v)^* - \mathcal{N}(X) = \{Q \subset X \mid Q \text{ is } (s, v)^*\text{-nowhere dense set in } X\}$ where s, v = 1, 2; $s \neq v$.

Example 2. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}$; $\mu_1 = \{\emptyset, \{p, q\}, \{q, r\}, \{p, q, r\}\}$ and $\mu_2 = \{\emptyset, \{p, s\}, \{q, s\}, \{p, q, s\}\}$. Then $\sigma_1 = \{\emptyset, \{s\}, \{p, q\}, \{q, r\}, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, X\}$ and $\sigma_2 = \{\emptyset, \{r\}, \{p, s\}, \{q, s\}, \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X\}$.

1. Take $E = \{s\}$. Then $i_{\sigma_2}(c_1(E)) = i_{\sigma_2}(E) = \emptyset$. Thus, E is a $(1, 2)^*$ -nowhere dense set in X.

2. Choose $F = \{p, r\}$. Then $i_{\sigma_1}(c_2(F)) = i_{\sigma_1}(\{p, r\}) = \emptyset$. Then F is a $(2, 1)^*$ -nowhere dense in X.

In a bigeneralized topological space, if $K \in (s, v)^* - \mathcal{N}(X)$ and $L \subset K$, then $L \in (s, v)^* - \mathcal{N}(X)$ where s, v = 1, 2 and $s \neq v$. Also, every $(s, v)^*$ -nowhere dense set where s, v = 1, 2 and $s \neq v$, is a μ_v -codense set for v = 1, 2 in X.

Moreover, any $(s, v)^*$ -nowhere dense set is a (v, s)-nowhere dense set in a bigeneralized topological space (X, μ_1, μ_2) where s, v = 1, 2 and $s \neq v$, since $\mu \subset \sigma$ [3].

Example 3. Consider the BGTS (X, μ_1, μ_2) where $X = \{p, q, r, s\}$ and μ_1, μ_2 are defined in Example 2.

Take $P = \{s\}$. Then P is $(1,2)^*$ -nowhere dense set, by Example 2. Now $i_2(c_1(P)) = i_2(P) = \emptyset$. Therefore, P is (2,1)-nowhere dense set in X.

Choose $D = \{p, r\}$. In Example 2, D is $(2, 1)^*$ -nowhere dense set in X. Here $i_1(c_2(D)) = i_1(D) = \emptyset$. Thus, D is (1, 2)-nowhere dense set in X.

Theorem 4. Let (X, μ_1, μ_2) be a bigeneralized topological space. Then the followings are true.

(a) If (X, μ_1) is a sGTS and $Q \subset X$ is a (1, 2)-nowhere dense set, then $Q \in (2, 1)^* - \mathcal{N}(X)$. (b) If (X, μ_2) is a sGTS and $J \subset X$ is a (2, 1)-nowhere dense set, then $J \in (1, 2)^* - \mathcal{N}(X)$.

Proof. (a). Assume that, (X, μ_1) is a sGTS and Q is a (1, 2)-nowhere dense set. Then $i_1(c_2(Q)) = \emptyset$. Suppose $i_{\sigma_1}(c_2(Q)) \neq \emptyset$. Then there exist $G \in \tilde{\sigma}_1$ such that $G \subset c_2(Q)$. Since $G \in \tilde{\sigma}_1$ we have $G \subset c_1(i_1(G))$ which implies $c_1(i_1(G)) \neq \emptyset$ which turn implies that $i_1(G) \neq \emptyset$, by assumption. Thus, $i_1(G) \in \tilde{\mu}_1$ and $i_1(G) \subset c_2(Q)$. Then $i_1(c_2(Q)) \neq \emptyset$ which is not possible. Therefore, $i_{\sigma_1}(c_2(Q)) = \emptyset$.

(b). Follows from the similar arguments in (a).

In Theorem 4, the condition " μ_1 is a sGT" is necessary as shown by the below Example 5. The condition " μ_2 is a sGT" in Theorem 4 is necessary as shown by Example 6.

Example 5. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s, t\}; \mu_1 = \{\emptyset, \{p, q\}, \{p, s\}, \{p, q, s\}\}; \mu_2 = \{\emptyset, \{p, q\}, \{q, r\}, \{p, q, r\}\}$. Here μ_1 is not a sGT. Then $\sigma_1 = \{\emptyset, \{r\}, \{t\}, \{r, t\}, \{p, q\}, \{p, s\}, \{p, q, r\}, \{p, q, s\}, \{p, q, t\}, \{p, r, s\}, \{p, s, t\}, \{p, q, r, s\}, \{p, q, r, t\}, \{p, q, s, t\}, \{p, r, s, t\}, X\}.$

Take $D = \{r\}$. Then $i_1(c_2(D)) = i_1(\{r, s, t\}) = \emptyset$. Thus, D is a (1, 2)-nowhere dense set in X. But $i_{\sigma_1}(c_2(D)) = i_{\sigma_1}(\{r, s, t\}) = \{r, t\} \neq \emptyset$. Thus, $D \notin (2, 1)^* - \mathcal{N}(X)$.

Example 6. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s, t\}$; $\mu_1 = \{\emptyset, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, \{p, q, r, s\}\}$ and $\mu_2 = \{\emptyset, \{p, q\}, \{q, r\}, \{p, q, r\}\}$. Here μ_2 is not a sGT. Then $\sigma_2 = \{\emptyset, \{s\}, \{t\}, \{s, t\}, \{p, q\}, \{q, r\}, \{p, q, r\}, \{p, q, s\}, \{p, q, t\}, \{q, r, s\}, \{q, r, s, t\}, \{p, q, r, s\}, \{p, q, r, t\}, \{p, q, r, s\}, \{p, q, r, t\}, \{p, q, s, t\}, \{q, r, s, t\}, X\}.$

Choose $D = \{s\}$. Then $i_2(c_1(D)) = i_2(\{s,t\}) = \emptyset$. Thus, D is a (2,1)-nowhere dense set in X. But $i_{\sigma_2}(c_1(D)) = i_{\sigma_2}(\{s,t\}) = \{s\} \neq \emptyset$. Thus, $D \notin (1,2)^* - \mathcal{N}(X)$.

Theorem 7. Let (X, μ_1, μ_2) be a BGTS and $E \subset X$. Then the followings are true. (a) If (X, μ_2) is a sGTS and if $c_1(E)$ does not contain a non-null μ_2 -open set, then $E \in$

 $(1,2)^{\star} - \mathcal{N}(X).$

(b) If (X, μ_1) is a sGTS and if $c_2(E)$ does not contain a non-null μ_1 -open set, then $E \in (2, 1)^* - \mathcal{N}(X)$.

Proof. (a). Assume that, (X, μ_2) is a sGTS. Suppose $i_{\sigma_2}(c_1(E)) \neq \emptyset$. Then there is a non-null σ_2 -open set M such that $M \subset c_1(E)$. Since M is a non-null σ_2 -open set we have $M \subset c_2(i_2(M))$. This implies that $c_2(i_2(M)) \neq \emptyset$ which implies $i_2(M) \neq \emptyset$, by assumption. Thus, $c_1(E)$ contain a non-null μ_2 -open set which is not possible. Therefore, $E \in (1,2)^* - \mathcal{N}(X)$.

(b). By similar arguments in (a), we get the proof.

Theorem 8. Let (X, μ_1, μ_2) be a bigeneralized topological space. If $\mu_s \subset \mu_v$ and $Q \in (s, v)^* - \mathcal{N}(X)$, then Q is a μ_v -nowhere dense set in X where s, v = 1, 2; $s \neq v$.

Proof. Take s = 1 and v = 2. Suppose $\mu_1 \subset \mu_2$ and $Q \in (1,2)^* - \mathcal{N}(X)$. Then $i_{\sigma_2}(c_1(Q)) = \emptyset$. This implies that $i_{\mu_2}(c_{\mu_1}(Q)) = \emptyset$ which implies $i_{\mu_2}(c_{\mu_2}(Q)) = \emptyset$, by hypothesis. Hence Q is a μ_2 -nowhere dense set in X. Similarly, we can prove the result for s = 2 and v = 1.

In Theorem 8, the conditions " $\mu_1 \subset \mu_2$ " and " $\mu_2 \subset \mu_1$ " are can not be dropped as shown by the below Example 9.

Example 9. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\};$ $\mu_1 = \{\emptyset, \{p, q\}, \{q, r\}, \{r, s\}, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, X\}$ and $\mu_2 = \{\emptyset, \{p, s\}, \{q, s\}, \{p, q, s\}, \{p, q, s\}\}$. Here $\mu_1 \not\subseteq \mu_2$. Now $\sigma_2 = \{\emptyset, \{r\}, \{p, s\}, \{q, s\}, \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X\}$. Take $Q = \{p, q\}$. Then $i_{\sigma_2}(c_1(Q)) = i_{\sigma_2}(\{p, q\}) = \emptyset$. Thus, Q is a $(1, 2)^*$ -nowhere dense set in X. Here $i_2(c_2(Q)) = i_2(X) = \{p, q, s\} \neq \emptyset$. Thus, Q is not a μ_2 -nowhere dense set in X. (b) Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}; \mu_1 = \{\emptyset, \{p, r\}, \{q, r\}, \{p, q, r\}\}$ and $\mu_2 = \{\emptyset, \{p, q\}, \{q, s\}, \{p, q, s\}\}$. Here $\mu_2 \not\subseteq \mu_1$. Now $\sigma_1 = \{\emptyset, \{s\}, \{p, r\}, \{q, r\}, \{p, q, r\}, \{p, r, s\}, \{q, r, s\}, X\}$. Choose $H = \{r\}$. Then $i_{\sigma_1}(c_2(H)) = i_{\sigma_1}(\{r\}) = \emptyset$. Thus, H is a $(2, 1)^*$ -nowhere dense set in X. But $i_1(c_1(H)) = i_1(X) = \{p, q, r\} \neq \emptyset$. Thus, H is not a μ_1 -nowhere dense set in X.

Theorem 10. Let (X, μ_1, μ_2) be a bigeneralized topological space. If $\mu_v \subset \mu_s$ and if μ_v is a strong generalized topology, then any μ_v -nowhere dense set in X is a $(s, v)^*$ -nowhere dense set in X where s, v = 1, 2 and $s \neq v$.

Proof. Take s = 1 and v = 2. Assume that, $\mu_2 \subset \mu_1$ and Q is a μ_2 -nowhere dense set in X. Then $i_{\mu_2}(c_{\mu_2}(Q)) = \emptyset$. Suppose $i_{\sigma_2}(c_1(Q)) \neq \emptyset$. Then there exists $M \in \tilde{\mu}_{\sigma_2}$ such that $M \subset c_1(Q)$. Since $M \in \tilde{\mu}_{\sigma_2}$ we have $c_2(i_2(M)) \neq \emptyset$. Then by hypothesis, $i_2(M) \neq \emptyset$ and so $i_2(c_1(Q)) \neq \emptyset$. By hypothesis, $i_2(c_2(Q)) \neq \emptyset$, which is not possible. Therefore, $i_{\sigma_2}(c_1(Q)) = \emptyset$. Hence $Q \in (1, 2)^* - \mathcal{N}(X)$.

Similarly, we can prove the result for s = 2 and v = 1.

The following Example 11 shows that the hypothesis of Theorem 10 can not be dropped.

Example 11. (a). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}; \mu_1 = \{\emptyset, \{p, s\}, \{q, s\}, \{p, q, s\}\}$ and $\mu_2 = \{\emptyset, \{p, r\}, \{p, s\}, \{q, r\}, \{p, r, s\}, \{p, q, r\}, X\}$. Here $\mu_2 \notin \mu_1$ but μ_2 is a sGT. Now $\sigma_2 = \{\emptyset, \{p, r\}, \{p, s\}, \{q, r\}, \{p, r, s\}, \{p, q, r\}, X\}$. Take $H = \{s\}$. Then $i_2(c_2(H)) = i_2(H) = \emptyset$ and so H is μ_2 -nowhere dense set in X. But $i_{\sigma_2}(c_1(H)) = i_{\sigma_2}(X) = X \neq \emptyset$. Thus, H is not a $(1, 2)^*$ -nowhere dense set in X.

(b). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}; \mu_1 = \{\emptyset, \{p, q\}, \{p, s\}, \{q, s\}, \{p, q, s\}\}$ and $\mu_2 = \{\emptyset, \{p, s\}, \{q, s\}, \{p, q, s\}\}$. Here $\mu_2 \subset \mu_1$ but μ_2 is not a sGT. Now $\sigma_2 = \{\emptyset, \{r\}, \{p, s\}, \{q, s\}, \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X\}$. Choose $P = \{r\}$. Then $i_2(c_2(P)) = i_2(P) = \emptyset$ so that P is a μ_2 -nowhere dense set in X. But $i_{\sigma_2}(c_1(P)) = i_{\sigma_2}(P) = P \neq \emptyset$. Thus, P is not a $(1, 2)^*$ -nowhere dense set in X.

(c). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}; \mu_1 = \{\emptyset, \{p, q\}, \{q, r\}, \{p, q, r\}, X\}$ and $\mu_2 = \{\emptyset, \{p, r\}, \{q, r\}, \{p, q, r\}\}$. Clearly, $\mu_1 \notin \mu_2$ but μ_1 is a sGT. Here $\sigma_1 = \{\emptyset, \{p, q\}, \{q, r\}, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, X\}$. Take $Q = \{r, s\}$. Then $i_1(c_1(Q)) = i_1(Q) = \emptyset$ so that Q is a μ_1 -nowhere dense set in X. But $i_{\sigma_1}(c_2(Q)) = i_{\sigma_1}(X) = X \neq \emptyset$. Hence Q is not a $(2, 1)^*$ -nowhere dense set in X.

(d). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}; \mu_1 = \{\emptyset, \{q, r\}, \{q, s\}, \{q, r, s\}\}$ and $\mu_2 = \{\emptyset, \{p, q\}, \{q, r\}, \{q, s\}, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, X\}$. Here $\mu_1 \subset \mu_2$ but μ_1 is not a sGT. Now $\sigma_1 = \{\emptyset, \{p\}, \{q, r\}, \{q, s\}, \{q, r, s\}, \{p, q, r\}, \{p, q, s\}, X\}$. Let $K = \{p, r\}$. Then $i_1(c_1(K)) = i_1(K) = \emptyset$ so that K is a μ_1 -nowhere dense set in X. But $i_{\sigma_1}(c_2(K)) = i_{\sigma_1}(K) = \{p\} \neq \emptyset$. Hence K is not a $(2, 1)^*$ -nowhere dense set in X.

4. (s, v)-strongly nowhere dense sets

In this section, we define a set namely, (s, v)-strongly nowhere dense set and give some of its properties in a BGTS (X, μ_1, μ_2) .

Let Q be a subset of a GTS (X, μ) . Then Q is called μ -strongly nowhere dense [7] set if for every $K \in \tilde{\mu}$, there is $P \in \tilde{\mu}$ such that $P \subset K$ and $P \cap Q = \emptyset$.

A generalized topology μ on X is said to satisfy the \mathcal{I} -property [9] whenever $W_1, W_2, \ldots, W_n \in \mu$ with $W_1 \cap W_2 \cap \cdots \cap W_n \neq \emptyset, i_\mu(W_1 \cap W_2 \cap \cdots \cap W_n) \neq \emptyset$.

A GTS (X, μ) is called as a hyperconnected space [6] if $c_{\mu}(Q) = X$ for each $Q \in \tilde{\mu}$.

Definition 12. Let *B* be a non-null subset of a bigeneralized topological space (X, μ_1, μ_2) . Then *B* is said to be (s, v)-strongly nowhere dense if for every $P \in \tilde{\mu}_v$ there is $Q \in \tilde{\mu}_s$ such that $Q \subset P$ and $Q \cap B = \emptyset$ where s, v = 1, 2; $s \neq v$.

Moreover, $(s, v) - \mathfrak{S}(X) = \{Q \subset X \mid Q \text{ is a } (s, v)\text{-strongly nowhere dense set in } X\}$ where s, v = 1, 2; $s \neq v$.

In a bigeneralized topological space, if $P \in (s, v) - \mathfrak{S}(X)$ and $Q \subset P$, then $Q \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$. Moreover, every non-null μ_v -open set is need not be a (s, v)-strongly nowhere dense set in X where s, v = 1, 2; $s \neq v$.

Example 13. (a). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}; \mu_1 = \{\emptyset, \{p, q\}, \{q, r\}, \{p, q, r\}\}$ and $\mu_2 = \{\emptyset, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, X\}$. Let $P = \{s\}$. Then $P \in (1, 2) - \mathfrak{S}(X)$.

(b). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}$; $\mu_1 = \{\emptyset, \{p, q\}, \{p, r\}, \{p, q, r\}\}$ and $\mu_2 = \{\emptyset, \{p\}, \{q, r\}, \{q, s\}, \{p, q, r\}, \{p, q, s\}, \{q, r, s\}, X\}$. Let $J = \{q, r\}$. Then $J \in (2, 1) - \mathfrak{S}(X)$.

Proposition 14. Let (X, μ_1, μ_2) be a bigeneralized topological space and $D \subset X$. Then $D \in (s, v) - \mathfrak{S}(X)$ if and only if $c_s(D) \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2; $s \neq v$.

Example 15 shows that the collection $(s, v) - \mathfrak{S}(X)$ is need not be closed under finite union in a BGTS (X, μ_1, μ_2) where s, v = 1, 2 and $s \neq v$.

Example 15. (a). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s, t\}; \mu_1 = \{\emptyset, \{s\}, \{p, q\}, \{p, r\}, \{p, q, r\}, \{p, q, s\}, \{p, r, s\}, \{p, q, r, s\}\}$ and $\mu_2 = \{\emptyset, \{p, q, r\}, \{p, r, s\}, \{p, q, r, s\}\}$. Take $K = \{q, s\}, L = \{r, t\}$. Then $K, L \in (1, 2) - \mathfrak{S}(X)$. Now $K \cup L = \{q, r, s, t\}$. But $K \cup L \notin (1, 2) - \mathfrak{S}(X)$. Because, Here, for every $G \in \tilde{\mu}_2$ there is no $J \in \tilde{\mu}_1$ such that $J \subset G$ and $J \cap (K \cup L) = \emptyset$.

(b). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s, t\}; \mu_1 = \{\emptyset, \{p, q, s\}, \{p, q, r, s\}\}$ and $\mu_2 = \{\emptyset, \{r\}, \{p, q\}, \{p, s\}, \{p, q, r\}, \{p, q, s\}, \{p, r, s\}, \{p, q, r, s\}\}$. Take $L = \{q, r\}, M = \{s, t\}$. Then $L, M \in (2, 1) - \mathfrak{S}(X)$. Now $L \cup M = \{q, r, s, t\}$. But $L \cup M \notin (2, 1) - \mathfrak{S}(X)$. Here, for every $H \in \tilde{\mu}_1$ there is no $K \in \tilde{\mu}_2$ such that $K \subset H$ and $K \cap (L \cup M) = \emptyset$.

Theorem 16. Let (X, μ_1, μ_2) be a BGTS where $\mu_2 = \mu_1^*$. Then the family $(s, v) - \mathfrak{S}(X)$ is closed under finite union where s, v = 1, 2; $s \neq v$.

Theorem 17. Let (X, μ_1, μ_2) be a bigeneralized topological space. If (X, μ_s) is hyperconnected and μ_s satisfy the \mathcal{I} -property, then $A_1 \cup A_2 \in (s, v) - \mathfrak{S}(X)$ whenever $A_1, A_2 \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2; $s \neq v$.

Proof. Take s = 1 and v = 2. Assume that, (X, μ_1) is hyperconnected and μ_1 satisfy the \mathcal{I} -property. Suppose that, A_1 and A_2 are (1, 2)-strongly nowhere dense sets in X. Take $D = A_1 \cup A_2$. Let $G \in \tilde{\mu}_2$. Then there exists $H_i \in \tilde{\mu}_1$ such that $H_i \subset G$ and $H_i \cap A_i = \emptyset$ for i = 1, 2. By our assumption, $i_{\mu_1}(H_1 \cap H_2) \neq \emptyset$. Take $J = i_{\mu_1}(H_1 \cap H_2)$. Then $J \in \tilde{\mu}_1$. Thus, there is $J \in \tilde{\mu}_1$ such that $J \subset G$ and $J \cap D = \emptyset$. Hence $D \in (1, 2) - \mathfrak{S}(X)$. Similarly, we can prove the result for s = 2 and v = 1.

Corollary 18. Let (X, μ_1, μ_2) be a bigeneralized topological space. If (X, μ_s) is a hyperconnected space and μ_s satisfy the \mathcal{I} -property, then the family $(s, v) - \mathfrak{S}(X)$ is closed under finite union where s, v = 1, 2; $s \neq v$.

The following Example 19 shows that (s, v)-strongly nowhere dense and (s, v)-nowhere dense sets are not comparable in a BGTS.

Example 19. (a). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = [0,3]; \mu_1 = \{\emptyset, [0,1), \{\frac{3}{2}\}, [1,2], [0,1) \cup \{\frac{3}{2}\}, [0,2]\}$ and $\mu_2 = \{\emptyset, [0,\frac{3}{2}), [1,3], [0,3]\}$. Let G = (2,3]. Then $G \in (1,2) - \mathfrak{S}(X)$. But G is not a (1,2)-nowhere dense set in X. (b). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = [0,3]; \mu_1 = \{\emptyset, [0,2), (1,3], [0,3]\}$ and $\mu_2 = \{\emptyset, [0,1), (1,2), \{2\}, [0,1) \cup \{2\}, (1,2], [0,1) \cup (1,2), [0,1$ (1,2]. Let H = (2,3]. Then $H \in (2,1) - \mathfrak{S}(X)$. But H is not a (2,1)-nowhere dense set in X.

(c). Consider the bigeneralized topological space (X, μ_1, μ_2) where X = [0,3]; $\mu_1 = \{\emptyset, [0,2), (1,3], [0,3]\}$ and $\mu_2 = \{\emptyset, [0,1), [1,2), [0,2)\}$. Let K = [2,3]. Then K is a (s, v)-nowhere dense set in X where s, v = 1, 2 and $s \neq v$. But $K \notin (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

Theorem 20. Let (X, μ_1, μ_2) be a BGTS and $Q \subset X$. If $Q \in (s, v) - \mathfrak{S}(X)$, then Q is a (v, s)-nowhere dense set in X where s, v = 1, 2; $s \neq v$.

Proof. Suppose $Q \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2; $s \neq v$. Assume that, $i_v(c_s(Q)) \neq \emptyset$ where s, v = 1, 2; $s \neq v$. Then there is a set $J \in \tilde{\mu}_v$ such that $J \subset c_s(Q)$ where s, v = 1, 2and $s \neq v$ which implies that $Q \notin (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2; $s \neq v$ which is not possible. Therefore, Q is a (v, s)-nowhere dense set in X where $s, v = 1, 2; s \neq v$.

Definition 21. Let Q be a non-null subset of a BGTS (X, μ_1, μ_2) . Then for s, v = 1, 2 and $s \neq v$,

(a) Q is called (s, v)-meager if $Q = \bigcup_{m \in \mathbb{N}} D_m$ where each D_m is a (s, v)-nowhere dense set in X.

(b) Q is called (s, v)-residual if X - Q is a (s, v)-meager set in X.

(c) Q is of (s, v)-second category set if Q is not a (s, v)-meager set in X.

Definition 22. Let *B* be a non-null subset of a BGTS (X, μ_1, μ_2) . Then for s, v = 1, 2 and $s \neq v$,

(a) B is said to be a (s, v)-s-meager set if $B = \bigcup_{m \in \mathbb{N}} B_m$ for each $B_m \in (s, v) - \mathfrak{S}(X)$.

(b) B is called as a (s, v)-s-residual set if X - B is a (s, v)-s-meager set in X.

(c) B is of (s, v)-s-second category set if B is not a (s, v)-s-meager set in X.

Corollary 23. Let (X, μ_1, μ_2) be a BGTS and $D \subset X$. For s, v = 1, 2 and $s \neq v$, the followings are true.

(a) If D is (s, v)-s-meager, then it is a (v, s)-meager set.

(b) If D is (s, v)-s-residual, then it is a (v, s)-residual set.

(c) If D is of (s, v)-second category set, then it is of (v, s)-s-second category set.

Corollary 24. Let (X, μ_1, μ_2) be a BGTS. Then the followings are true.

(a) If μ_2 is a strong generalized topology, then $(1,2) - \mathfrak{S}(X) \subset (1,2)^* - \mathcal{N}(X)$.

(b) If μ_1 is a strong generalized topology, then $(2,1) - \mathfrak{S}(X) \subset (2,1)^* - \mathcal{N}(X)$.

Proof. (a). Assume that, μ_2 is a strong generalized topology. Let $Q \in (1,2) - \mathfrak{S}(X)$. By Theorem 20, Q is a (2,1)-nowhere dense set in X. By our assumption and Theorem 4 (b), Q is a $(1,2)^*$ -nowhere dense set in X.

(b). Suppose that, μ_1 is a strong generalized topology. Let $D \in (2, 1) - \mathfrak{S}(X)$. By Theorem 20 and Theorem 4 (a), $D \in (2, 1)^* - \mathcal{N}(X)$.

Definition 25. Let (X, μ_1, μ_2) satisfy the condition;

if $B_1 \in \tilde{\mu}_s, B_2 \in \tilde{\mu}_v$ and $B_1 \cap B_2 \neq \emptyset$, then $i_s(B_1 \cap B_2) \neq \emptyset$

where s, v = 1, 2 and $s \neq v$. Then the BGTS (X, μ_1, μ_2) is said to satisfy the \mathcal{I}_S -property.

Theorem 26. Let (X, μ_1, μ_2) be a BGTS which has the \mathcal{I}_S -property and $K, L, Q \subset X$. Then

(a) If $K \in (s, v) - \mathfrak{S}(X)$ and $L \in (v, s) - \mathfrak{S}(X)$, then $K \cup L \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2; $s \neq v$.

(b) If L is a (v, s)-nowhere dense set, then $L \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2; $s \neq v$.

(c) If $Q \in (s, v)^* - \mathcal{N}(X)$, then $Q \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2; $s \neq v$.

Proof. (a). Let $G \in \tilde{\mu}_v$ for v = 1, 2. Then there is a set $J \in \tilde{\mu}_s$ such that $J \subset G$ and $J \cap K = \emptyset$ for s = 1, 2. By hypothesis, there is a set $M_1 \in \tilde{\mu}_v$ such that $M_1 \subset J$ and $M_1 \cap L = \emptyset$ for v = 1, 2. Take $P = J \cap M_1$. Then $P \subset G$ and $i_s(P) \neq \emptyset$, by hypothesis for s = 1, 2. Also, $i_s(P) \cap (K \cup L) = \emptyset$ for s = 1, 2. Thus, there is $i_s(P) \in \tilde{\mu}_s$ such that $i_s(P) \subset G$ and $i_s(P) \cap (K \cup L) = \emptyset$ where s, v = 1, 2; $s \neq v$. Therefore, $K \cup L \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

(b). Suppose L is a (v, s)-nowhere dense set where s, v = 1, 2 and $s \neq v$. Then $X - c_s(L)$ is μ_v -dense and also μ_s -open set where s, v = 1, 2 and $s \neq v$. Let $V \in \tilde{\mu}_v$ for v = 1, 2. Then $V \cap (X - c_s(L)) \neq \emptyset$ for s = 1, 2. By hypothesis, $i_s(V \cap (X - c_s(L)) \neq \emptyset$ for s = 1, 2. Take $P = i_s(V \cap (X - c_s(L)))$ for s = 1, 2. Then $P \subset V$ and $P \cap L = \emptyset$. Therefore, L is a (s, v)-strongly nowhere dense set in X where s, v = 1, 2; $s \neq v$.

(c). It follows from (b) and the fact that every $(s, v)^*$ -nowhere dense set is a (v, s)-nowhere dense set where s, v = 1, 2; $s \neq v$.

Theorem 27. Let (X, μ_1, μ_2) be a BGTS. If $\mu_s \subset \mu_v$ and $Q \in (s, v) - \mathfrak{S}(X)$, then Q is a μ_s -strongly nowhere dense set in X where s, v = 1, 2 and $s \neq v$.

Definition 28. Let (X, μ_1, μ_2) satisfy the condition;

if $B_1 \in \tilde{\mu}_s, B_2 \in \tilde{\mu}_v$ and $B_1 \cap B_2 \neq \emptyset$, then $i_v(B_1 \cap B_2) \neq \emptyset$

where s, v = 1, 2 and $s \neq v$. Then the BGTS (X, μ_1, μ_2) is said to satisfy the \mathcal{I}_V -property.

Theorem 29. Let (X, μ_1, μ_2) be a BGTS which has the \mathcal{I}_V -property. If $D \in (s, v) - \mathfrak{S}(X)$, then D is a μ_v -strongly nowhere dense set in X where s, v = 1, 2 and $s \neq v$.

Proof. Take s = 1 and v = 2. Assume that, the bigeneralized topological space (X, μ_1, μ_2) satisfy the \mathcal{I}_V -property. Let $D \in (1, 2) - \mathfrak{S}(X)$ and $G \in \tilde{\mu}_2$. Then there is a set $J \in \tilde{\mu}_1$ such that $J \subset G$ and $J \cap D = \emptyset$. Here $G \in \tilde{\mu}_2, J \in \tilde{\mu}_1$ and $J \cap G \neq \emptyset$. By our assumption, $i_{\mu_2}(G \cap J) \neq \emptyset$. Take $K = i_{\mu_2}(G \cap J)$. Then $K \in \tilde{\mu}_2$. Thus, there is $K \in \tilde{\mu}_2$ such that $K \subset G$ and $K \cap D = \emptyset$. Therefore, D is a μ_2 -strongly nowhere dense set in X. Similarly, we can prove that the result is true for the case s = 2 and v = 1.

Theorem 30. Let (X, μ_1, μ_2) be a bigeneralized topological space. If $\mu_v \subset \mu_s$ where s, v = 1, 2 and $s \neq v$, then the following hold.

(a) If Q is a μ_v -strongly nowhere dense set, then $Q \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

410

(b) If J is a μ_s -strongly nowhere dense set, then $J \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

Proof. Assume that, $\mu_v \subset \mu_s$ where s, v = 1, 2 and $s \neq v$.

(a). Suppose that, Q is a μ_v -strongly nowhere dense set where v = 1, 2. Take s = 1 and v=2. Then Q is a μ_2 -strongly nowhere dense set and $\mu_2 \subset \mu_1$. Let $G \in \tilde{\mu}_2$. Then there is $H \in \tilde{\mu}_2$ such that $H \subset G$ and $H \cap Q = \emptyset$. By hypothesis, $H \in \tilde{\mu}_1$. Thus, there is a set $H \in \tilde{\mu}_1$ such that $H \subset G$ and $H \cap Q = \emptyset$. Therefore, $Q \in (1,2) - \mathfrak{S}(X)$.

Similarly, we can prove that the result is true for the case s = 2 and v = 1.

(b). Let J be a μ_s -strongly nowhere dense set for s = 1, 2. Choose s = 1 and v = 2. Then J is a μ_1 -strongly nowhere dense set and $\mu_2 \subset \mu_1$. Let $H \in \tilde{\mu}_2$. Then $H \in \tilde{\mu}_1$ and so there is a set $K \in \tilde{\mu}_1$ such that $K \subset H$ and $K \cap J = \emptyset$. Thus, there is a set $K \in \tilde{\mu}_1$ such that $K \subset H$ and $K \cap J = \emptyset$. Hence $J \in (1, 2) - \mathfrak{S}(X)$.

By Similar arguments, we can prove that the result is true for the case s = 2 and v = 1.

5. $(s, v)^*$ -strongly nowhere dense sets

In this section, we introduce $(s, v)^*$ -strongly nowhere dense set and analyze its nature in a BGTS (X, μ_1, μ_2) .

Definition 31. Let (X, μ_1, μ_2) be a BGTS and B be a non-null subset of X. Then B is called $(s, v)^*$ -strongly nowhere dense if for every $K \in \tilde{\mu}_s$ there is $M \in \tilde{\sigma}_v$ such that $M \subset K$ and $M \cap B = \emptyset$ where s, v = 1, 2; $s \neq v$.

Moreover, $(s, v)^* - \mathfrak{S}(X) = \{Q \subset X \mid Q \text{ is a } (s, v)^* \text{-strongly nowhere dense set in } X\}$ where s, v = 1, 2; $s \neq v$.

Moreover, every non-null μ_s -open set is need not be an element of $(s, v)^* - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

Definition 32. Let D be a non-null subset of a BGTS (X, μ_1, μ_2) . Then for s, v = 1, 2and $s \neq v$,

(a) D is said to be a $(s, v)^*$ -s-meager set if $D = \bigcup_{m \in \mathbb{N}} D_m$, for each $D_m \in (s, v)^* - \mathfrak{S}(X)$.

(b) D is called $(s, v)^*$ -s-residual if X - D is a $(s, v)^*$ -s-meager set in X.

(c) D is of a $(s, v)^*$ -s-second category set if D is not a $(s, v)^*$ -s-meager set in X.

In a bigeneralized topological space, if $P \in (s, v)^{\star} - \mathfrak{S}(X)$ and $Q \subset P$, then $Q \in \mathcal{S}(X)$ $(s, v)^{\star} - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

Moreover, $(s, v) - \mathfrak{S}(X) \subset (v, s)^* - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

Theorem 33. Let (X, μ_1, μ_2) be a bigeneralized topological space. Then the following hold.

(a) If μ_2 is a strong generalized topology, then $(1,2)^* - \mathfrak{S}(X) \subset (2,1) - \mathfrak{S}(X)$.

(b) If μ_1 is a strong generalized topology, then $(2,1)^* - \mathfrak{S}(X) \subset (1,2) - \mathfrak{S}(X)$.

Proof. (a). Suppose μ_2 is a strong generalized topology and $Q \in (1,2)^* - \mathfrak{S}(X)$. Let $G \in \tilde{\mu}_1$. Then there is a set $P \in \tilde{\sigma}_2$ such that $P \subset G$ and $P \cap Q = \emptyset$. Since $P \in \tilde{\sigma}_2$ we have $i_2(P) \in \tilde{\mu}_2$, by assumption. Take $J = i_2(P)$. Then $J \in \tilde{\mu}_2$ and $J \subset G$. Also, $J \cap Q = \emptyset$.

411

Thus, there is a set $J \in \tilde{\mu}_2$ such that $J \subset G$ and $J \cap Q = \emptyset$. Therefore, $Q \in (2, 1) - \mathfrak{S}(X)$. By Similar arguments, we get the proof for (b).

Moreover, the family $(s, v)^* - \mathfrak{S}(X)$ is need not be closed under finite union where s, v = 1, 2 and $s \neq v$ as shown by Example 34.

Example 34. (a). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}; \mu_1 = \{\emptyset, \{p, q\}, \{q, r\}, \{p, q, r\}\}; \mu_2 = \{\emptyset, \{p\}, \{q\}, \{p, q\}, \{p, s\}, \{q, s\}, \{p, q, s\}\}.$ Then $\sigma_2 = \{\emptyset, \{p\}, \{q\}, \{r\}, \{p, q\}, \{p, r\}, \{q, r\}, \{p, s\}, \{q, s\}, \{p, q, r\}, \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X\}.$ Take $P = \{q, s\}$ and $Q = \{r, s\}$. Then P and Q are $(1, 2)^*$ -strongly nowhere dense sets in X. But $P \cup Q = \{q, r, s\} \notin (1, 2)^* - \mathfrak{S}(X)$.

(b). Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}; \mu_1 = \{\emptyset, \{r\}, \{p, s\}, \{q, s\}, \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X\}; \mu_2 = \{\emptyset, \{q, r\}, \{r, s\}, \{q, r, s\}, \{p, q, s\}, X\}$. Then $\sigma_1 = \{\emptyset, \{r\}, \{p, s\}, \{q, s\}, \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X\}$. Take $K = \{p\}$ and $L = \{q\}$. Then K and L are $(2, 1)^*$ -strongly nowhere dense sets in X. But $K \cup L = \{p, q\} \notin (2, 1)^* - \mathfrak{S}(X)$.

The following Example 35 shows that

a. $P \cup Q \notin (s, v)^* - \mathfrak{S}(X)$ even if $P \in (s, v)^* - \mathfrak{S}(X)$ and $Q \in (v, s)^* - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

b. $P \cup Q \notin (v, s)^* - \mathfrak{S}(X)$ even if $P \in (s, v)^* - \mathfrak{S}(X)$ and $Q \in (v, s)^* - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

Example 35. Consider the bigeneralized topological space (X, μ_1, μ_2) where $X = \{p, q, r, s\}$; $\mu_1 = \{\emptyset, \{p\}, \{r\}, \{p, r\}, \{p, q\}, \{q, r\}, \{p, q, r\}\}$ and $\mu_2 = \{\emptyset, \{p\}, \{p, q\}, \{p, s\}, \{q, s\}, \{p, q, s\}\}$. Then $\sigma_1 = \{\emptyset, \{p\}, \{r\}, \{s\}, \{p, r\}, \{p, q\}, \{p, s\}, \{q, r\}, \{r, s\}, \{p, q, r\}, \{p, q, s\}, \{p, r, s\}, \{q, r, s\}, X\}$ and $\sigma_2 = \{\emptyset, \{p\}, \{r\}, \{p, q\}, \{p, r\}, \{p, s\}, \{q, s\}, \{p, q, r\}, \{p, q, s\}, \{p, r, s\}, X\}$.

Take $P = \{q, s\}$ and $Q = \{q, r\}$. Then $P \in (1, 2)^* - \mathfrak{S}(X)$ and $Q \in (2, 1)^* - \mathfrak{S}(X)$. Here $P \cup Q = \{q, r, s\}$. But $P \cup Q \notin (1, 2)^* - \mathfrak{S}(X)$. Also, $P \cup Q \notin (2, 1)^* - \mathfrak{S}(X)$.

Theorem 36. Let (X, μ_1, μ_2) be a BGTS. If μ_1 and μ_2 are strong generalized topologies, then the followings are true.

(a) $(1,2)^* - \mathfrak{S}(X) \subset (2,1)^* - \mathcal{N}(X).$

(b) $(2,1)^* - \mathfrak{S}(X) \subset (1,2)^* - \mathcal{N}(X).$

Proof. It is enough to prove (a) only. Let $E \in (1,2)^* - \mathfrak{S}(X)$. Suppose $i_{\sigma_1}(c_2(E)) \neq \emptyset$. Then there exist $G \in \tilde{\sigma}_1$ such that $G \subset c_2(E)$. Since $G \in \tilde{\sigma}_1$ we have $i_1(G) \neq \emptyset$, by assumption. Thus, $i_1(G) \in \tilde{\mu}_1$. Since $G \subset c_2(E)$ we have $H \cap E \neq \emptyset$ for every $H \in \tilde{\sigma}_2$ such that $H \subset i_1(G)$ which is a contradiction to hypothesis. For, $H \in \tilde{\sigma}_2$ which implies $H \subset c_2(i_2(H))$. Since μ_2 is a strong generalized topology, $i_2(H) \in \tilde{\mu}_2$. Here $i_2(H) \subset i_1(G) \subset c_2(E)$. This implies $i_2(H) \cap c_2(E) \neq \emptyset$ which implies that $i_2(H) \cap E \neq \emptyset$, by Lemma 2. Thus, $H \cap E \neq \emptyset$. Therefore, $E \in (2, 1)^* - \mathcal{N}(X)$.

Theorem 37. Let (X, μ_1, μ_2) be a BGTS which has the \mathcal{I}_S -property. Then $(s, v)^* - \mathcal{N}(X) \subset (v, s)^* - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

412

REFERENCES

Proof. Assume that, (X, μ_1, μ_2) satisfy the \mathcal{I}_S -property. Let $Q \in (s, v)^* - \mathcal{N}(X)$ where s, v = 1, 2 and $s \neq v$. By hypothesis and Theorem 26, $Q \in (s, v) - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$. Also, $(s, v) - \mathfrak{S}(X) \subset (v, s)^* - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$. Therefore, $Q \in (v, s)^* - \mathfrak{S}(X)$ where s, v = 1, 2 and $s \neq v$.

Theorem 38. Let (X, μ_1, μ_2) be a BGTS. If $\mu_v \subset \mu_s, \mu_v$ is a sGT and $Q \in (s, v)^* - \mathfrak{S}(X)$, then Q is a μ_v -strongly nowhere dense set where s, v = 1, 2 and $s \neq v$.

Proof. Assume that, $\mu_v \subset \mu_s, \mu_v$ is a sGT and $Q \in (s, v)^* - \mathfrak{S}(X)$ where s, v = 1, 2and $s \neq v$. Take s = 1 and v = 2. Then $Q \in (1, 2)^* - \mathfrak{S}(X); \mu_2 \subset \mu_1$ and μ_2 is a sGT. Let $H \in \tilde{\mu}_2$. Then $H \in \tilde{\mu}_1$. By assumption, there is $K \in \tilde{\sigma}_2$ such that $K \subset H$ and $K \cap Q = \emptyset$. Since $K \in \tilde{\sigma}_2$ we have $K \subset c_2(i_2(K))$. This implies $i_2(K) \neq \emptyset$, since μ_2 is a sGT which implies that $i_2(K) \in \tilde{\mu}_2$. Take $B = i_2(K)$. Thus, there is $B \in \tilde{\mu}_2$ such that $B \subset H$ and $B \cap Q = \emptyset$. Hence Q is a μ_2 -strongly nowhere dense set in X.

By similar arguments, we can prove the result for the case s = 2 and v = 1.

Theorem 39. Let (X, μ_1, μ_2) be a BGTS which has the \mathcal{I}_S -property. If μ_v is a sGT and $D \in (s, v)^* - \mathfrak{S}(X)$, then D is a μ_s -strongly nowhere dense set where s, v = 1, 2; $s \neq v$.

Proof. We give the detailed proof only for s = 2 and v = 1. Assume that, the bigeneralized topological space (X, μ_1, μ_2) satisfy the \mathcal{I}_S -property and μ_1 is a strong generalized topology. Let D be $(2, 1)^*$ -strongly nowhere dense set and $G \in \tilde{\mu}_2$. Then there is a set $P \in \tilde{\sigma}_1$ such that $P \subset G$ and $P \cap D = \emptyset$. Since $P \in \tilde{\sigma}_1$ we have $i_{\mu_1}(P) \neq \emptyset$, by our assumption. Take $J = i_{\mu_1}(P)$. Then $J \in \tilde{\mu}_1$. Here $G \in \tilde{\mu}_2, J \in \tilde{\mu}_1$ and $J \cap G \neq \emptyset$. By our assumption, $i_{\mu_2}(J \cap G) \neq \emptyset$. Take $E = i_{\mu_2}(J \cap G)$. Then $E \in \tilde{\mu}_2$. Thus, there exists $E \in \tilde{\mu}_2$ such that $E \subset G$ and $E \cap D = \emptyset$. Hence D is μ_2 -strongly nowhere dense in X.

References

- [1] Santanu Acharjee, Binod Chandra Tripathy, and Kyriakos Papadopoulos. Two forms of pairwise lindelöfness and some results related to hereditary class in a bigeneralized topological space. *New Mathematics and Natural Computation*, 13(02):181–193, 2017.
- [2] Chawalit Boonpok. Weakly open functions on bigeneralized topological spaces. Int. Journal of Math. Analysis, 4(18):891–897, 2010.
- [3] A Csaszar. Extremally disconnected generalized topologies. In Annales Univ. Sci. Budapest, volume 47, pages 151–161, 2004.
- [4] Akos Császár. Generalized open sets. Acta mathematica hungarica, 75, 1997.
- [5] Akos Császár. Generalized open sets in generalized topologies. Acta mathematica hungarica, 106, 2005.
- [6] Erdal Ekici. Generalized hyperconnectedness. Acta Mathematica Hungarica, 133, 2011.

- [7] Ewa Korczak-Kubiak, Anna Loranty, and Ryszard J Pawlak. Baire generalized topological spaces, generalized metric spaces and infinite games. Acta Mathematica Hungarica, 140(3):203–231, 2013.
- [8] Zhaowen Li and Funing Lin. Baireness on generalized topological spaces. Acta Mathematica Hungarica, 139(4), 2013.
- [9] V Renukadevi and S Vadakasi. On lower and upper semi-continuous functions. Acta Mathematica Hungarica, 160(1):1–12, 2020.