EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 2, 2022, 589-601 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Some Properties of Weak Separation Axioms in Coc-Compact Sets

Fuad A. Abushaheen

Basic Science Department, Middle East University, Amman, Jordan

Abstract. In this paper, we introduce some separation axioms in coc-compact set, namely coc- T_0 -space, coc- $T_{\frac{1}{4}}$ - space, coc- $T_{\frac{1}{8}}$ - space, coc- $T_{\frac{1}{8$

2020 Mathematics Subject Classifications: 54B05, 54B10, 54D20.

Key Words and Phrases: $\cos T_i$ - space for $i = 0, \frac{1}{4}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}$, $\cos D_i$ - space, $\cos R_i$ - space for i = 0, 1, weak $\cos D_i$ - space and weak $\cos R_0$ - space

1. Introduction and Preliminaries

In [4], the authors defined a new type of open sets called coc-compact set as a generalizations of open sets. After this paper many papers in this concept were appeared, see [1–3].

Also many authors studied weak separation axioms in different types of open sets, for example [5, 8, 9].

Definition 1. [4] A subset A of a topological space (X, τ) is called co-compact open set (notation: coc-open) if for every $x \in A$, there exists an open set $U \subseteq X$ and a compact subset K of X such that $x \in U - K \subseteq A$. The complement of a coc-open subset is called coc-closed. The family of all coc-open subsets of a topological space X will be denoted by τ^k .

Theorem 1. [4] Let (X, τ) be a topological space. Then

- (i) The collection τ^k forms a topology on X with $\tau \subseteq \tau^k$.
- (ii) The set $\{U K : U \in \tau \text{ and } K \text{ is compact in } X\}$ forms a base for τ^k .

Lemma 1. [4] Let (X, τ) be a topological space and A be a closed subset of X. Then $(\tau \mid_A)^k = \tau^k \mid_A$.

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4298

Email address: fshaheen@meu.edu.jo (F.A. Abushaheen)

Throughout this paper, we use \mathbb{R} , \mathbb{Q} and \mathbb{N} to denote the set of real numbers, rational numbers and natural numbers, respectively. The coc-closure of A and the coc- interior of A will be denoted by \overline{A}^{coc} and $int_{coc}(A)$, respectively.

Terms and notations not explained in this paper are taken from [4, 7].

2. Coc-T-spaces and Coc-D-spaces

Definition 2. A space (X, τ) is called co-compact- T_0 -space (coc- T_0 -space) if for all $x \neq y \in X$, there exists a coc-open set U contains one point but not other.

Definition 3. A subset A of a topological space (X, τ) is called coc-D-set if A = U - V, for some $U, V \in \tau^k$.

Definition 4. A space (X, τ) is called co-compact- D_0 -space (coc- D_0 -space) if for all $x \neq y \in X$, there exists a coc-D-set U contains one point but not other.

Theorem 2. A coc-closed subspace of a coc- D_0 -space (X, τ) is coc- D_0 -space.

Proof. Let A be a coc-closed subset X and let $x \neq y \in A$. So there exists a coc-D-set D = U - V with $U, V \in \tau^k$ such that $x \in D$ and $y \notin D$. Now $x \in D \cap A = (U - V) \cap A = (A \cap U) - (A \cap V)$, so by Lemma 1 we have $A \cap U$ and $A \cap V \in (\tau \mid_A)^k = \tau^k \mid_A$, hence the result.

Theorem 3. A space (X, τ) is coc- T_0 -space if and only if it is coc- D_0 -space.

Proof. (\Rightarrow) It is clear since every proper coc-open subset of X is coc-D-set. (\Leftarrow) Let $x \neq y \in X$, so there exists a coc- D_0 - set U contains x with $U = U_1 - U_2$ where $U_1, U_2 \in \tau^k$ i.e. $x \in U_1$ and $x \notin U_2$. For y, we have the following cases:(1) If $y \notin U_1$, we are done. (2) If $y \in U_1$ and $y \in U_2$, so U_2 contains y but not x.

Theorem 4. A space (X, τ) is coc- T_0 -space if and only if for all $x \neq y \in X$, we have $\overline{\{x\}}^{coc} = \overline{\{y\}}^{coc}$.

Proof. (\Rightarrow) Let $x \neq y \in X$, there exists a coc- open set U contains one point but not other, say $x \in U$ and $y \notin U$. Then X - U is a coc-closed set contains y and $\overline{\{y\}}^{coc} \subseteq X - U$, so $x \notin \overline{\{y\}}^{coc}$, hence $\overline{\{x\}}^{coc} \neq \overline{\{y\}}^{coc}$.

(\Leftarrow) Let $x \neq y \in X$. Then it is clear that $X - \overline{\{y\}}^{coc}$ is coc-open set contains x but not y, hence X is coc- T_0 -space.

Definition 5. A space (X, τ) is called co-compact $-T_1$ -space (coc- T_1 -space) if for all $x \neq y \in X$, there exist coc-open sets U_x, V_y with $\{U_x, V_y\} \cap \tau \neq \phi$ such that $x \in U_x$, $y \in V_y$ and $y \notin U_x$, $x \notin V_y$.

Definition 6. [3] A space (X, τ) is called co-compact T_2 -space (coc- T_2 -space) if for all $x \neq y \in X$, there exist coc-open sets U_x, V_y with $\{U_x, V_y\} \cap \tau \neq \phi$ such that $x \in U_x$, $y \in V_y$ and $U_x \cap V_y = \phi$.

It is clear that if (X, τ) is coc- T_1 -space, then (X, τ^k) is T_1 -space. And every T_1 -space is coc- T_1 -space, but the converse need not be true, consider the following example.

Example 1. Let $X = \mathbb{R}$ and $\tau = \{\phi\} \cup \{U \subseteq \mathbb{R}, 0 \in U\}$.

Proof.

A space (X, τ) is coc- T_1 - space, to prove this let $x \neq y \in X$, so we have the following cases:

- (i) For $x = 0, y \neq 0$, let $U = \{0\}$ and $V = \{y, 0\} \{0\}$, then $U, V \in \tau^k$ and $\{U, V\} \cap \tau = \{V\}$ with $x \notin V$ and $y \notin U$.
- (ii) For $y = 0, x \neq 0$, same as (i).
- (iii) For $x \neq 0, y \neq 0$, let $U = \{x, 0\}, V = \{y, 0\} \{0\}$, then $U, V \in \tau^k$ and $\{U, V\} \cap \tau = \{V\}$, then $x \notin V$ and $y \notin U$.

But (X, τ) is not T_1 - space, for instance take x = 0, y = 1, then there is no open set contains y but not x.

Theorem 5. A space (X, τ) is coc- T_1 -space if and only if every singleton is coc-closed.

Definition 7. A space (X, τ) is called co-compact- D_1 -space (coc- D_1 -space) if for all $x \neq y \in X$, there exist coc-D-sets U_x, V_y such that $x \in U_x$, $y \in V_y$ and $y \notin U_x$, $x \notin V_y$.

Theorem 6. A coc-closed subspace of a coc- D_1 -space (X, τ) is coc- D_1 -space.

Definition 8. A space (X, τ) is called co-compact- D_2 -space (coc- D_2 -space) if for all $x \neq y \in X$, there exist disjoint coc-D-sets U_x, V_y such that $x \in U_x$, $y \in V_y$ and $y \notin U_x$, $x \notin V_y$.

Theorem 7. Let (X,τ) be a topological space. Then:

- (i) If X is coc- T_i -space, then X is coc- T_{i-1} -space for i = 1, 2.
- (ii) If X is coc- T_i -space, then X is coc- D_i -space for i = 1, 2.
- (iii) If X is coc- D_i -space, then X is coc- D_{i-1} -space for i = 1, 2.
- (iv) If X is $coc-D_1$ -space, then X is $coc-T_0$ -space.
- (v) X is $coc-D_1$ -space if and only if X is $coc-D_2$ -space.

Proof. We will prove (v) only.

- (\Leftarrow) Obvious.
- (⇒) For $x \neq y \in X$, there exist coc-*D*-sets U_1, U_2 with $x \in U_1, y \notin U_1$ and $y \in U_2, x \notin U_1$, assume $U_1 = V_1 W_1, U_2 = V_2 W_2$ where $V_1, W_1, V_2, W_2 \in \tau^k$. Then for $x \notin U_2$, we have the following cases:
- (1) $x \notin V_2$ (2) $x \in V_2$ and $x \in W_2$. For (1) If $x \notin V_2$, we have: (i) If $y \notin V_1$, $x \in V_1 W_1$, then $x \in V_1 (V_2 \cup W_1)$ and $y \in V_2 W_2$, so $y \in V_2 (V_1 \cup W_2)$ and

 $(V_1 - (V_2 \cup W_1)) \cap (V_2 - (V_1 \cup W_2)) = \phi$. (ii) If $y \in V_1$ and $y \in W_1$, we have $x \in U_1 - U_2$, $y \in U_2$ and $(U_1 - U_2) \cap U_2 = \phi$.

For (2) If $y \in U_2 = V_2 - W_2$, then $x \in W_2$ and $(V_2 - W_2) \cap W_2 = \phi$. From (1) and (2), X is $\text{coc-}D_2\text{-space}$.

The following theorem gives improvement of Theorem 7(iv).

Theorem 8. A space (X, τ) is coc- D_1 -space if and only if X is coc- T_0 -space and $int_{coc}(A_x) \neq X$ for all $x \in A_x \subseteq X$.

Proof. (\Rightarrow) For $x \in X$, there exists a coc-*D*-set $O_x = U - V$ with $U, V \in \tau^k$ and $x \in O_x$, but $U \neq X$, so $int_{coc}(U) \neq X$, hence the result.

(\Leftarrow) For $x \neq y \in X$, with out loss of generality there exists a coc-open set U contains x but not y and there exists coc-open set V contains y and $int_{coc}(V) \neq X$, hence $y \in V - U$, therefore X is coc- D_1 -space.

3. $\operatorname{Coc-} R_0$ and $\operatorname{Coc-} R_1$ -spaces

Definition 9. A space (X, τ) is called co-compact- R_0 -space (coc- R_0 -space) if every cocopen set contains the coc-closure of its singletons, i.e. for each coc-open set O we have $\overline{\{x\}}^{coc} \subseteq O$ for all $x \in O$.

Definition 10. A space (X, τ) is called co-compact- R_1 -space (coc- R_1 -space) if for $x \neq y \in X$ with $\overline{\{x\}}^{coc} \neq \overline{\{y\}}^{coc}$, then there exist disjoint coc-open sets U, V with $\overline{\{x\}}^{coc} \subseteq U$, $\overline{\{y\}}^{coc} \subseteq V$.

The following theorem is obvious.

Theorem 9. Let (X,τ) be a topological space. Then:

- (i) A coc-closed subspace of a coc- R_0 -space X is coc- R_0 -space.
- (ii) A coc-closed subspace of a coc- R_1 -space X is coc- R_1 -space.

Theorem 10. Every coc- R_1 -space (X, τ) is coc- R_0 -space.

Proof. Let U be a coc-open set in X with $x \in U$. For $y \notin U$, we have $x \notin \overline{\{y\}}^{coc}$, thus $\overline{\{x\}}^{coc} \neq \overline{\{y\}}^{coc}$, but X is $\operatorname{coc-}R_1$ -space, so there exits a coc-open set V_y contains y such that $\overline{\{y\}}^{coc} \subseteq V_y$ and $x \notin V_y$, hence $\overline{\{x\}}^{coc} \subseteq U$, thus X is $\operatorname{coc-}R_0$ -space.

Theorem 11. A space (X, τ) is coc- T_1 -space if and only if it is coc- T_0 -space and coc- R_0 -space.

Proof. (\Rightarrow) Notes that $\{x\}$ is coc-closed subset of X for all $x \in X$. (\Leftarrow) Let $x \neq y \in X$, with out loss of generality there exists a coc-open set O with $x \in O \subseteq X - \{y\}$. Thus $x \notin \overline{\{y\}}^{coc}$, so $y \notin \overline{\{x\}}^{coc}$, hence $X - \overline{\{x\}}^{coc}$ is coc-open set contains y but not x.

Corollary 1. Let (X,τ) be a coc-R₀-space. Then the following are equivalent:

- (i) X is coc- T_2 -space,
- (ii) X is coc- T_1 -space,
- (iii) X is coc- T_0 -space.

Definition 11. Let (X, τ) be a topological space and $A \subseteq X$. Then the coc-Kernal of A define by:

$$coc\text{-}ker(A) = \cap \{U \in \tau^k : A \subseteq U\},\$$

if there no coc-open set contains A, then coc-ker(A) = X.

Lemma 2. If (X, τ) is a topological space and A is a subset of X, then $\operatorname{coc-ker}(A) = \{x \in X : \overline{\{x\}}^{\operatorname{coc}} \cap A \neq \emptyset\}.$

Proof. For $x \notin coc\text{-}ker(A)$, there exists a coc-open set U contains A and $x \notin U$, then $\overline{\{x\}}^{coc} \cap U = \phi$. For $\overline{\{x\}}^{coc} \cap U = \phi$, we have $x \notin X - \overline{\{x\}}^{coc}$, thus $x \notin coc\text{-}ker(A)$.

Lemma 3. Let (X, τ) be a topological space and $x \in X$. Then $y \in coc\text{-ker}(\{x\})$ if and only if $x \in \overline{\{y\}}^{coc}$.

Theorem 12. Let (X,τ) be a topological space and $x \neq y \in X$. Then $coc\text{-ker}(\{x\}) \neq coc\text{-ker}(\{y\})$ if and only if $\overline{\{x\}}^{coc} \neq \overline{\{y\}}^{coc}$.

 $\frac{Proof. \ (\Rightarrow) \ \mathrm{Let} \ w \in coc\text{-}ker(\{x\}) \ \mathrm{and} \ w \notin coc\text{-}ker(\{y\}). \ \mathrm{Then} \ \overline{\{w\}}^{coc} \cap \{x\} \neq \phi \ \mathrm{and} \ \overline{\{w\}}^{coc} \cap \{y\} = \underline{\phi}, \ \mathrm{soc} \ x \in \overline{\{w\}}^{coc}, \ \mathrm{and} \ \mathrm{hence} \ \overline{\{x\}}^{coc} \subseteq \overline{\{w\}}^{coc}, \ \mathrm{therefore} \ \overline{\{w\}}^{coc} \cap \{y\} = \phi \ \mathrm{and} \ \mathrm{hence} \ y \notin \overline{\{x\}}^{coc}.$

(\Leftarrow) Since $coc\text{-}ker(\{x\}) \neq coc\text{-}ker(\{y\})$, there is $z \in \overline{\{x\}}^{coc}$ and $z \notin \overline{\{y\}}^{coc}$, hence there exists a coc-open set U_z with $x \in U_z$ and $y \notin U_z$, so $y \notin coc\text{-}ker(\{x\})$.

Theorem 13. A space (X, τ) is coc- R_0 -space if and only if for $x \neq y \in X$, $\overline{\{x\}}^{coc} \neq \overline{\{y\}}^{coc}$ gives $\overline{\{x\}}^{coc} \cap \overline{\{y\}}^{coc} = \phi$.

 $\frac{\textit{Proof.}\ (\Leftarrow)}{\{x\}} \overset{\text{(\Leftarrow)}}{=} \underbrace{\{y\}}^{coc}, \text{ so } \underbrace{\{x\}}^{coc} \cap \underbrace{\{y\}}^{coc} = \phi, \text{ therefore } y \notin \underbrace{\{x\}}^{coc} \text{ and } \underbrace{\{x\}}^{coc} \subseteq O_x, \text{ so } X \text{ is coc-} R_0\text{-space.}$

coc- R_0 -space. (\Rightarrow) Let $x \neq y \in X$ with $\overline{\{x\}}^{coc} \neq \overline{\{y\}}^{coc}$. So there exists $z \in \overline{\{x\}}^{coc}$ and $z \notin \overline{\{y\}}^{coc}$, then $z \in X - \overline{\{y\}}^{coc}$, so there exists a coc-open set U contains z but not y, but $z \in \overline{\{x\}}^{coc}$, so $x \in U$ and $x \notin \overline{\{y\}}^{coc}$, hence $\overline{\{x\}}^{coc} \subseteq X - \overline{\{y\}}^{coc}$, therefore $\overline{\{x\}}^{coc} \cap \overline{\{y\}}^{coc} = \phi$.

Theorem 14. A space (X, τ) is $coc\text{-}R_0\text{-}space$ if and only if for $x \neq y \in X$, $coc\text{-}ker(\{x\}) \neq coc\text{-}ker(\{y\})$ gives $coc\text{-}ker(\{x\}) \cap coc\text{-}ker(\{y\}) = \phi$.

- *Proof.* (\Rightarrow) Let X be a coc- R_0 -space and for $x \neq y \in X$ with $coc-ker(\{x\}) \neq coc-ker(\{y\})$. Let $w \in coc-ker(\{x\}) \cap coc-ker(\{y\})$. Then $w \in coc-ker(\{x\}) \text{ so } x \in \{w\}^{coc}$, and then by Lemma 3 $\overline{\{x\}}^{coc} = \overline{\{w\}}^{coc}$, in same method we have $\overline{\{y\}}^{coc} = \overline{\{w\}}^{coc}$, and this is a contradiction which completes the proof.
- is a contradiction which completes the proof. (\Leftarrow) Assume $\overline{\{x\}}^{coc} \neq \overline{\{y\}}^{coc}$, then $coc\text{-}ker(\{x\}) \neq coc\text{-}ker(\{y\})$, so $coc\text{-}ker(\{x\}) \cap coc\text{-}ker(\{y\}) = \phi$. If $z \in \overline{\{x\}}^{coc}$, then $x \in coc\text{-}ker(\{z\})$ and $coc\text{-}ker(\{x\}) \cap coc\text{-}ker(\{z\}) = \phi$, so $coc\text{-}ker(\{x\}) = coc\text{-}ker(\{z\})$. Now for $z \in \overline{\{x\}}^{coc} \cap \overline{\{y\}}^{coc}$, we have $coc\text{-}ker(\{x\}) = coc\text{-}ker(\{y\}) = coc\text{-}ker(\{z\})$, and this is a contradiction, hence $\overline{\{x\}}^{coc} \cap \overline{\{y\}}^{coc} = \phi$.

Theorem 15. For a topological space (X, τ) . The following are equivalent:

- (i) X is a coc- R_0 -space,
- (ii) For a subset A of X and G coc-open set of X such that $A \cap G \neq \phi$, there exists a coc-closed subset F of X such that $A \cap F \neq \phi$ and $F \subseteq G$,
- (iii) For any coc-open set G of X, $G = \bigcup \{F : F \text{ is coc-closed subset with } F \subseteq G\},$
- (iv) For any coc-closed subset F of X, F = coc-ker(F),
- (v) For any $x \in X$, $\overline{\{x\}}^{coc} \subseteq coc\text{-}ker(\{x\})$.

Proof. $(iii) \Rightarrow (iv), (v) \Rightarrow (i)$ Obvious.

- $(i) \Rightarrow (ii)$ Let $A \subseteq X$ and G is a coc-open set and let $x \in A \cap G$. Then the needed coc-closed subset F is $\overline{\{x\}}^{coc}$.
- $(ii) \Rightarrow (iii)$ For a coc-open set $G \supseteq \bigcup \{F : F \text{ is a coc-closed with } F \subseteq G\}$, let $x \in G$, then there exists a coc-closed set F such that $x \in F$ and $F \subseteq G$, so $x \in F \subseteq \bigcup \{F : F \text{ is a coc-closed}, F \subseteq G\}$, hence the result.
- $(iv) \Rightarrow (v)$ Let $\underline{x} \in X$ and $y \notin coc\text{-}ker(\{x\})$, there exists a coc-open set U_x contains x with $y \notin U$, so $\overline{\{y\}}^{coc} \cap U = \phi$ and hence $\overline{coc\text{-}ker(\{y\})}^{coc} \cap U = \phi$, therefore there exists a coc-open set O_y such that $x \notin O_y$ and $\overline{\{y\}}^{coc} \subseteq O_y$, so $\overline{\{x\}}^{coc} \cap O_y = \phi$ and $y \notin \overline{\{x\}}^{coc}$, hence the result.

Lemma 4. A topological space (X, τ) is coc-R₀-space if and only if for each $x \neq y \in X$ with $x \in \overline{\{y\}}^{coc}$ gives $y \in \overline{\{x\}}^{coc}$

Proof. (\Rightarrow) Let X be a coc- R_0 -space and $x \in \overline{\{y\}}^{coc}$. If U is any coc-open set with $y \in U$, then $x \in U$ and any coc-open set contains y must contains x, hence $y \in \overline{\{x\}}^{coc}$. (\Leftarrow) Let U be a coc-open set with $x \in U$. For $x \in \overline{\{y\}}^{coc}$, we have $y \in \overline{\{x\}}^{coc}$, therefore $\overline{\{x\}}^{coc} \subseteq U$, hence X is coc- R_0 -space.

Theorem 16. For a topological space (X, τ) . The following are equivalent:

- (i) X is a coc- R_0 -space,
- (ii) If F is a coc-closed subset of X with $x \in F$, then $\operatorname{coc-ker}(\{x\}) \subseteq F$,

(iii) If $x \in X$, then $coc\text{-}ker(\{x\}) \subseteq \overline{\{x\}}^{coc}$.

Proof. $(ii) \Rightarrow (iii)$ Obvious.

- $(i) \Rightarrow (ii)$ Let F be a coc-closed and $x \in F$. So $coc\text{-}ker(\{x\}) \subseteq coc\text{-}ker(F)$, then by Theorem 15 we have $coc\text{-}ker(\{x\}) \subseteq F$.
- $(iii) \Rightarrow (i)$ Let $x \in \overline{\{y\}}^{coc}$. So $y \in coc\text{-}ker(\{x\})$, therefore by (iii) $y \in \overline{\{x\}}^{coc}$, and the result comes from Lemma 4.

Corollary 2. A topological space (X, τ) is coc-R₀-space if and only if coc-ker($\{x\}$) = $\{x\}^{coc}$ for all $x \in X$.

4. Coc- $T_{\frac{1}{2}}$ -space, Coc- $T_{\frac{3}{2}}$ -space and Coc- $T_{\frac{1}{4}}$ -space

In this section we define more weak separation axioms in coc-open set, but before this we need some definitions and lemmas.

Definition 12. Let A be a subset of a topological space (X,τ) . Then A is called coc-g-closed if $\overline{\{A\}}^{coc} \subseteq U$, whenever $A \subseteq U$ and U is coc-open set. A is called coc-g-open if X-A is coc-g-closed.

Clearly, A is a coc-g-closed of (X,τ) if $F\subseteq int_{coc}(A)$, whenever $F\subseteq A$ and F is coc-closed set of X.

Definition 13. Let A be a subset of a topological space (X, τ) . Then $coc A^{\vee} = \bigcup \{F : X - F \in \tau^k : F \subseteq A\}$, if there is no coc-closed set contains in A, then $coc A^{\vee} = \phi$.

Lemma 5. Let A be a subset of a topological space (X, τ) . Then A is coc-g-closed (coc-g-open) if and only if $\overline{\{A\}}^{coc} \subseteq coc\text{-}ker(A)$ (coc- $A^{\vee} \subseteq int_{coc}(A)$).

Definition 14. Let A be a subset of a topological space (X, τ) . Then A is called coc- \wedge -set (coc- \vee -set) if $A = coc-ker(A)(A = coc-A^{\vee})$, or equivalently, A is the intersection of coc-open sets or A = X(A is the union of coc-closed sets or $A = \phi$).

Lemma 6. Let A, B are subsets of a topological space (X, τ) . Then:

- (i) $\operatorname{coc-ker}\{\phi\} = \phi$, $\operatorname{coc-}\phi^{\vee} = \phi$, $\operatorname{coc-ker}\{X\} = X$, $\operatorname{coc-}X^{\vee} = X$.
- (ii) $A \subseteq coc\text{-}ker(A)$, $coc\text{-}A^{\vee} \subseteq A$.
- $(iii) \;\; coc\text{-}ker(coc\text{-}ker(A)) = coc\text{-}ker(A), \;\; coc\text{-}\big(coc\text{-}A^\vee\big)^\vee = coc\text{-}A^\vee.$
- (iv) If $A \subseteq B$, then $coc\text{-}ker(A) \subseteq coc\text{-}ker(B)$.
- (v) If $A \subseteq B$, then $coc A^{\vee} \subseteq coc B^{\vee}$.

Lemma 7. Let (X, τ) be a topological space. Then the following are hold:

(i) If A is coc o -set ($coc o A^{\vee} -set$), then A is coc o g -closed (coc o g -open) if and only if A is coc o closed (coc o pen).

(ii) For $A \subseteq X$, if coc-ker(A) is coc-g-closed set ($coc\text{-}A^{\vee}$ is coc-g-open set), then A is coc-g-closed (coc-g-open).

Proof. (i) Obvious.

(ii) From Lemma 5 and Lemma 6.

The following definition gives a weaker form of $\operatorname{coc-} \land \operatorname{-set}$.

Definition 15. A subset A of a space (X, τ) is called generalized coc-kernal set $(g\text{-}coc-\land set)$ if $coc\text{-}ker(A) \subseteq \overline{\{A\}}^{coc}$, or equivalently $coc\text{-}ker(A) \subseteq F$, whenever $A \subseteq F$ and F is coc-closed. A subset A of a space (X, τ) is called generalized $coc\text{-}\lor\text{-}set$ $(g\text{-}coc\text{-}\lor\text{-}set)$ if X - A is $g\text{-}coc\text{-}\land\text{-}set$, or equivalently $int_{coc}(A) \subseteq coc - A^{\lor}$.

Lemma 8. Let A be subset of a topological space (X, τ) . If A is $coc \land -set$ ($coc - A^{\lor} -set$), then it is $g - coc - \land -set$ ($g - coc \lor -set$).

Theorem 17. Let (X, τ) be a topological space. Then for $x \in X$, $\{x\}$ is either coc-open or g-coc- \vee -set.

Proof. Let $x \in X$ and $\{x\}$ is not coc-open subset of X. Hence $X - \{x\}$ is not coc-closed subset of X and $\overline{\{X - \{x\}\}}^{coc} = X$, so coc-ker $(X - \{x\}) \subseteq \overline{\{X - \{x\}\}}^{coc}$, therefore $X - \{x\}$ is g-coc- \land -set, i.e. $\{x\}$ is g-coc- \lor -set.

Definition 16. A topological space (X, τ) is called $coc T_{\frac{1}{2}}$ -space if every coc-g-closed subset of X is coc-closed.

Lemma 9. Let (X, τ) be a topological space and $A \subseteq X$. Then A is coc-g-closed subset if and only if $\overline{A}^{coc} - A$ contains no coc-closed subset of X.

Proof. (\Leftarrow) Obvious.

 (\Rightarrow) Let A be coc-g-closed and assume there exists a coc-closed subset F with $A \subseteq X - F$. Since A is coc-g-closed set, we have $\overline{A}^{coc} \subseteq X - F$, hence $F \subseteq X - \overline{A}^{coc}$ and this is a contradiction which completes the proof.

Theorem 18. A topological space (X, τ) is coc- $T_{\frac{1}{2}}$ -space if and only if every singleton of X is coc-open or coc-closed.

Proof. (\Rightarrow) Let $x \in X$ and $\{x\}$ is not coc-closed set. Hence $X - \{x\}$ is not coc-open, therefore X is the only coc-open set with $X - \{x\} \subseteq X$, that is mean $X - \{x\}$ is coc-g-closed, so $X - \{x\}$ is coc-closed, i.e. $\{x\}$ is coc-open.

 (\Leftarrow) Let $x \in X$ and A is coc-g-closed subset of X with $x \in \overline{A}^{coc}$. If $\{x\}$ is a coc-open set, then $\{x\} \cap A \neq \phi$ and hence $x \in A$. If $\{x\}$ is a coc-closed, then by Lemma 9, $x \notin \overline{A}^{coc} - A$, hence $x \in A$ and $A = \overline{A}^{coc}$, therefore X is coc- $T_{\frac{1}{2}}$ -space.

Corollary 3. Every coc- T_1 -space is coc- $T_{\frac{1}{2}}$ -space.

Theorem 19. For a topological space (X,τ) . The following are equivalent:

- (i) X is coc- $T_{\frac{1}{2}}$ -space,
- (ii) Every g-coc- \wedge set is coc- \wedge -set,
- (iii) Every g-coc- \vee -set is coc- \vee -set.

Proof.

- $(iii) \Rightarrow (ii)$ Obvious.
- $(ii) \Rightarrow (i)$ Let $x \in X$. If $\{x\}$ is not coc-open, then $X \{x\}$ is not coc-closed, so the only coc-open set contains $X \{x\}$ is X, but $X \{x\}$ is g-coc- \wedge -set, so $X \{x\}$ is coc- \wedge -set, therefore $X \{x\}$ is coc-open, hence $\{x\}$ is coc-closed set, that's complete the proof.
- $(i) \Rightarrow (ii)$ Assume that a subset A of X is g-coc- \wedge -set which is not coc- \wedge -set, then $\operatorname{coc-ker}(A) \not\subseteq A$, so there exists $x \in \operatorname{coc-ker}(A)$ and $x \notin A$, but X is a $\operatorname{coc-}T_{\frac{1}{2}}$ -space, so $\{x\}$ is a coc-open or coc-closed set, we need to discuss the following two cases:
- (1) If $\{x\}$ is a coc-closed, then $X \{x\}$ is a coc-open set contains A, but $x \in coc ker(A)$, so $x \in X \{x\}$ and this is a contradiction. (2) If $\{x\}$ is coc-open set, then $X \{x\}$ is a coc-open set contains A, by assumption coc-ker $(A) \subseteq X \{x\}$, i.e. $x \notin coc-ker(A)$ and this is a contradiction, hence A is coc- \land -set.

Definition 17. A subset A of a topological space (X, τ) is called $coc-\lambda$ -closed if $A = L \cap F$, where L is $coc-\lambda$ -set and F is coc-closed set. A subset A is $coc-\lambda$ -open if X - A is $coc-\lambda$ -closed.

Lemma 10. For a subset A of (X, τ) . The following are equivalent:

- (i) A is $coc-\lambda$ -closed,
- (ii) $A = L \cap \overline{A}^{coc}$, where L is $coc \land -set$.
- (iii) $A = coc ker(A) \cap \overline{A}^{coc}$.

Theorem 20. A topological space (X, τ) is $\operatorname{coc-}T_{\frac{1}{2}}$ -space if and only if every subset of X is $\operatorname{coc-}\lambda$ -closed.

Proof. (\Leftarrow) Let $x \in X$. Assume that $\{x\}$ is not coc-open, then $A = X - \{x\}$ is not coc-closed, but A is coc- λ -closed, so A is coc- \wedge -set, thus A is coc-open set, then A is coc-open, that is $\{x\}$ is coc-closed, which is complete the proof.

 $(\Rightarrow) \text{ Let } A\subseteq X \text{ and } x\in X-A. \text{ Then } \{x\} \text{ is coc-open or coc-closed subset of } X.$ Define $B=\{x\in X-A,\{x\}\in \tau^k\},\ C=\{x\in X-A,X-\{x\}\in \tau^k\}.$ Also define $F=\bigcap_{x\in B}\big(X-\{x\}\big)=X-B,$ and $L=\bigcap_{x\in C}\big(X-\{x\}\big)=X-C,$ then F is coc-closed set and L is coc- \land -set with $L\cap F=A,$ hence A is coc- \land -set.

Definition 18. A topological space (X, τ) is called coc- $T_{\frac{1}{4}}$ -space if every finite subset F of X and every $y \in X - F$, there exists a set A_y with $F \subseteq A_y$ such that $\{y\} \cap A_y = \phi$ and A_y is either coc-open or coc-closed.

Theorem 21. A topological space (X, τ) is $\operatorname{coc-}T_{\frac{1}{4}}$ -space if and only if every finite subset of X is $\operatorname{coc-}\lambda\text{-}closed$.

Proof. (\Rightarrow) Let F be any finite subset of X and $y \in X - F$. So there exist a set A_y such that $A_y \cap \{x\} = \phi$, and A_y is either coc-open or coc-closed. Let C be the intersection of all coc-open sets A_y and let L be the intersection of all coc-closed sets A_y , clearly $F = C \cap L$, C is coc- \wedge -set and L is coc-closed set, hence F is coc- λ -closed set.

(⇐) Let $F = L \cap C$ and $y \in X - F$ where C is coc- \wedge -set and L coc-closed set. If $y \notin C$, we are done. If $y \in C$, then $y \notin L$, so there exists a coc-open set U_y with $y \in U_y$, hence X is coc- $T_{\frac{1}{4}}$ -space.

Definition 19. A topological space (X,τ) is called $coc T_{\frac{3}{8}}$ -space if every countable subset F of X and every $y \in X - F$, there exists a set A_y with $F \subseteq A_y$ such that $\{y\} \cap A_y = \phi$ and A_y is coc-open or coc-closed.

Clearly every $\cot T_{\frac{1}{2}}$ -space is $\cot T_{\frac{3}{2}}$ -space and hence $\cot T_{\frac{1}{4}}$ -space.

Theorem 22. A topological space (X, τ) is $coc T_{\frac{3}{8}}$ -space if and only if every countable subset of X is $coc - \lambda$ -closed.

Proof. Same as Theorem 21.

In the end of this section, we give weak forms of $\cos D_1$ -space and $\cos R_0$ -space.

Definition 20. A topological space (X, τ) is called weak coc- D_1 -space if $\bigcap_{x \in X} \overline{\{x\}}^{coc} = \phi$.

Theorem 23. A coc-closed subspace of weak coc- D_1 -space (X, τ) is weak coc- D_1 -space.

Theorem 24. A topological space (X, τ) is weak coc- D_1 -space if and only if $int_{coc}(A_x) \neq X$ for all $x \in A_x \subseteq X$.

Proof. (\Rightarrow) Assume that there exists $y \in X$ with $int_{coc}(\{A_y\}) = X$, then $y \in \overline{\{x\}}^{coc}$ for each $x \in X$, this is a contradiction, hence the result.

(\Leftarrow) Let $y \in \bigcap_{x \in X} \overline{\{x\}}^{coc}$, then the coc-open set contains y must be X, so $int_{coc}(\{A_y\}) = X$, this is a contradiction, hence the result.

Corollary 4. A topological space (X, τ) is coc- D_1 -space if and only if (X, τ) is coc- T_0 -space and weak coc- D_1 -space.

Theorem 25. A topological space (X, τ) is weak coc- D_1 -space if and only if coc-ker($\{x\}$) \neq X for all $x \in X$.

Proof. (\Rightarrow) Obvious. (\Leftarrow) From Theorem 24.

Definition 21. A topological space (X, τ) is called weak coc- R_0 -space if every coc- λ -closed singleton is a coc- \wedge -set.

Theorem 26. Every coc- R_0 -space (X, τ) is weak coc- R_0 -space.

Proof. Let $x \in X$ with $\{x\}$ is $\operatorname{coc}-\lambda-\operatorname{closed}$. By Lemma 10 $\{x\}=\operatorname{coc-ker}(\{x\})\cap \overline{\{x\}}^{\operatorname{coc}}$. If $\{x\}$ is not coc-ker-set, then there exists $y\in\operatorname{coc}-\ker(\{x\})-\{x\}$ with $y\notin \overline{\{x\}}^{\operatorname{coc}}$, but X is $\operatorname{coc-R_0}$ -space, so $\overline{\{x\}}^{\operatorname{coc}}\cap \overline{\{y\}}^{\operatorname{coc}}=\phi$ and $x\in \overline{\{y\}}^{\operatorname{coc}}$, therefore there exists a cocopen set U_x contains x but not y, thus $y\notin\operatorname{coc}-\ker(\{x\})$, and this is a contradiction which completes the proof.

The following theorems are easily to prove.

Theorem 27. For a topological space (X, τ) . The following are equivalent:

- (i) X is coc- T_1 -space,
- (ii) Every subset of X is $coc \land -set$,
- (iii) Every singleton of X is $coc \land -set$.

Theorem 28. For a topological space (X, τ) . The following are equivalent:

- (i) X is coc- T_1 -space,
- (ii) X is coc- T_0 -space and coc- R_0 -space,
- (iii) X is coc- T_0 -space and weak coc- R_0 -space.

Corollary 5. For a weak coc- R_0 -space (X, τ) . The following are equivalent:

- (i) X is coc- T_0 -space,
- (ii) X is coc- $T_{\frac{1}{4}}$ -space,
- (iii) X is coc- $T_{\frac{3}{8}}$ -space,
- (iv) X is coc- $T_{\frac{1}{2}}$ -space,
- (v) X is coc- T_1 -space.

5. Hereditary Property for Weak Coc-compact Separation Axioms

In this section, we discuss the known problem that appeared by Arenas [6] "If every subspace of a topological space X has a property, then the space X has this property" in weak separation axioms via coc-open sets.

Theorem 29. If every proper subspace of a topological space (X, τ) is $\operatorname{coc-}T_{\frac{1}{2}}$ -space, then X is $\operatorname{coc-}T_{\frac{1}{2}}$ -space with $|X| \geq 4$.

Proof. Let $x \in X$ and let $z_1 \neq z_2 \neq z_3 \in X - \{x\}$ and $Z_i = X - \{z_i\}$ for i = 1, 2, 3. So $\{x\}$ is either coc-open or coc-closed in Z_i , therefore either $\{x\}$ is coc-open in at least two of Z_1, Z_2, Z_3 , and hence $\{x\}$ is coc-open in X, or $\{x\}$ is coc-closed in at least two of Z_1, Z_2, Z_3 , and hence $\{x\}$ is coc-closed in X, hence the result.

Theorem 30. Let (X,τ) be infinite topological space. If every proper subspace of a topological space X is $coc-T_{\frac{1}{4}}$ -space, then X is $coc-T_{\frac{1}{4}}$ -space.

Proof. Let F be a finite set and $y \notin F$ and let $z \in X - (F \cup \{y\})$. So there exists a set A contains F and $y \notin A$ which is either coc-open or coc-closed in $X - \{z\}$, therefore there exists a set B which is either coc-open or coc-closed in X with $A = B \cap (X - \{x\})$, hence X is coc- $T_{\frac{1}{4}}$ -space.

Theorem 31. Let (X,τ) be infinite topological space. If every proper subspace of a topological space X is $coc-T_{\frac{3}{2}}$ -space, then X is $coc-T_{\frac{3}{2}}$ -space.

Proof. Same as Theorem 30.

Theorem 32. If every proper subspace of a topological space (X, τ) is coc- R_0 -space, then X is $coc-R_0$ -space with $|X| \geq 3$.

Proof. Assume that all proper subspaces of X are $\operatorname{coc-}R_0$ -space. Let U be coc-open subset of X. If X = U we are done, so we may assume $X \neq U$. Let $x \notin U$ and $p \in U$ with $y \in X - \{p, x\}$. So we have the following cases :

- (1) If $y \in U$, so $X \{y\}$ is coc- R_0 -space, so by Theorem 15 (iii) there is a coc-closed set G_y in $X \{y\}$ such that $p \in G_y \subseteq U \{y\}$ and also there exists a coc-closed set G in X such that $G_y = G \cap (X \{y\})$, then $p \in G \subseteq G_y \cup \{y\} \subseteq (U \{y\}) \cup \{y\} = U$, hence X is coc- R_0 -space.
- (2) If $y \notin U$, then $X \{x\}$ and $X \{y\}$ are proper subspaces of X, so there exist cocclosed subsets G_x, G_y in $X \{x\}$ and $X \{y\}$, respectively such that $p \in G_x \subseteq U$ and $p \in G_y \subseteq U$, also there exist cocclosed sets G_1, G_2 in X such that $G_x = G_1 \cap (X \{x\})$ and $G_y = G_2 \cap (X \{y\})$. Define $G = G_1 \cap G_2$, so $p \in G \subseteq (G_x \cup \{x\}) \cap (G_y \cup \{y\}) \subseteq U$, hence X is coc- R_0 -space.

Theorem 33. If every proper subspace of a topological space (X, τ) is coc- T_1 -space, then X is $coc-T_1$ -space with $|X| \ge 3$.

Proof. Suppose that X is not a coc- T_1 -space, so there exists $x \in X$ such that $\{x\}$ is not coc-closed in X. Let $z \in X - \{x\}$. Then $X - \{z\}$ is a coc- T_1 -space, so $\{x\}$ is coc-closed is $X - \{z\}$ and $\overline{\{x\}}^{coc} = \{x, z\}$. Now let $y \in X - \{x, z\}$ and $B = X - \{y\}$, then $\overline{\{x\}}^{coc(B)} = \{x, z\}$ that means $\{x\}$ is not coc-closed in B which is a contradiction, hence X is coc- T_1 -space.

The following theorem can be proved as the previous one.

Theorem 34. If every proper subspace of a topological space (X, τ) is coc- T_2 -space, then X is $coc-T_2$ -space with $|X| \ge 3$.

REFERENCES 601

Acknowledgements

The authors are grateful to the Middle East University, Amman, Jordan for the financial support granted to cover the publication fee of this research article.

References

- [1] R Al Abdula and F Al Hussaini. On cocompact open set . J Al-Qadisiyah Comput. Sci. Math, 6(25), 2014.
- [2] F A Abushaheen and F Alrimawi. Weakly Covering Spaces in Coc-open Sets . J European Journal of Pure and Applied Mathematics, 15(1):199-206, 2022.
- [3] S Al Ghour and E Maghrabi. Co-compact separation axoims and slight co-continuity. Symmetry, 12, 2020.
- [4] S Al Ghour and S Samarah. Cocompact open sets and continuity. In Abstarct and Applied Analysis, P548612, 2012.
- [5] T M Al-shami, E. A Abo-Tabl, B A Asaad, and M A Arahet. Limit points and separation axioms with respect to supra semi-open sets. *European Journal of Pure and Applied Mathematics*, 13(3):427–443, 2020.
- [6] F Areuas. Topological properties preserved by proper subspace. Q and A in General Topology, 14:53–57, 1996.
- [7] R Engelking. General Topology. Revised and completed edition. Heldermann Verlag, Berlin, 1989.
- [8] M Sarsak. New Separation Axioms in Generalized Topological Spaces. *Acta Math. Hunger*, 132:244–252, 2011.
- [9] M Sarsak. Weak separation axioms in generalized topological spaces. *Acta Math. Hunger*, 131:110–121, 2011.