EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 2, 2022, 397-402
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Atomic Solution of Poisson Type Equation

Rouba Shatnawi

Abstract

In this paper we find a certain solution of Poisson type fractional differential equation using theory of tensor product of Banach spaces. 2020 Mathematics Subject Classifications: 46M05, 46Bxx, 35J05, 44-XX Key Words and Phrases: Tensor product, Banach spaces, Fractional Poisson equation, Conformable derivative

1. Introduction

In [5], a new definition, which is called conformable fractional derivative was introduced.

For a given a function $f:[0, \infty) \rightarrow R$. The conformable fractional derivative of f of order α for $\alpha \in(0,1]$, is defined by:

$$
D^{\alpha}(f)(t)=\lim _{\varepsilon \rightarrow 0} \frac{f\left(t+\varepsilon t^{1-\alpha}\right)-f(t)}{\varepsilon}
$$

If the conformable fractional derivative of f of order α exists, then we simply say f is α-differentiable.

For $\alpha \in(0,1]$ and for f, g which α-differentiable functions at a point t, the conformable derivative satisfies:

1. $D^{\alpha}(a f+b g)=a D^{\alpha}(f)+b D^{\alpha}(g)$, for all $a, b \in \mathbb{R}$.
2. $D^{\alpha}(\lambda)=0$, for all constant functions $f(t)=\lambda$.
3. $D^{\alpha}(f g)=f D^{\alpha}(g)+g D^{\alpha}(f)$.
4. $D^{\alpha}\left(\frac{f}{g}\right)=\frac{g D^{\alpha}(f)-f D^{\alpha}(g)}{g^{2}}$.

We list here the fractional derivatives of certain functions:

1. $D^{\alpha}(c)=0$, where c is constant.
2. $D^{\alpha}\left(e^{c t}\right)=c t^{1-\alpha} e^{c t}, c \in \mathbb{R}$
3. $D^{\alpha}(\cos b t)=-b t^{1-\alpha} \sin b t, b \in \mathbb{R}$.
4. $D^{\alpha}(\sin b t)=b t^{1-\alpha} \cos b t, b \in \mathbb{R}$.

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4318
Email address: roubak35@gmail.com (R. Shatnawi)
5. $D^{\alpha}\left(\frac{1}{\alpha} t^{\alpha}\right)=\alpha\left(\frac{1}{\alpha} t^{\alpha-\alpha}\right)=1$.
6. $D^{\alpha}\left(\sin \frac{1}{\alpha} t^{\alpha}\right)=\cos \frac{1}{\alpha} t^{\alpha}$.
7. $D^{\alpha}\left(\cos \frac{1}{\alpha} t^{\alpha}\right)=-\sin \frac{1}{\alpha} t^{\alpha}$.
8. $D^{\alpha}\left(e^{\frac{1}{\alpha} t^{\alpha}}\right)=e^{\frac{1}{\alpha} t^{\alpha}}$.

2. Atomic solution

Let X and Y be Banach spaces and X^{*} denotes the dual of X. For $x \in X$ and $y \in Y$ define
$T_{(x, y)}: X^{*} \rightarrow Y$ as:
$T_{(x, y)}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle y$.
We denote $T_{(x, y)}$ by $x \otimes y$ and we call $x \otimes y$ an atom [6].
Atoms are used in theory of best approximation in Banach spaces, see [3].
One of the known results, see [4], that we need in our paper is that: If the sum of two atoms is an atom, then either
the first components are dependent or the second ones are dependent.
Let us write $D^{2 \alpha} f$ to mean $D^{\alpha} D^{\alpha} f$. Further we write $f^{(\alpha)}, f^{(2 \alpha)}$ to denote $D^{\alpha} f$, $D^{2 \alpha} f$ respectively.

If u is a function of two variables, say x, y, we write $D_{x}^{\alpha} u$ for the partial α-derivative of u with respect to x, and by $D_{x}^{2 \alpha} u$ we mean $D_{x}^{\alpha} D_{x}^{\alpha} u$. Similarly for derivatives with respect to y.

Our main object in this paper is to find an atomic solution of the Poisson type fractional differential equation:

$$
\begin{equation*}
D_{x}^{2 \alpha} u(x, y)+D_{x}^{\alpha} D_{y}^{\beta} u(x, y)=f(x, y), 0<\alpha, \beta<1 \tag{1}
\end{equation*}
$$

where $f(x, y)$ is a given function.

3. Procedure

In order to find a certain atomic solution, assume $f(x, y)=A(x) B(y)$, is given.
Now, put

$$
\begin{equation*}
u(x, y)=P(x) Q(y) \tag{2}
\end{equation*}
$$

and assume that

$$
P(0)=1, P^{(\alpha)}(0)=1, \text { and } Q(0)=1
$$

Substitute $u(x, y)=P(x) Q(y)$ in (1) to get:

$$
\begin{equation*}
P^{(2 \alpha)}(x) Q(y)+P^{(\alpha)}(x) Q^{(\beta)}(y)=A(x) B(y) \tag{3}
\end{equation*}
$$

This can be written in tensor product form as:

$$
\begin{equation*}
P^{(2 \alpha)}(x) \otimes Q(y)+P^{(\alpha)}(x) \otimes Q^{(\beta)}(y)=A(x) \otimes B(y) \tag{4}
\end{equation*}
$$

Now, we have a situation where the sum of two atoms is an atom. Hence, we have two cases:

Case $(i) P^{(2 \alpha)}(x)=P^{(\alpha)}(x)=A(x)$.
Consider $\quad P^{(2 \alpha)}(x)=P^{(\alpha)}(x)$
this is a 2α - order linear differential equation [7], so the corresponding auxiliary equation is

$$
r^{2}-r=0
$$

Hence $r=0,1$,and

$$
P(x)=c_{1}+c_{2} e^{x^{\alpha} / \alpha}
$$

Since $P^{(\alpha)}(0)=1$, we have $c_{2}=1$
and since $P(0)=1$, then $c_{1}=0$
So

$$
P^{(\alpha)}(x)=c_{2} e^{x^{\alpha} / \alpha}
$$

Hence

$$
\begin{equation*}
P(x)=e^{x^{\alpha} / \alpha} . \tag{5}
\end{equation*}
$$

Thus $A(x)$ must equal to $e^{x^{\alpha} / \alpha}$ in order to an atomic solution to be exist.
Substitute in (3) to get

$$
e^{x^{\alpha} / \alpha} Q(y)+e^{x^{\alpha} / \alpha}(x) Q^{(\beta)}(y)=e^{x^{\alpha} / \alpha} B(y) .
$$

Hence

$$
\begin{equation*}
Q(y)+Q^{(\beta)}(y)=B(y) . \tag{6}
\end{equation*}
$$

This is a linear fractional differential equation of order β. Hence, using result in [1], we multiply equation (6) by the integrating factor

$$
\mu(y)=e^{I_{\beta}(1)}=e^{\int^{y} \frac{1}{t^{1-\beta}} d t}=e^{y^{\beta} / \beta}
$$

to get

$$
\begin{gathered}
e^{y^{\beta} / \beta} Q(y)+e^{y^{\beta} / \beta} Q^{(\beta)}(y)=e^{y^{\beta} / \beta} B(y), \\
D^{\beta}\left[e^{y^{\beta} / \beta} Q(y)\right]=e^{y^{\beta} / \beta} B(y) .
\end{gathered}
$$

Hence

$$
Q(y)=e^{-y^{\beta} / \beta} I_{\beta}\left[e^{y^{\beta} / \beta} B(y)\right] .
$$

So

$$
\begin{equation*}
Q(y)=e^{-y^{\beta} / \beta} \int \frac{e^{t^{\beta} / \beta} B(t)}{t^{1-\beta}} d t \tag{7}
\end{equation*}
$$

Equations (5) and (7) give that:

$$
\begin{equation*}
u(x, y)=e^{x^{\alpha} / \alpha-y^{\beta} / \beta} \int_{0}^{y} \frac{e^{y^{\beta} / \beta} B(y)}{t^{1-\beta}} d t \tag{8}
\end{equation*}
$$

This is the atomic solution for case (i).
Case $(i i): Q^{(\beta)}(y)=Q(y)=B(y)$.
Consider

$$
Q^{(\beta)}(y)=Q(y)
$$

Using conformable derivative properties, we get

$$
Q(y)=a e^{y^{\beta} / \beta}
$$

Apply $Q(0)=1$ to get

$$
\begin{equation*}
Q(y)=e^{y^{\beta} / \beta} \tag{9}
\end{equation*}
$$

Consequently, if we want to get an atomic solution, $B(y)$ must equal to $e^{y^{\beta} / \beta}$. Substitute in (3) to get

$$
e^{y^{\beta} / \beta} P^{(2 \alpha)}(x)+e^{y^{\beta} / \beta} P^{(\alpha)}(x)=e^{y^{\beta} / \beta} A(x)
$$

Hence

$$
\begin{equation*}
P^{(2 \alpha)}(x)+P^{(\alpha)}(x)=A(x) \tag{10}
\end{equation*}
$$

The homogeneous equation $P^{(2 \alpha)}(x)+P^{(\alpha)}(x)=0$ is solved to give

$$
P_{h}(x)=b_{1} e^{-x^{\alpha} / \alpha}+b_{2}
$$

According to [2], the particular solution of (10) is:

$$
P_{p}(x)=-P_{1}(x) \int \frac{A(x) P_{2}(x)}{W\left[P_{1}, P_{2}\right](x) x^{2-2 \alpha}} d x+P_{2}(x) \int \frac{A(x) P_{1}(x)}{W\left[P_{1}, P_{2}\right](x) x^{2-2 \alpha}} d x
$$

where $P_{1}(x)=e^{-x^{\alpha} / \alpha}, P_{2}(x)=1, W\left[P_{1}, P_{2}\right]=-\frac{x^{\alpha-1}}{\alpha} e^{-x^{\alpha} / \alpha}$.
Simplifying to get

$$
\begin{gathered}
P_{p}(x)=e^{-x^{\alpha} / \alpha} \int \frac{A(x)}{\left(\frac{x^{\alpha-1}}{\alpha} e^{-x^{\alpha} / \alpha}\right) x^{2-2 \alpha}} d x-\int \frac{A(x) e^{-x^{\alpha} / \alpha}}{\left(\frac{x^{\alpha-1}}{\alpha} e^{-x^{\alpha} / \alpha}\right) x^{2-2 \alpha}} d x \\
P_{p}(x)=\alpha e^{-x^{\alpha} / \alpha} \int \frac{A(x)}{x^{1-\alpha} e^{-x^{\alpha} / \alpha}} d x-\alpha \int \frac{A(x)}{x^{1-\alpha}} d x
\end{gathered}
$$

So

$$
\begin{equation*}
P(x)=\alpha e^{-x^{\alpha} / \alpha} \int \frac{A(x)}{x^{1-\alpha} e^{-x^{\alpha} / \alpha}} d x-\alpha \int \frac{A(x)}{x^{1-\alpha}} d x+b_{1} e^{-x^{\alpha} / \alpha}+b_{2} \tag{11}
\end{equation*}
$$

Hence, by (9) and (11)

$$
\begin{equation*}
u(x, y)=\alpha e^{y^{\beta} / \beta-x^{\alpha} / \alpha} \int \frac{A(x)}{x^{1-\alpha} e^{-x^{\alpha} / \alpha}} d x-\alpha e^{y^{\beta} / \beta} \int \frac{A(x)}{x^{1-\alpha}} d x+b_{1} e^{y^{\beta} / \beta-x^{\alpha} / \alpha}+e^{y^{\beta} / \beta} b_{2} \tag{12}
\end{equation*}
$$

This is the atomic solution for case (ii).

References

[1] M Al-Horani, R Khalil, and I Aldarawi. Fractional cauchy euler dið erential equation. Journal of Computational Analysis \& Applications, 28(2), 2020.
[2] Mohammed Al Horani, M Abu Hammad, and Roshdi Khalil. Variation of parameters for local fractional nonhomogenous linear differential equations. J. Math. Computer Sci, 16:147-153, 2016.
[3] W Deeb and R Khalil. Best approximation in 1 (x, y). In Mathematical Proceedings of the Cambridge Philosophical Society, volume 104, pages 527-531. Cambridge University Press, 1988.
[4] Roshdi Khalil. Isometries of lp* lp. Tam. J. Math., 16:77-85, 1985.
[5] Roshdi Khalil, Mohammed Al Horani, Abdelrahman Yousef, and Mohammad Sababheh. A new definition of fractional derivative. Journal of computational and applied mathematics, 264:65-70, 2014.
[6] W. A. Light and Elliott Ward Cheney. Approximation theory in tensor product spaces. 1985.

