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Derivations in differentially δ-prime rings
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Abstract. Let R be an associative ring with identity. In this paper we extend the J.H. Maynes
results, which he treatised in [27]. In particular, we prove that if R is a δ-prime ring with charR 6= 2
and I is a nonzero δ-ideal of R, where 0 6= δ ∈ D, c ∈ R and [c, δ(c)] in the center of R, then R is
commutative.
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1. Introduction

It shall be assumed throughout here, that R is an associative ring with respect to the
addition (+) and the multiplication (·) with an identity, D is the set of all derivations in
R. Consider Lie multiplication “[−,−]” on R, which is defined by [c, d] = cd − dc, where
[c, d] is called a Lie commutator of elements c, d of R. The set [C,D] of the additive group
R+ of a ring R is the Lie commutator subgroup generated by all [c, d] such that c ∈ C and
d ∈ D. Obsreve that Z(R) is the center of R, C(R) is the commutator ideal generated by
the set {[c, d] : c, d ∈ R}, annT = {r ∈ R : rT = 0 = Tr} the annihilator of T ⊆ R.

An additive subgroup T of R is called a Lie ideal of R if [c, d] ∈ T, for all c ∈ T and
d ∈ R. An aditive map δ : R → R is called a derivation on R if

δ(cd) = δ(c)d+ cδ(d)

for all c, d ∈ R.
Furthermore, the map ∂a : R → R defined by, ∂a(c) = ac− ca, where c ∈ R is a partial

derivation generated by a ∈ R i.e.,

∂a(I) = [a, I] = {[a, i] : i ∈ I}.
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In addition, the map δ is called centralizing on a subset I of R if

[c, δ(c)] = cδ(c)− δ(c)c ∈ Z(R) ∀c ∈ I

.
Assume that ∆ is a non-empty subset of D. An ideal I of R, where δ(I) ⊆ I for

δ ∈ ∆ is called a δ-ideal. A ring R is called δ-prime if, for any two δ-ideals I, J of R, the
condition IJ = 0 implies that I = 0 or J = 0.

The special case where a centralizing automorphism is a commuting automorphism is
defined by cd(c) = d(c)c, c ∈ R. Likewise, d is called a semi commuting automorphism if
cd(c) = d(c)c or cd(c) = −d(c)c holds for any c ∈ R. All other definitions and facts are
standard and they can be found in [17], [18], [19] and [23].

Recall that, the first theorem of Posner informs us that if R is a prime ring with
charR 6= 2, then a composition of two nonzero derivations is not a derivation.

Many authors generalized Posner’s theorem in various ways as Bergen [6], Chebotar
[11], Chuang [12] , [13], Hirano [21], Lanski [24] and Martindale [25]. Furthermore, Cree-
don[15] generalized Posner’s first theorem to semiprime algebras, i.e. he showed that the
composition of two nonzero derivations in any algebra S is a derivation. On the other
hand, from the second Posner theorem which states: if R is a prime ring with centralizing
derivation d 6= 0 on R, then R is commutative.

In fact, this theorem extremely helped some researches to study the commuting deriva-
tions, because every centralizing derivation is a commuting derivation. Recall that, the
assumption of primeness in the second Posner theorem is necessarily, since if we take
for example the ring R = S × T such that S is a commutative ring with derivation d1
and T is a non-commutative ring, then we can prove that the derivation on R given by
d(s, t) = (d1(s), 0) is a non zero commuting derivation, but R is not a commutative ring.

In the last fifty years, a lot of results have been obtained about commuting and cen-
tralizing derivations d (d satisfies the condition [d(c), c] ∈ Z(R) for all c ∈ R). However,
many authors extended it by taking a centralizing map on a ring only. In 1973, Awtar
[4] studied the centralizing derivation on Lie ideals and Jordan ideals. In particular, he
proved that if R is a prime ring of charR 6= 2 and T 6= {0} is a Lie ideal or Jordan ideal
and subring in R, with d 6= 0 being a derivation on R, if [c, d(c)] ∈ Z(R), for all c ∈ T
then R is commutative.

In addition, if we assume that either T is a Lie (Jordan) ideal or a subring , then R is
not necessarily commutative. That can be shown as follows: let R be a prime ring with
charR 6= 2 and d 6= 0 is a derivation of R. If T is a Lie or Jordan ideal and a subring of
R and if [c, d(c)] ∈ Z(R), for all c ∈ T , then the ring R is commutative.

Mayne [26] got the same result, i.e. if R is a prime ring and d 6= 0 is a centralizing
automorphism, then R is an integral domain. Furthermore, Mayne [27] generalized the
previous results for a derivation d or an automorphism,

Moreover, Mayne [28] showed that if there exists a centralizing derivation d 6= {0} or
a centralizing automorphis on an ideal T 6= 0 of a prime ring R, then R is commutative.
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Also, Awtar [4] extended the derivation case on a prime ring with any characteristic.
Whereas, McCrimmon [29] proved that the automorphism in Mayne’s theorem did not
generalize for a semiprime ring.

Likewise, Vukman [32] has extended Posner’s second theorem by proving that if d 6= 0
is a derivation on prime ring with charR 6= 2 and [[d(c), c], c] = 0, for all c ∈ R, then either
d = 0 or R is commutative. In fact, this theorem has merely showed that d is commuting.
In addition, in 1992, Vukman extended the second Posner’s result for an automorphism or
a centralizing derivation on a Lie ideal T 6= {0}. Whereas, in 1993 Bresar [8] showed that
an additive map is not centralizing on determined subsets of prime and non-commutative
ring.

Futhermore, Some generalizations of these results for a prime ring are contained in
[20–22]. As for a semiprime ring we refer the reader to [10], [7], [9], [32] and [33].

In our current research we shall generalize the theorem of Mayne [27] and theorem of
Hirano and Tominaga [21], so this generalization of the two theorems give us a new wider
class of δ-prime rings and we prove the following

Theorem 1. Let R be a δ-prime ring of charastristic 6= 2 and I be a nonzero δ-ideal of
R, where 0 6= δ ∈ D. If

[c, δ(c)] ∈ Z(R) ∀c ∈ I.

Then R is commutative.

2. Preliminaries

Many authors have been studying the centralizing automorphisms and derivation on
ring R.

C. R. Miers [30] has considered the map defined on C∗ Algebra.
Moreover, in [4] R.A. Awtar showed if existence a nonzero centerlizing derivation on a

prime ring, then R is commutative, so he gives a shorter proof of Posner’s theorem [31].
Awtar in [4] proved that if R is a prime ring with charR 6= 2 havig a derivation d on

a Jordan ideal J 6= {0}, where the derivation is centralizing on J , implies J ⊆ Z(R).
In [14] L.O. Chung and J.Luh showed the equivalence between semi-commuting au-

tomorphism and commuting automorphism on a prime ring. If the prime ring R has a
nontrivial semicommuting automorphism and R with charR 6= 2 or Z(R) 6= {0}, this
implies the commutativity of the ring R.

In [16] N. Divinsky proved that if the simple Artinian ring has a nontrivial centralizing
automorphism, then R is a field.

On the other hand in [21] it has been proved that if R has a nontrivial automorphism,
then R is a field.

In [1, 2] it has been proved the commutativity of a prime and semiprime rings.
Now willing to prove our theorem, we will need to state some lemmas:

Lemma 1. Let I 6= {0} be δ-ideal of a δ-prime ring R. If δ(I) = 0, then δ(R) = 0.
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Proof. Since RI ⊆ I and IR ⊆ I. Then

δ(RI) = δ(R)I = 0 = δ(IR) = Iδ(R).

Thus we deduce that δ(R) ⊆ annI, but I is a δ-ideal and so

δ(R) = 0.

Lemma 2. Let δ 6= 0 be a derivation on a ring R and I 6= {0} be δ-ideal of R. If R is
δ-prime such that

[δ(a), a] = 0 ∀a ∈ I. (2− 1)

then R is commutative.
Proof. Linearizing the equation (2-1) on I, then we have for all a, b, c ∈ I

0 = [δ(a+ b), a+ b] = [δ(a), a] + [δ(a), b]+

[δ(b), a] + [δ(b), b] = [δ(a), b] + [δ(b), a].

Thus we conclude that

[δ(a), b] = [a, δ(b)]. (2− 2)

Now replacing the right side in (2-2) δ(b) by aδ(b) we have

[a, aδ(b)] = a[a, δ(b)] = a[δ(a), b] =

aδ(a)b− abδ(a) = δ(a)ab− abδ(a) =

[δ(a), ab] = [a, δ(ab)] = [a, δ(a)b] + [a, aδ(b)].

Hence

δ(a)[a, b] = [a, δ(a)b] = 0. (2− 3)

Now replacing b by cb in (2-3) we obtain that

0 = δ(a)[a, cb] = δ(a)[a, c]b+ δ(a)c[a, b] = δ(a)c[a, b].

Consequently,

δ(a)I[a, b] = 0.

Thus by using the δ-primenes we get either a = 0 or [a, b] = 0. Since I 6= {0}, then we
deduce that [a, b] = 0 and therefore, I is commutative. Then we have

I2C(R) = 0,

and so C(R) = 0. Hence R is commutative.
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3. δ-derivation on δ-ideal

First of all in the next lemma we give a generalization of Lemma 1 from [31]

Lemma 3. Let δ 6= 0 be a derivation of a ring R . If R is δ-prime ring such that

a[δn(a), R] = 0,

(respectively [δn(b), R]a = 0) ∀a, b ∈ R,

and for all integers n ≥ 0, then either a = 0 or b ∈ Z(R).

Proof. Suppose that x, y ∈ R and n, k are a nonnegative integers. From [31] we have

a∂δn(b)(R) = 0,

then

0 = a∂δn(b)(xy) = a∂δn(b)(x)y + ax∂δn(b)(y) =

ax∂δn(b)(y).

This means that
aR[δn(b), y] = 0.

Consequently,

aRδk([δn(b), y]) = 0,

what forces that a = 0 or [δn(b), y] = 0 (and then b ∈ Z(R)).

Lemma 4. Let I 6= {0} be a right δ-ideal of a δ-prime ring R. If I is commutative, then
R is commutative.

Proof. Suppose that a ∈ I. Then ∂a(I) = 0 and so ∂a(R) ⊆ annI.
Since annI is a δ-ideal, then we see that

annI = 0,

and so a ∈ Z(R). Hence I ⊆ Z(R). Then IC(R) = 0 and hence

C(R) = 0.
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Lemma 5. Let δ 6= 0 be a nonzero derivation of a δ-prime ring R. If

[b, δn(a)b] ∈ Z(R),

and 0 6= b ∈ R for all integers n ≥ 0, then a ∈ Z(R).

Proof. Since for all x ∈ R we have

0 = [δn(a)b, x] = δn(a)[b, x] + [δn(a), x]b = [δn(a), x]b.

Then by Lemma 3 we see that a ∈ Z(R).

Lemma 6. Let R be a δ−prime ring of characterstic 6= 2 and I be a δ−ideal of R. If

[x, δ(x)] ∈ Z(R) ∀x ∈ I, (3− 1)

then [x, δ(x)] = 0.

Proof. Suppose that x, y ∈ I. Now replace x by x+ y in (3-1) we get

[x+ y, δ(x+ y)] = [x, δ(x)] + [x, δ(y)] + [y, δ(x)] + [y, δ(y)],

and so

[x, δ(y)] + [y, δ(x)] ∈ Z(R). (3− 2).

Now substituting y by x2 in (3-2), we obtain

4x[x, δ(x)] = [x, δ(x2)] + [x2, δ(x)] ∈ Z(R).

Consequently,

x[x, δ(x)] ∈ Z(R) (3− 3).

Then

0 = [x[x, δ(x)], δ(x)] = [x, δ(x)]2.

Obviously that

δ([x, δ(x)]) ∈ Z(R).

and

δ([x, δ(x)]) = [δ(x), δ(x)] + [x, δ2(x)] =
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[x, δ2(x)]

and

δ([x, δ2(x)]) ∈ Z(R).

δ([x, δ2(x)]) = [δ(x), δ2(x)] + [x, δ3(x)].

Hence [δ(x), δ2(x)] ∈ Z(G) we have

[x, δ3(x)] ∈ Z(R).

In addition, by induction on n we obtain that

[x, δn(x)] ∈ Z(R), (3− 4).

Now substituting y by xδn(x) in (3-2) we get (since [x, δ(xδn(x)] + [xδn(x), δ(x)] ∈
Z(G))

[x, δ(xδn(x)] + [xδn(x), δ(x)] =

[x, δ(x)δn(x)] + [x, xδn+1(x)]− [δ(x), xδn(x)] =

[x, δ(x)]δn(x) + δ(x)[x, xδn(x)]+

+x[x, xδn+1(x)]− [δ(x), x]δn(x)−

−x[δ(x), δn(x)] =: T.

Then,

0 = [T, δn(x)] = [δ(x), δn(x)].[x, δn(x)]+

[x, δn(x)].[x, δn+1(x)]− [x, δn(x)].[δ(x), δn(x)] =

[x, δn(x)][x, δn+1(x)]. (3− 5)

Substituting y by x2δn(x) in (3-2), we will obtain

[x, δ(x2δn(x))] + [x2δn(x), δ(x)] ∈ Z(R))

[x, δ(x2δn(x))] + [x2δn(x), δ(x)] =
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[x, δ(x)xδn(x)] + [x, xδ(x)δn(x)]+

+[x, x2δn+1(x)]− [δ(x), x2δn(x)] =

[x, δ(x)x]δn(x) + [x, δn(x)]δ(x)x+

[x, xδ(x)]δn(x) + [x, δn(x)]xδ(x)+

[x, x2]δn+1(x) + [x, δn+1(x)]x2−

−[δ(x), x2]δn(x)− [δ(x), δn(x)]x2 =

[x, δ(x)]xδn(x) + [x, x]δ(x)δn(x)+

[x, δn(x)]δ(x)x+ [x, x]δ(x)δn(x)+

[x, δ(x)]xδn(x) + [x, δn(x)]xδ(x)+

[x, δn+1(x)]x2 − 2[δ(x), x]xδn(x)−

−[δ(x), δn(x)]x2 =

4[x, δ(x)]xδn(x) + [x, δn(x)]xδ(x)+

+[x, δn(x)]xδ(x)x+ [x, δn+1(x)]x2−

+[δ(x), δn(x)]x2 =: Q. (3− 6)

multiplying Q by [x, δn(x)] in (3-6)
A in view of (3-2) we obtain

[x, δn(x)]2xδ(x) + [x, δn(x)]2δ(x)x−

−[δ(x), δn(x)][x, δn(x)]x2 ∈ Z(R).

Then,



I. Taha et al. / Eur. J. Pure Appl. Math, 15 (2) (2022), 454-466 462

0 = [δn(x), F ] = [δn(x), xδ(x)][x, δn(x)]2+

+[δn(x), δ(x)x][xδn(x)]2−

−[δ(x), δn(x)][x, δn(x)][δn(x), x2] =

= [δn(x), x][x, δn(x)]2δ(x)+

= [δn(x), δ(x)][x, δn(x)]2δ(x)+

+[δn(x), δ(x)][x, δn(x)]2x+

+[δn(x), δ(x)][x, δn(x)]2x+

+[δn(x), x][x, δn(x)]2δ(x)−

−2[δ(x), δn(x)][x, δn(x)][δn(x), x]x =

2[δn(x), δ(x)][x, δn(x)]2−

−2[x, δn(x)]3δ(x) + 2[δ(x), δn(x)][x, δn(x)]2x =

= 2[x, δn(x)]3δ(x)] =: X

Then

[x, δn(x)]3δ(x)] = 0

Thus

[x, δn+1(x)]3δ(x)] = 0

Hence

[x, δn+1(x)]3[δ(x), δn(x)] =

[x, δn+1(x)]3δ(x)δn(x)−



I. Taha et al. / Eur. J. Pure Appl. Math, 15 (2) (2022), 454-466 463

−δn(x)[x, δn+1(x)]3δ(x) = 0. (3− 7)

Multiplying (3-7) by [x, δn+1(x)]2 we obtain

[x, δn+1(x)]4 = 0.

Thus
([x, δn+1(x)]R4 = 0.

this means that

A =

∞∑
n=1

∑
x∈I

[x, δn(x)]R.

(δ([x, δn+1(x)]R) = [δ(x), δn+1(x)]R+

[x, δn+2(x)]R+ [x, δn(x)]δ(R) ⊆ A)

is a sum of nilpotent ideals and I is a nil ideal, since A is δ-ideal, we deduce that

A = 0.

This gives that

[x, δ(x)] = 0.

Lemma 7. Let R be δ-prime ring of charR 6= 2 and

[δ(x), x] ∈ Z(R) ∀x ∈ R.

Then R is commutative.

Proof. It is well known that [R,R] is a Lie ideal of R. Moreover,

δ([R,R]) ⊆ [R,R].

Now on the one hand if [R,R] is commutative, then by Lemma (1-7) in [5] C(R) is a
nil ideal, Thus

C(R) = 0,

and R is commutative.

On the other hand by Lemma 13 [3] [R,R] contains a nonzro δ-ideal I of R. Thus
by(3-2) we have

[δ(x), y] ∈ Z(R) ∀x, y ∈ R.
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This means that δ(I) ⊆ Z(R).Then for all a ∈ I

[δ(a), a] = 0,

and by Lemma 2 R is commutative.

proof of Theorem (1)

Since [x, δ(x)] ∈ Z(R) for all x ∈ I, then by Lemma 7 we get

[x, δ(x)] = 0.

Now using Lemma 2 and since R is A δ-prime ring and [x, δ(x)] = 0, then R is
commutative.
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