EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 15, No. 2, 2022, 454-466 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Derivations in differentially δ -prime rings

Iman Taha^{1,*}, Rohaidah Masri¹, Ahmad Al khalaf², Rawdah Tarmizi¹

¹ Department of Mathematics, Faculty of Sciences and Mathematics, Sultan Idris Education University, Tanjong Malim, Perak, Malaysia ² Department of Mathematics and statistic, Faculty of Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia

Abstract. Let R be an associative ring with identity. In this paper we extend the J.H. Maynes results, which he treatised in [27]. In particular, we prove that if R is a δ -prime ring with $charR \neq 2$ and I is a nonzero δ -ideal of R, where $0 \neq \delta \in \mathfrak{D}$, $c \in R$ and $[c, \delta(c)]$ in the center of R, then R is commutative.

2020 Mathematics Subject Classifications: 16N60, 16W25

Key Words and Phrases: Derivation, prime ring, δ -prime ring, δ -ideal.

1. Introduction

It shall be assumed throughout here, that R is an associative ring with respect to the addition (+) and the multiplication (\cdot) with an identity, \mathfrak{D} is the set of all derivations in R. Consider Lie multiplication "[-,-]" on R, which is defined by [c,d]=cd-dc, where [c,d] is called a Lie commutator of elements c,d of R. The set [C,D] of the additive group R^+ of a ring R is the Lie commutator subgroup generated by all [c,d] such that $c \in C$ and $d \in D$. Observe that Z(R) is the center of R, C(R) is the commutator ideal generated by the set $\{[c,d]:c,d\in R\}$, $annT=\{r\in R:rT=0=Tr\}$ the annihilator of $T\subseteq R$.

An additive subgroup T of R is called a Lie ideal of R if $[c,d] \in T$, for all $c \in T$ and $d \in R$. An additive map $\delta : R \to R$ is called a *derivation* on R if

$$\delta(cd) = \delta(c)d + c\delta(d)$$

for all $c, d \in R$.

Furthermore, the map $\partial_a: R \to R$ defined by, $\partial_a(c) = ac - ca$, where $c \in R$ is a partial derivation generated by $a \in R$ i.e.,

$$\partial_a(I) = [a, I] = \{[a, i] : i \in I\}.$$

DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4344

Email addresses: tfaith80gmail.com (I. Taha), ajalkalaf@imamu.edu.sa (A. Al Khalaf), rohaidah@fsmt.upsi.edu.my (R. Masri), rawdah@fsmt.upsi.edu.my (Rawdah Tarmizi)

^{*}Corresponding author.

In addition, the map δ is called centralizing on a subset I of R if

$$[c, \delta(c)] = c\delta(c) - \delta(c)c \in Z(R) \ \forall c \in I$$

Assume that Δ is a non-empty subset of \mathfrak{D} . An ideal I of R, where $\delta(I) \subseteq I$ for $\delta \in \Delta$ is called a δ -ideal. A ring R is called δ -prime if, for any two δ -ideals I, J of R, the condition IJ = 0 implies that I = 0 or J = 0.

The special case where a centralizing automorphism is a commuting automorphism is defined by $cd(c) = d(c)c, c \in R$. Likewise, d is called a semi commuting automorphism if cd(c) = d(c)c or cd(c) = -d(c)c holds for any $c \in R$. All other definitions and facts are standard and they can be found in [17], [18], [19] and [23].

Recall that, the first theorem of Posner informs us that if R is a prime ring with $char R \neq 2$, then a composition of two nonzero derivations is not a derivation.

Many authors generalized Posner's theorem in various ways as Bergen [6], Chebotar [11], Chuang [12], [13], Hirano [21], Lanski [24] and Martindale [25]. Furthermore, Creedon [15] generalized Posner's first theorem to semiprime algebras, i.e. he showed that the composition of two nonzero derivations in any algebra S is a derivation. On the other hand, from the second Posner theorem which states: if R is a prime ring with centralizing derivation $d \neq 0$ on R, then R is commutative.

In fact, this theorem extremely helped some researches to study the commuting derivations, because every centralizing derivation is a commuting derivation. Recall that, the assumption of primeness in the second Posner theorem is necessarily, since if we take for example the ring $R = S \times T$ such that S is a commutative ring with derivation d_1 and T is a non-commutative ring, then we can prove that the derivation on R given by $d(s,t) = (d_1(s),0)$ is a non-zero commuting derivation, but R is not a commutative ring.

In the last fifty years, a lot of results have been obtained about commuting and centralizing derivations d (d satisfies the condition $[d(c),c] \in Z(R)$ for all $c \in R$). However, many authors extended it by taking a centralizing map on a ring only. In 1973, Awtar [4] studied the centralizing derivation on Lie ideals and Jordan ideals. In particular, he proved that if R is a prime ring of $charR \neq 2$ and $T \neq \{0\}$ is a Lie ideal or Jordan ideal and subring in R, with $d \neq 0$ being a derivation on R, if $[c,d(c)] \in Z(R)$, for all $c \in T$ then R is commutative.

In addition, if we assume that either T is a Lie (Jordan) ideal or a subring, then R is not necessarily commutative. That can be shown as follows: let R be a prime ring with $char R \neq 2$ and $d \neq 0$ is a derivation of R. If T is a Lie or Jordan ideal and a subring of R and if $[c, d(c)] \in Z(R)$, for all $c \in T$, then the ring R is commutative.

Mayne [26] got the same result, i.e. if R is a prime ring and $d \neq 0$ is a centralizing automorphism, then R is an integral domain. Furthermore, Mayne [27] generalized the previous results for a derivation d or an automorphism,

Moreover, Mayne [28] showed that if there exists a centralizing derivation $d \neq \{0\}$ or a centralizing automorphis on an ideal $T \neq 0$ of a prime ring R, then R is commutative.

Also, Awtar [4] extended the derivation case on a prime ring with any characteristic. Whereas, McCrimmon [29] proved that the automorphism in Mayne's theorem did not generalize for a semiprime ring.

Likewise, Vukman [32] has extended Posner's second theorem by proving that if $d \neq 0$ is a derivation on prime ring with $charR \neq 2$ and [[d(c),c],c]=0, for all $c \in R$, then either d=0 or R is commutative. In fact, this theorem has merely showed that d is commuting. In addition, in 1992, Vukman extended the second Posner's result for an automorphism or a centralizing derivation on a Lie ideal $T \neq \{0\}$. Whereas, in 1993 Bresar [8] showed that an additive map is not centralizing on determined subsets of prime and non-commutative ring.

Futhermore, Some generalizations of these results for a prime ring are contained in [20–22]. As for a semiprime ring we refer the reader to [10], [7], [9], [32] and [33].

In our current research we shall generalize the theorem of Mayne [27] and theorem of Hirano and Tominaga [21], so this generalization of the two theorems give us a new wider class of δ -prime rings and we prove the following

Theorem 1. Let R be a δ -prime ring of charastristic $\neq 2$ and I be a nonzero δ -ideal of R, where $0 \neq \delta \in \mathfrak{D}$. If

$$[c, \delta(c)] \in Z(R) \ \forall c \in I.$$

Then R is commutative.

2. Preliminaries

Many authors have been studying the centralizing automorphisms and derivation on ring R.

C. R. Miers [30] has considered the map defined on C^* Algebra.

Moreover, in [4] R.A. Awtar showed if existence a nonzero centerlizing derivation on a prime ring, then R is commutative, so he gives a shorter proof of Posner's theorem [31].

Awtar in [4] proved that if R is a prime ring with $charR \neq 2$ havig a derivation d on a Jordan ideal $J \neq \{0\}$, where the derivation is centralizing on J, implies $J \subseteq Z(R)$.

In [14] L.O. Chung and J.Luh showed the equivalence between semi-commuting automorphism and commuting automorphism on a prime ring. If the prime ring R has a nontrivial semicommuting automorphism and R with $charR \neq 2$ or $Z(R) \neq \{0\}$, this implies the commutativity of the ring R.

In [16] N. Divinsky proved that if the simple Artinian ring has a nontrivial centralizing automorphism, then R is a field.

On the other hand in [21] it has been proved that if R has a nontrivial automorphism, then R is a field.

In [1, 2] it has been proved the commutativity of a prime and semiprime rings.

Now willing to prove our theorem, we will need to state some lemmas:

Lemma 1. Let $I \neq \{0\}$ be δ -ideal of a δ -prime ring R. If $\delta(I) = 0$, then $\delta(R) = 0$.

Proof. Since $RI \subseteq I$ and $IR \subseteq I$. Then

$$\delta(RI) = \delta(R)I = 0 = \delta(IR) = I\delta(R).$$

Thus we deduce that $\delta(R) \subseteq annI$, but I is a δ -ideal and so

$$\delta(R) = 0.$$

Lemma 2. Let $\delta \neq 0$ be a derivation on a ring R and $I \neq \{0\}$ be δ -ideal of R. If R is δ -prime such that

$$[\delta(a), a] = 0 \ \forall a \in I. \tag{2-1}$$

then R is commutative.

Proof. Linearizing the equation (2-1) on I, then we have for all $a, b, c \in I$

$$0 = [\delta(a+b), a+b] = [\delta(a), a] + [\delta(a), b] +$$

$$[\delta(b), a] + [\delta(b), b] = [\delta(a), b] + [\delta(b), a].$$

Thus we conclude that

$$[\delta(a), b] = [a, \delta(b)]. \tag{2-2}$$

Now replacing the right side in (2-2) $\delta(b)$ by $a\delta(b)$ we have

$$[a, a\delta(b)] = a[a, \delta(b)] = a[\delta(a), b] =$$

$$a\delta(a)b - ab\delta(a) = \delta(a)ab - ab\delta(a) =$$

$$[\delta(a), ab] = [a, \delta(ab)] = [a, \delta(a)b] + [a, a\delta(b)].$$

Hence

$$\delta(a)[a,b] = [a,\delta(a)b] = 0.$$
 (2-3)

Now replacing b by cb in (2-3) we obtain that

$$0 = \delta(a)[a, cb] = \delta(a)[a, c]b + \delta(a)c[a, b] = \delta(a)c[a, b].$$

Consequently,

$$\delta(a)I[a,b] = 0.$$

Thus by using the δ -primenes we get either a=0 or [a,b]=0. Since $I\neq\{0\}$, then we deduce that [a,b]=0 and therefore, I is commutative. Then we have

$$I^2C(R) = 0.$$

and so C(R) = 0. Hence R is commutative.

3. δ -derivation on δ -ideal

First of all in the next lemma we give a generalization of Lemma 1 from [31]

Lemma 3. Let $\delta \neq 0$ be a derivation of a ring R . If R is δ -prime ring such that

$$a[\delta^n(a), R] = 0,$$

(respectively
$$[\delta^n(b), R]a = 0$$
) $\forall a, b \in R$,

and for all integers $n \geq 0$, then either a = 0 or $b \in Z(R)$.

Proof. Suppose that $x, y \in R$ and n, k are a nonnegative integers. From [31] we have

$$a\partial_{\delta^n(b)}(R) = 0,$$

then

$$0 = a\partial_{\delta^n(b)}(xy) = a\partial_{\delta^n(b)}(x)y + ax\partial_{\delta^n(b)}(y) =$$

$$ax\partial_{\delta^n(b)}(y)$$
.

This means that

$$aR[\delta^n(b), y] = 0.$$

Consequently,

$$aR\delta^k([\delta^n(b), y]) = 0,$$

what forces that a = 0 or $[\delta^n(b), y] = 0$ (and then $b \in Z(R)$).

Lemma 4. Let $I \neq \{0\}$ be a right δ -ideal of a δ -prime ring R. If I is commutative, then R is commutative.

Proof. Suppose that $a \in I$. Then $\partial_a(I) = 0$ and so $\partial_a(R) \subseteq annI$. Since annI is a δ -ideal, then we see that

$$annI = 0$$
,

and so $a \in Z(R)$. Hence $I \subseteq Z(R)$. Then IC(R) = 0 and hence

$$C(R) = 0.$$

Lemma 5. Let $\delta \neq 0$ be a nonzero derivation of a δ -prime ring R. If

$$[b, \delta^n(a)b] \in Z(R),$$

and $0 \neq b \in R$ for all integers $n \geq 0$, then $a \in Z(R)$.

Proof. Since for all $x \in R$ we have

$$0 = [\delta^{n}(a)b, x] = \delta^{n}(a)[b, x] + [\delta^{n}(a), x]b = [\delta^{n}(a), x]b.$$

Then by Lemma 3 we see that $a \in Z(R)$.

Lemma 6. Let R be a δ -prime ring of characteristic $\neq 2$ and I be a δ -ideal of R. If

$$[x,\delta(x)]\in Z(R)\ \forall x\in I, \tag{3-1}$$

then $[x, \delta(x)] = 0$.

Proof. Suppose that $x, y \in I$. Now replace x by x + y in (3-1) we get

$$[x + y, \delta(x + y)] = [x, \delta(x)] + [x, \delta(y)] + [y, \delta(x)] + [y, \delta(y)],$$

and so

$$[x,\delta(y)]+[y,\delta(x)]\in Z(R). \hspace{1cm} (3-2).$$

Now substituting y by x^2 in (3-2), we obtain

$$4x[x, \delta(x)] = [x, \delta(x^2)] + [x^2, \delta(x)] \in Z(R).$$

Consequently,

$$x[x,\delta(x)] \in Z(R) \tag{3-3}.$$

Then

$$0 = [x[x, \delta(x)], \delta(x)] = [x, \delta(x)]^2.$$

Obviously that

$$\delta([x, \delta(x)]) \in Z(R).$$

and

$$\delta([x,\delta(x)]) = [\delta(x),\delta(x)] + [x,\delta^2(x)] =$$

$$[x, \delta^2(x)]$$

and

$$\delta([x, \delta^2(x)]) \in Z(R).$$

$$\delta([x, \delta^2(x)]) = [\delta(x), \delta^2(x)] + [x, \delta^3(x)].$$

Hence $[\delta(x), \delta^2(x)] \in Z(G)$ we have

$$[x, \delta^3(x)] \in Z(R).$$

In addition, by induction on n we obtain that

$$[x, \delta^n(x)] \in Z(R), \tag{3-4}.$$

Now substituting y by $x\delta^n(x)$ in (3-2) we get (since $[x,\delta(x\delta^n(x))]+[x\delta^n(x),\delta(x)]\in Z(G)$)

$$\begin{split} [x,\delta(x\delta^n(x)] + [x\delta^n(x),\delta(x)] &= \\ [x,\delta(x)\delta^n(x)] + [x,x\delta^{n+1}(x)] - [\delta(x),x\delta^n(x)] &= \\ [x,\delta(x)]\delta^n(x) + \delta(x)[x,x\delta^n(x)] + \\ \\ + x[x,x\delta^{n+1}(x)] - [\delta(x),x]\delta^n(x) - \\ \\ - x[\delta(x),\delta^n(x)] &=: T. \end{split}$$

Then,

$$0 = [T, \delta^{n}(x)] = [\delta(x), \delta^{n}(x)].[x, \delta^{n}(x)] +$$

$$[x, \delta^{n}(x)].[x, \delta^{n+1}(x)] - [x, \delta^{n}(x)].[\delta(x), \delta^{n}(x)] =$$

$$[x, \delta^{n}(x)][x, \delta^{n+1}(x)]. \tag{3-5}$$

Substituting y by $x^2\delta^n(x)$ in (3-2), we will obtain

$$[x, \delta(x^2\delta^n(x))] + [x^2\delta^n(x), \delta(x)] \in Z(R))$$
$$[x, \delta(x^2\delta^n(x))] + [x^2\delta^n(x), \delta(x)] =$$

$$[x, \delta(x)x\delta^{n}(x)] + [x, x\delta(x)\delta^{n}(x)] +$$

$$+[x, x^{2}\delta^{n+1}(x)] - [\delta(x), x^{2}\delta^{n}(x)] =$$

$$[x, \delta(x)x]\delta^{n}(x) + [x, \delta^{n}(x)]\delta(x)x +$$

$$[x, x\delta(x)]\delta^{n}(x) + [x, \delta^{n}(x)]x\delta(x) +$$

$$[x, x^{2}]\delta^{n+1}(x) + [x, \delta^{n+1}(x)]x^{2} -$$

$$-[\delta(x), x^{2}]\delta^{n}(x) - [\delta(x), \delta^{n}(x)]x^{2} =$$

$$[x, \delta(x)]x\delta^{n}(x) + [x, x]\delta(x)\delta^{n}(x) +$$

$$[x, \delta^{n}(x)]\delta(x)x + [x, x]\delta(x)\delta^{n}(x) +$$

$$[x, \delta^{n}(x)]x\delta^{n}(x) + [x, \delta^{n}(x)]x\delta(x) +$$

$$[x, \delta^{n+1}(x)]x^{2} - 2[\delta(x), x]x\delta^{n}(x) -$$

$$-[\delta(x), \delta^{n}(x)]x^{2} =$$

$$4[x, \delta(x)]x\delta^{n}(x) + [x, \delta^{n}(x)]x\delta(x) +$$

$$+[x, \delta^{n}(x)]x\delta(x)x + [x, \delta^{n+1}(x)]x^{2} -$$

$$+[\delta(x), \delta^{n}(x)]x^{2} =: Q. \tag{3-6}$$

multiplying Q by $[x, \delta^n(x)]$ in (3-6) A in view of (3-2) we obtain

$$[x, \delta^n(x)]^2 x \delta(x) + [x, \delta^n(x)]^2 \delta(x) x -$$

$$-[\delta(x), \delta^n(x)][x, \delta^n(x)] x^2 \in Z(R).$$

Then,

$$0 = [\delta^{n}(x), F] = [\delta^{n}(x), x\delta(x)][x, \delta^{n}(x)]^{2} + \\ + [\delta^{n}(x), \delta(x)x][x\delta^{n}(x)]^{2} - \\ - [\delta(x), \delta^{n}(x)][x, \delta^{n}(x)][\delta^{n}(x), x^{2}] = \\ = [\delta^{n}(x), x][x, \delta^{n}(x)]^{2}\delta(x) + \\ = [\delta^{n}(x), \delta(x)][x, \delta^{n}(x)]^{2}\delta(x) + \\ + [\delta^{n}(x), \delta(x)][x, \delta^{n}(x)]^{2}x + \\ + [\delta^{n}(x), \delta(x)][x, \delta^{n}(x)]^{2}x + \\ + [\delta^{n}(x), x][x, \delta^{n}(x)]^{2}\delta(x) - \\ - 2[\delta(x), \delta^{n}(x)][x, \delta^{n}(x)][\delta^{n}(x), x]x = \\ 2[\delta^{n}(x), \delta(x)][x, \delta^{n}(x)]^{2} - \\ - 2[x, \delta^{n}(x)]^{3}\delta(x) + 2[\delta(x), \delta^{n}(x)][x, \delta^{n}(x)]^{2}x = \\ = 2[x, \delta^{n}(x)]^{3}\delta(x)] =: X$$

Then

$$[x, \delta^n(x)]^3 \delta(x) = 0$$

Thus

$$[x, \delta^{n+1}(x)]^3 \delta(x)] = 0$$

Hence

$$[x, \delta^{n+1}(x)]^3 [\delta(x), \delta^n(x)] =$$
$$[x, \delta^{n+1}(x)]^3 \delta(x) \delta^n(x) -$$

$$-\delta^{n}(x)[x,\delta^{n+1}(x)]^{3}\delta(x) = 0. (3-7)$$

Multiplying (3-7) by $[x, \delta^{n+1}(x)]^2$ we obtain

$$[x, \delta^{n+1}(x)]^4 = 0.$$

Thus

$$([x, \delta^{n+1}(x)]R^4 = 0.$$

this means that

$$A = \sum_{n=1}^{\infty} \sum_{x \in I} [x, \delta^n(x)] R.$$

$$(\delta([x,\delta^{n+1}(x)]R) = [\delta(x),\delta^{n+1}(x)]R +$$

$$[x, \delta^{n+2}(x)]R + [x, \delta^n(x)]\delta(R) \subseteq A$$

is a sum of nilpotent ideals and I is a nil ideal, since A is δ -ideal, we deduce that

$$A=0.$$

This gives that

$$[x, \delta(x)] = 0.$$

Lemma 7. Let R be δ -prime ring of charR $\neq 2$ and

$$[\delta(x), x] \in Z(R) \ \forall x \in R.$$

Then R is commutative.

Proof. It is well known that [R, R] is a Lie ideal of R. Moreover,

$$\delta([R,R]) \subseteq [R,R].$$

Now on the one hand if [R,R] is commutative, then by Lemma (1-7) in [5] C(R) is a nil ideal, Thus

$$C(R) = 0$$
,

and R is commutative.

On the other hand by Lemma 13 [3] [R, R] contains a nonzro δ -ideal I of R. Thus by (3-2) we have

$$[\delta(x), y] \in Z(R) \ \forall x, y \in R.$$

REFERENCES 464

This means that $\delta(I) \subseteq Z(R)$. Then for all $a \in I$

$$[\delta(a), a] = 0,$$

and by Lemma 2 R is commutative.

proof of Theorem (1)

Since $[x, \delta(x)] \in Z(R)$ for all $x \in I$, then by Lemma 7 we get

$$[x, \delta(x)] = 0.$$

Now using Lemma 2 and since R is A δ -prime ring and $[x,\delta(x)]=0$, then R is commutative.

Acknowledgements

This project was funded by National Plan for Science, Technology and Innovation (MAARIFAH) — King Abdul Aziz City for Science and Technology — The Kingdom of Saudi Arabia, award number (14-MAT273-08 R).

References

- [1] A Alkhalaf, O Artemovych, and I Taha. Derivations in differentially prime rings. Journal of Algebra and Its Applications, 17(07):1850129, 2018.
- [2] A Alkhalaf, O Artemovych, I Taha, and A Aljouiee. Derivations of differentially semiprime rings. Asian-European Journal of Mathematics, 12(05):1950079, 2019.
- [3] O Artemovych and M Lukashenko. Lie and jordan structures of differentially semiprime rings. Algebra and Discrete Mathematics, 20(1), 2015.
- [4] R Awtar. Lie and jordan structure in prime rings with derivations. *Proceedings of the American Mathematical Society*, 41(1):67–74, 1973.
- [5] H Bell and A Klein. Combinatorial commutativity and finiteness conditions for rings. Communications in Algebra, 29(7):2935–2943, 2001.
- [6] J Bergen. Lie ideals with regular and nilpotent elements and a result on derivations. Rendiconti del Circolo Matematico di Palermo, 33(1):99–108, 1984.
- [7] M Brešar. On a generalization of the notion of centralizing mappings. *Proceedings of the American Mathematical Society*, 114(3):641–649, 1992.
- [8] M Brešar. Centralizing mappings and derivations in prime rings. *J. Algebra*, 156(2):385–394, 1993.

REFERENCES 465

[9] M Brešar, M Chebotar, and W Martindale. Functional identities. Springer Science & Business Media, 2007.

- [10] M Bresar and J Vukman. Orthogonal derivations and an extension of a theorem of posner, radovi mat. Vol. 5 (1989), 237, 246, 1989.
- [11] M Chebotar. On the composition of derivations of prime rings. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, (2):22–25, 1995.
- [12] C Chuang. On compositions of derivations of prime rings. *Proceedings of the American Mathematical Society*, 108(3):647–652, 1990.
- [13] C Chuang and T Lee. Finite products of derivations in prime rings. Communications in Algebra, 30(5):2183–2190, 2002.
- [14] L Chung and J Luh. Derivations of higher order and commutativity of rings. *Pacific Journal of Mathematics*, 99(2):317–326, 1982.
- [15] T Creedon. Products of derivations. Proceedings of the Edinburgh Mathematical Society, 41(2):407–410, 1998.
- [16] N Divinsky. On commuting automorphisms of rings. Trans. Roy. Soc. Canada. Sect, 3(3):49, 1955.
- [17] I Herstein. On the lie and jordan rings of a simple associative ring. *American Journal of Mathematics*, 77(2):279–285, 1955.
- [18] I Herstein. Topics in ring theory. e university of chicago press. Chicago, IL, 1965.
- [19] I Herstein. *Rings with involution*, volume 111. University of Chicago Press Chicago, 1976.
- [20] Y Hirano, A Kaya, and H Tominaga. On a theorem of mayne. *Mathematical Journal of Okayama University*, 25(2):125–132, 1983.
- [21] Y Hirano, H Tominaga, and A Trzepizur. On a theorem of posner. *Mathematical Journal of Okayama University*, 27(1):19–23, 1985.
- [22] M Hongan and A Trzepizur. On generalization of a theorem of posner. *Mathematical Journal of Okayama University*, 27(1):19–23, 1985.
- [23] J Lambek. Lectures on rings and modules, blaisdell publ. Com., Waltham, Toronto, London, 1966.
- [24] C Lanski. Differential identities, lie ideals, and posner's theorems. *Pacific Journal of Mathematics*, 134(2):275–297, 1988.
- [25] W Martindale and C Miers. On the iterates of derivations of prime rings. *Pacific Journal of Mathematics*, 104(1):179–190, 1983.

REFERENCES 466

[26] J Mayne. Centralizing automorphisms of prime rings. Canadian Mathematical Bulletin, 19(1):113–115, 1976.

- [27] J Mayne. Ideals and centralizing mappings in prime rings. *Proceedings of the American Mathematical Society*, 86(2):211–212, 1982.
- [28] J Mayne. Centralizing mappings of prime rings. Canadian Mathematical Bulletin, 27(1):122–126, 1984.
- [29] K McCrimmon. The zelmanov approach to jordan homomorphisms of associative algebras. *Journal of Algebra*, 123(2):457–477, 1989.
- [30] R Miers. Centralizing mappings of operator algebras. *Journal of Algebra*, 59(1):56–64, 1979.
- [31] E Posner. Derivations in prime rings. Proceedings of the American Mathematical Society, 8(6):1093–1100, 1957.
- [32] J Vukman. Commuting and centralizing mappings in prime rings. *Proceedings of the American Mathematical Society*, 109(1):47–52, 1990.
- [33] J Vukman. Derivations on semiprime rings. Bulletin of the Australian Mathematical Society, 53(3):353–359, 1996.