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Abstract. Let G be an undirected graph with vertex and edge sets V (G) and E(G), respectively.
A set S ⊆ V (G) is a hop independent set of G if any two distinct vertices in S are not at a distance
two from each other, that is, dG(v, w) 6= 2 for any distinct vertices v, w ∈ S. The maximum
cardinality of a hop independent set of G, denoted by αh(G), is called the hop independence
number of G. In this paper, we show that the absolute difference of the independence number
and the hop independence number of a graph can be made arbitrarily large. Furthermore, we
determine the hop independence numbers of some graphs including those resulting from some
binary operations of graphs.
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1. Introduction

In this paper we explore a parameter that is, in some sense, defined in a similar way
that the well-known independence number of a graph is. Indeed, while an independent
set of graph requires that no two distinct vertices in the set are at distance one from
each other, the concept that we will be dealing with here imposes the condition that no
two distinct vertices in the set are at distance two from each other. The motivation of
introducing the concept is the ever increasing number of studies on hop domination and
some of its variations. In fact, it can be shown that every maximum hop independent set
of a graph is a hop dominating set. Consequently, the hop domination number of a graph
is at most equal to the hop independence number of the graph.

The concept of hop domination was introduced and studied by Natarajan and
Ayyaswamy in [4]. The concept and some of its variants are also studied in [1], [2],
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[3], [5], [6], [7], [8], and [9]. Alongside other previously defined parameters in a graph, the
hop independence number of a graph may be used to give bounds on some hop-domination
related parameters. Moreover, this newly defined concept may be utilized to introduce
some concepts (say, a variant of hop domination) in the future.

2. Terminology and Notation

For any two vertices u and v in an undirected connected graph G, the distance dG(u, v)
is the length of a shortest path joining u and v. Any u-v path of length dG(u, v) is called a
u-v geodesic. The open neighborhood of a point u is the set NG(u) consisting of all points
v which are adjacent to u. The closed neighborhood of u is NG[u] = NG(u) ∪ {u}. For
any A ⊆ V (G), NG(A) =

⋃
v∈A

NG(v) is called the open neighborhood of A and NG[A] =

NG(A) ∪ A is called the closed neighborhood of A. The open hop neighborhood of a point
u is the set N2

G(u) = {v ∈ V (G) : dG(v, u) = 2}. The closed hop neighborhood of u is
N2

G[u] = N2
G(u) ∪ {u}. For any A ⊆ V (G), N2

G(A) =
⋃
v∈A

N2
G(v) is called the open hop

neighborhood of A and N2
G[A] = N2

G(A) ∪A is called the closed hop neighborhood of A.
A set S ⊆ V (G) is a hop dominating set if N2

G[S] = V (G). The minimum cardinality
of a hop dominating set of a graph G, denoted by γh(G), is called the hop domination
number of G. A set S ⊆ V (G) is an independent set of G if no two pair of distinct vertices
of S are adjacent. The maximum cardinality of an independent set of G, denoted by
α(G), is called the independence number of G. Set S is a hop independent set of G if for
any two distinct vertices v and w of S, dG(v, w) 6= 2. The maximum cardinality of a hop
independent set of G, denoted by αh(G), is called the hop independence number of G. Any
independent (hop independent) set with cardinality α(G) (resp. αh(G)) is referred to as a
maximum independent set or α-set (resp. maximum hop independent set or αh-set) of G.

A set S is clique of a graph G if the graph 〈S〉 induced by S is a complete graph. The
maximum size or cardinality of a clique of G, denoted by ω(G), is called the clique number
of G. Any clique in G with cardinality ω(G) is called an ω-set in G.

3. Results

Proposition 1. Let G be any graph on n vertices. If S is a maximun hop independent
set of G, then S is a hop dominating set. In particular, γh(G) ≤ αh(G).

Proof. Let S be a maximun hop independent set of G and let v ∈ V (G) \ S. If
dG(v, w) 6= 2 for all w ∈ S, then S ∪ {v} is a hop independent set of G, contradicting the
maximality of S. Thus, there exists z ∈ S such that dG(v, z) = 2, showing that S is a hop
dominating set of G. Therefore γh(G) ≤ αh(G).

Theorem 1. Let G be any graph on n vertices. If S is a hop independent set of G, then
every component of 〈S〉 is complete. Moreover,
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(i) αh(G) = n if and only if every component of G is complete; and

(ii) for n ≥ 3, αh(G) = n − 1 if and only if all but a single component C of G are
complete and C \ v is a complete graph for some vertex v ∈ V (C).

Proof. Let S be a hop independent set of G. If some component C of 〈S〉 is not com-
plete, then there exist distinct vertices x, y ∈ C such that dG(x, y) = dC(x, y) = 2. This,
however, contradicts our assumption of S. Hence, every component of 〈S〉 is complete.

(i) Now, if αh(G) = n, then V (G) is a hop independent set of G. By the first part, this
would imply that every component of G is complete.

Conversely, suppose that every component of G is complete. Then clearly, V (G) is a
hop independent set of G. Thus, αh(G) = n. This proves (i).

(ii) Suppose that αh(G) = n− 1. Then there exists v ∈ V (G) such that S = V (G) \ {v}
is a hop independent set of G. Let Ω = {C1, C2, . . . , Ck} be the set consisting of the
components of 〈S〉. Again, by the first part, every component Cj of 〈S〉 is complete. Now,
by (i) and the assumption, it follows that G has a component C that is not complete.
Hence, 〈{v}〉 is not a component of G; otherwise, C1, C2, . . . , Ck, 〈{v}〉 are the components
of G which is not possible. This implies that there exists z ∈ S such that vz ∈ E(G). Let
Cr be the component of 〈S〉 containing z. Since S is a hop independent set, vq /∈ E(G)
for all q ∈ ∪j 6=rV (Cj). Let D = V (Cr) ∪ {v} and let C = 〈D〉. Then (Ω \ {Cr}) ∪ {C}
contains all the components of G. Consequently, C is not complete and C \ v = Cr is
complete.

Next, suppose that all but a single component C of G are complete and C \ v is a
complete graph for some vertex v ∈ V (C). Then αh(G ≤ n−1 by (i). Since S′ = V (G)\{v}
is a hop independent set of G, it follows that αh(G) = n− 1.

The next result is immediate from Theorem 1.

Corollary 1. Let G be a connected graph on n vertices. Then

(i) αh(G) = n if and only if G = Kn; and

(ii) for n ≥ 3, αh(G) = n− 1 if and only if G 6= Kn and there exists v ∈ V (G) such that
G \ v = Kn−1.

Proposition 2. Let n be a positive integer.

(i) There exists a connected graph G such αh(G)− α(G) = n.

(ii) There exists a connected graph G such α(G)− αh(G) = n.

Proof. For (i), consider G = Kn+1. Then α(G) = 1, and by Corollary 1, αh(G) = n+1.
Hence, αh(G)− α(G) = n.
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For (ii), consider G = K1,n+2. Then α(G) = n + 2 and αh(G) = 2. Thus, α(G) −
αh(G) = n.

Note that Proposition 2 implies that given a positive integer n, there exists a connected
graph G such that |α(G)−αh(G)| = n, i.e., the absolute difference of these two parameters
can be made arbitrarily large.

Theorem 2. Let a and b be positive integers such that 3 ≤ a ≤ b. Then

(i) there exists a connected graph G such αh(G) = a and α(G) = b, and

(ii) there exists a connected graph G′ such α(G′) = a and αh(G
′) = b.

Proof. Suppose first that a = b. Consider the graph G in Figure 1. Clearly, S1 =
{y1, y2, . . . , ya} is both an α-set and an αh-set of G. Hence, α(G) = αh(G) = a.
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Figure 1

Next, suppose that a < b and let m = b − a + 1. Consider the graph G in Figure
2. It can easily be verified that the set S1 = {y1, y2, . . . , ya−2, xa, z1} is an αh-set and
S2 = {y1, . . . , ya−1, z1, . . . , zm} is an α-set of G. Thus, αh(G) = a and α(G) = b.
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Figure 2

(ii) Suppose a < b and let m = b−a+1. Consider the graph G′ in Figure 3. It can easily be
verified that the set S = {y1, y2, . . . , ya−1, xa} is an α-set and S′ = {y1, . . . , ya−1, z1, . . . , zm}
is an αh-set of G′. Thus, α(G′) = a and αh(G

′) = b.
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Figure 3

This proves the assertion.

For any graph G, let δh(G) = min{|N2
G(v)| : v ∈ V (G)}.

Theorem 3. For any graph G on n vertices, αh(G) ≤ n− δh(G).

Proof. Let S be a maximum hop independent set of G and let v ∈ S. By definition,
δh(G) ≤ |N2

G(v)|. Since S is a hop independent set of G and v ∈ S, N2
G(v) ⊆ V (G) \ S.

Hence,
δh(G) ≤ |N2

G(v)| ≤ n− |S| = n− αh(G).

Therefore, αh(G) ≤ n− δh(G).

The join of two graphs G and H, denoted by G + H is the graph with vertex set
V (G+H) = V (G)∪ V (H) and edge set E(G+H) = E(G)∪E(H)∪ {uv : u ∈ V (G), v ∈
V (H)}.

Theorem 4. Let G and H be graphs. Then S is a non-empty hop independent set of
G+H if and only if one of the following statements holds:

(i) S ∩ V (H) = ∅ and S ∩ V (G) is a clique in G.

(ii) S ∩ V (G) = ∅ and S ∩ V (H) is a clique in H

(iii) S ∩ V (G) and S ∩ V (G) are cliques in G and H, respectively.

Proof. Suppose S is a hop independent set of G + H and let SG = S ∩ V (G) and
SH = S ∩ V (H). Suppose SH = ∅. Then SG 6= ∅. Let a, b ∈ SG. Since S is a hop
independent set of G + H, it follows that dG+H(a, b) = dG(a, b) 6= 2. This implies that
dG(a, b) = 1, showing that SG is a clique in G. Hence, (i) holds. Similarly, (ii) holds.
Next, suppose that SG 6= ∅ and SH 6= ∅. Then, clearly, SG and SH are cliques in G and
H, respectively.

The converse is clear.

The next result is a consequence of Theorem 4.

Corollary 2. Let G and H be graphs. Then αh(G +H) = ω(G) + ω(H). In particular,
we have
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(i) αh(Kn +H) = n+ ω(H) for all n ≥ 1;

(ii) αh(Wn) = αh(K1 + Cn) = 3 for all n ≥ 4;

(iii) αh(Fn) = αh(K1 + Pn) = 3 for all n ≥ 1; and

(iv) αh(K1,n) = αh(K1 +Kn) = 2 for all n ≥ 1.

The corona of graphs G and H, denoted by G ◦H, is the graph obtained from G by
taking a copy Hv of H and forming the join 〈v〉+Hv = v +Hv for each v ∈ V (G).

Theorem 5. Let G be a non-trivial connected graph and let H be any graph. Then S is a
hop independent set in G◦H if and only if S = A∪ (∪v∈V (G)Sv) and satisfies the following
conditions:

(i) A is a hop independent set in G.

(ii) Sv is empty or a clique in Hv for each v ∈ V (G) \NG(A).

(iii) Sv = ∅ for each v ∈ NG(A).

Proof. Suppose S is a hop independent set in G ◦ H and let A = S ∩ V (G) and
Sv = S ∩ V (Hv) for each v ∈ V (G). Since S is a hop independent set in G ◦ H, A is
a hop independent set in G. This shows that (i) holds. Next, let v ∈ V (G). Suppose
first that v ∈ V (G) \ NG(A). Suppose further that Sv 6= ∅. Clearly, if |Sv| = 1, then
it is a clique. So suppose |Sv| ≥ 2 and let x, y ∈ Sv. Since S is a hop independent set,
dG◦H(x, y) = dHv(x, y) 6= 2, i.e., dHv(x, y) = 1. This shows that (ii) holds. Suppose now
that v ∈ NG(A), say vw ∈ E(G ◦H) for some w ∈ A. Since S is a hop independent set
and dG◦H(w, z) = 2 for all z ∈ V (Hv), it follows that Sv = ∅, showing that (iii) holds.

For the converse, suppose that S has the given form and satisfies (i), (ii), and (iii). Let
a, b ∈ S, where a 6= b, and let v, w ∈ V (G) such that a ∈ V (v +Hv) and b ∈ V (w +Hw).
Consider the following cases:
Case 1. v 6= w.

Suppose a = v and b = w. Then a, b ∈ A. Since A is a hop independent set of G,
dG◦H(a, b) = dG(a, b) 6= 2. Suppose now that a = v and b 6= w (or a 6= v and b = w).
Then a ∈ A and b ∈ Sw. By (iii), w /∈ NG(A). Hence, wv /∈ E(G) and dG◦H(a, b) 6= 2. If
if a 6= v and b 6= w, then a ∈ Sv and b ∈ Sw. Clearly, dG◦H(a, b) 6= 2.
Case 2. v = w.

If one of a and b is v, say a = v, then b ∈ Sv and dG◦H(a, b) = 1 6= 2. If a 6= v and
b 6= w, then a, b ∈ Sv. By (ii), Sv is a clique in Hv and so dG◦H(a, b) = 1 6= 2.

Therefore, S is a hop independent set of G ◦H.

Lemma 1. Let G be a non-trivial connected graph and let A be a hop independent set of
G. Then |A| ≤ |NG(A)|.
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Proof. Note that A = (A \NG(A)) ∪ (A ∩NG(A)). Since G is a non-trivial connected
graph, NG(a) 6= ∅ for each a ∈ A \ NG(A). Now let a, b ∈ A \ NG(A) with a 6= b.
Suppose NG(a) ∩ NG(b) 6= ∅, say x ∈ NG(a) ∩ NG(b). Since A is a hop independent set
of G, dG(a, b) 6= 2. Hence, ab ∈ E(G), implying that a ∈ A ∩ NG(A). This contradicts
the assumption that a ∈ A \NG(A). Therefore, NG(a) ∩NG(b) = ∅ for any two distinct
vertices a and b in A\NG(A). For each a ∈ A\NG(A), choose va ∈ (V (G)\A)∩NG(a) (such
vertex va exists because G is non-trivial and connected) and let D = {va : a ∈ A\NG(A)}.
Then D ⊆ NG(A) and |D| = |A \NG(A)|. Thus,

|A| = |A ∩NG(A)|+ |A \NG(A)| = |A ∩NG(A)|+ |D| ≤ |NG(A)|.

This proves the assertion.

Corollary 3. Let G be a non-trivial connected graph and let H be any graph. Then
αh(G ◦H) = |V (G)|ω(H).

Proof. Let Sv be an ω-set of Hv for each v ∈ V (G). Then S = ∪v∈V (G)Sv is a hop
independent set of G◦H by Theorem 5. This implies that αh(G◦H) ≥ |S| = |V (G)|ω(H).

Next, let S∗ be a αh-set of G ◦H. Then S∗ = A ∪ (∪v∈V (G)Rv) and satisfies (i), (ii),
and (iii) of Theorem 5. Hence, by Theorem 5 and Lemma 1, we have

αh(G ◦H) = |S∗| = |A|+
∑

v∈V (G)

|Rv|

= |A|+
∑

u∈NG(A)

|Ru|+
∑

v/∈NG(A)

|Rv|

= |A|+
∑

v/∈NG(A)

|Rv|

≤ |A|+ (|V (G)| − |NG(A)|)ω(H)

= |A| − |NG(A)|ω(H) + |V (G)|ω(H)

≤ |A| − |NG(A)|+ |V (G)|ω(H)

≤ |V (G)|ω(H).

This proves the desired equality.

The lexicographic product of graphs G and H, denoted by G[H], is the graph with
vertex set V (G[H]) = V (G) × V (H) and (v, a)(u, b) ∈ E(G[H]) if and only if either
uv ∈ E(G) or u = v and ab ∈ E(H).

Note that any non-empty set C ⊆ V (G)× V (H) can be written as C =
⋃
x∈S

[{x}× Tx],

where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S.

Theorem 6. Let G and H be non-trivial connected graphs. Then C =
⋃
x∈S

[{x} × Tx],
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where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a hop independent set of G[H] if and
only if the following conditions hold.

(i) S is a hop independent set of G.

(ii) Tx is a clique in H for each x ∈ S.

Proof. Suppose C =
⋃
x∈S

[{x} × Tx] is a hop independent set of G[H]. Let v, w ∈ S

with v 6= w and let a ∈ Tv and b ∈ Tw. Since (v, a), (w, b) ∈ C and C is a hop independent
set of G[H], it follows that dG[H]((v, a), (w, b)) = dG(v, w) 6= 2. This implies that S is a
hop independent set of G, showing that (i) holds. Next, let x ∈ S. If |Tx| = 1, then Tx is
a clique in H. Suppose |Tx| ≥ 2 and let p, q ∈ Tx, where p 6= q. Then (x, p) and (x, q) are
distinct elements of C. Since C is a hop independent set of G[H], dG[H]((x, p), (x, q)) 6= 2.
Now, since G is non-trivial and connected, it follows that dH(p, q) = 1. Thus, Tx is a
clique in H, showing that (ii) holds.

For the converse, suppose that C =
⋃
x∈S

[{x} × Tx] and satisfies (i) and (ii). Let

(y, a), (z, b) ∈ C with (y, a) 6= (z, b). Consider the following cases:
Case 1. y = z.

Then a, b ∈ Ty. From condition (ii), Tx is a clique in H and so dH(a, b) = 1. Hence,
dG[H]((y, a), (y, b)) = 1 6= 2.
Case 2. y 6= z.

Since y, z ∈ S and S is a hop independent set of G, dG(y, z) 6= 2. It follows that
dG[H]((y, a), (z, b)) = dG(y, z) 6= 2.

Accordingly, C is a hop independent set of G[H].

Corollary 4. Let G and H be non-trivial connected graphs. Then

αh(G[H]) = αh(G)ω(H).

Proof. Let S be a αh-set of G and let D be a clique in H with |D| = ω(H). For each
x ∈ S, set Tx = D. Then C =

⋃
x∈S

[{x}×Tx] = S×D is a hop independent set of G[H] by

Theorem 6. Hence,
αh(G[H]) ≥ |C| = αh(G)ω(H).

Next, let C0 =
⋃
x∈S0

[{x} × Rx] be a αh-set of G[H]. By Theorem 6, S0 is a hop

independent set of G and Tx is a clique in H. Hence,

αh(G[H]) = |C0| =
∑
x∈S0

|Tx| ≤ |S0|ω(H) ≤ αh(G)ω(H).

This establishes the desired equality.
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The Cartesian product of graphs G and H, denoted by G�H, is the graph with vertex
set V (G�H) = V (G) × V (H) and (v, a)(u, b) ∈ E(G[H]) if and only if either a = b and
uv ∈ E(G) or u = v and ab ∈ E(H).

Theorem 7. Let G and H be non-trivial connected graphs. Then C =
⋃
x∈S

[{x} × Tx],

where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a hop independent set of G�H if and
only if the following conditions hold.

(i) Tx is a hop independent set of H for each x ∈ S;

(ii) For each x ∈ S ∩NG(S) and for each y ∈ S ∩NG(x), it holds that dH(p, q) 6= 1 for
all p ∈ Tx and q ∈ Ty; and

(iii) For each v ∈ S ∩N2
G(S) and for each w ∈ S ∩N2

G(v), it holds that dH(a, b) ≥ 1 for
all a ∈ Tv and b ∈ Tw.

Proof. Suppose C =
⋃
x∈S

[{x} × Tx] is a hop independent set of G�H. Let x ∈ S and

let a, b ∈ Tx with a 6= b. Since (x, a) and (x, b) are distinct elements of C and C is a hop
independent set of G�H, dH(a, b) = dG�H((x, a), (x, b)) 6= 2, showing that (i) holds, i.e.,
Tx is a hop independent set of H. Next, let x ∈ S∩NG(S) and let y ∈ S∩NG(x). Take any
p ∈ Tx and q ∈ Ty. Suppose dH(p, q) = 1. Clearly, (x, p) and (y, q) are distinct elements
of C and since p 6= q, dG�H((x, p), (y, q)) 6= 1. Since [(x, p), (x, q), (y, q)] is an (x, p)-(y, q)
geodetic in G�H, dG�H((x, p), (y, q)) = 2, contrary to the fact that C is a hop independent
set of G�H. Thus, dH(p, q) 6= 1, showing that (ii) holds. Finally, let v ∈ S ∩N2

G(S) and
let w ∈ S ∩N2

G(v). Choose any a ∈ Tv and b ∈ Tw. Then (v, a), (w, b) ∈ C. Again, since
C is a hop independent set of G�H, dG�H((v, a), (w, b)) 6= 2. Since dG(v, w) = 2, a 6= b.
Thus, dH(a, b) ≥ 1, showing that (iii) holds.

For the converse, suppose that C satisfies conditions (i), (ii), and (iii). Let (x, p), (y, q) ∈
C such that (x, p) 6= (y, q). Consider the following cases:

Case 1. x = y. Then p 6= q and p, q ∈ Tx. From condition (i), it follows that
dG�H((x, p), (y, q)) = dH(p, q) 6= 2.

Case 2. x 6= y.
Clearly, if dG(x, y) ≥ 3, then dG�H((x, p), (y, q)) 6= 2. Next, suppose that dG(x, y) = 1.

Then by condition (ii), dH(p, q) 6= 1. If dH(p, q) = 0, then dG�H((x, p), (y, q)) = 1 6= 2. If
dH(p, q) ≥ 2, then dG�H((x, p), (y, q)) = 1+ dH(p, q) ≥ 3. Suppose now that dG(x, y) = 2.
Then by (iii), dH(p, q) ≥ 1. Hence, dG�H((x, p), (y, q)) = dG(x, y) + dH(p, q) ≥ 3.

Therefore, C is a hop independent set of G�H.

A set S is a 3-hop set of a connected graph G if dG(v, w) = 3 for every pair of distinct
vertices v, w ∈ S. The maximum cardinality of a 3-hop set of G is denoted by α3

h(G).
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Corollary 5. Let G and H be non-trivial connected graphs. Then

αh(G�H) ≥ max{α3
h(G)αh(H), α3

h(H)αh(G)}.

Proof. Let S be a 3-hop set of G with |S| = α3
h(G) and let D be an αh-set of H. Set

Tx = D for each x ∈ S. Then C =
⋃
x∈S

[{x} × Tx] = S × D is a hop independent set of

G�H by Theorem 7. Hence, αh(G�H) ≥ |C| = |S||D| = α3
h(G)αh(H). Since G�H and

H�G are isomorphic, the assertion holds.

The bound given in Corollary 5 is attainable. To see this, consider P4�K4. Note that
αh(K4) = 4 and α3

h(P4) = 2. One can easily verify that αh(P4�K4) = 8 = α3
h(P4)αh(K4).

The bound, however, may not be attained. Consider, for example, P4�P4. It can also
be verified that αh(P4�K4) = 6 > 4 = α3

h(P4)αh(P4).

4. Conclusion

The concept of hop independent set in a graph, though maybe considered informally
previously, has been introduced formally and investigated initially in this study. It is shown
that the hop independence number of a graph is an upper bound of the hop domination
number of the graph and that the absolute difference of the independence number and
hop independence number can be made arbitrarily large. Just like the independence
number, the hop independence number of a graph may be used to give bounds on some
graph-theoretic parameters. In this paper the concept has been investigated for the join,
corona, lexicographic and Cartesian products of graphs. Finding better bounds on the hop
independence number of the Cartesian product of some graphs is recommended. Also, this
newly defined parameter can be studied further for other types of graphs.
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