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Abstract. Let G be a (simple) undirected graph with vertex and edge sets V (G) and E(G),
respectively. A set S ⊆ V (G) is a monophonic eccentric dominating set if every vertex in V (G) \S
has a monophonic eccentric vertex in S. The minimum size of a monophonic eccentric dominating
set in G is called the monophonic eccentric domination number of G. It shown that the absolute
difference of the domination number and monophonic eccentric domination number of a graph can
be made arbitrarily large. We characterize the monophonic eccentric dominating sets in graphs
resulting from the join, corona, and lexicographic product of two graphs and determine bounds on
their monophonic eccentric domination numbers.
2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Monophonic, eccentric, domination, join, corona, lexicographic
product

1. Introduction

In a recent study, Santhakumaran and Titus in [3] and [4] defined monophonic
distance and obtained some results related to the concept. Using monophonic paths and
monophonic distance-related concepts, Titus et al. in [6], and [7] defined and studied
a variation of domination called monophonic eccentric domination and the correspond-
ing monophonic eccentric domination number. Titus and Fancy [5] also introduced total
monophonic eccentric dominating set. The authors mentioned that the monophonic ec-
centric domination number and total monophonic eccentric domination number find useful
applications in channel assignment problems in radio technologies and in molecular prob-
lems in theoretical chemistry.

Recently, Gamorez and Canoy in [1] and [2] also made use of the monophonic distance
and related concepts to construct a topology on a vertex set of a given undirected graph.
Some characterizations were obtained and subbasic open sets on graphs resulting from
some binary operations were determined.
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2. Terminology and Notations

For any two vertices u and v in an undirected connected graph G, the distance dG(u, v)
is the length of a shortest path joining u and v. The open neighborhood of a point u is
the set NG(u) consisting of all points v which are adjacent to u. The closed neighborhood
of u is NG[u] = NG(u) ∪ {u}. A chord of a path P in a graph G is an edge joining two
non-adjacent vertices of P . A path P in a graph G is called a monophonic path if it is
chordless. For any two vertices u and v in a connected graph G, the monophonic dis-
tance dmG (u, v) from u to v is defined as the length of a longest u-v monophonic path in
G. The monophonic eccentricity emG (v) of a vertex v in G is the maximum monophonic
distance from v to a vertex of G. The monophonic radius radm(G) of graph G is given
by radm(G) = min{emG (v) : v ∈ V (G)} and the monophonic diameter diamm(G) of G is
given by diamm(G) = max{emG (v) : v ∈ V (G)}. A vertex w in G is a monophonic eccentric
vertex of a vertex v in G if emG (v) = dmG (w, v). In this case, we say that w is a monophonic
eccentric neighbor of v. The set consisting of all the monophonic eccentric vertices of
v ∈ V (G) will be denoted by Nm

G (v), i.e., Nm
G (v) = {w ∈ V (G) : emG (v) = dmG (w, v)}. Here,

Nm
G [v] = Nm

G (v) ∪ {v}. A set S ⊆ V (G) is a monophonic eccentric dominating set (total
monophonic eccentric dominating set) of G if each w ∈ V (G) \ S (resp. w ∈ V (G)) has a
monophonic eccentric vertex in S. The smallest size of a monophonic eccentric dominating
(total monophonic eccentric dominating) set of G, denoted by γme(G) (resp. γtme(G)),
is called the monophonic eccentric domination number (resp. total monophonic eccen-
tric domination number) of G. Any monophonic eccentric dominating (total monophonic
eccentric dominating) set of G of size γme(G) (resp. γtme(G)) is called a minimum mono-
phonic eccentric dominating set or a γme-set (resp. minimum total monophonic eccentric
dominating set or γtme-set) of G.

Let G be a connected graph with diamm(G) ≥ 3. A set S ⊆ V (G) is a d3m-monophonic
eccentric set of G if for each u ∈ V (G) \ S with emG (u) ≥ 3, there exists w ∈ S such
that emG (u) = dmG (w, u). The minimum cardinality of a d3m-monophonic eccentric set of G,
denoted by µ3

me(G), is called the d3m-monophonic eccentric number of G.
The join of two graphs G and H, denoted by G + H is the graph with vertex set

V (G+H) = V (G)∪ V (H) and edge set E(G+H) = E(G)∪E(H)∪ {uv : u ∈ V (G), v ∈
V (H)}. The corona of graphs G and H, denoted by G ◦H, is the graph obtained fromG
by taking a copy Hv of H and forming the join 〈v〉 + Hv = v + Hv for each v ∈ V (G).
The lexicographic product of graphs G and H, denoted by G[H], is the graph with vertex
set V (G[H]) = V (G) × V (H) and (v, a)(u, b) ∈ E(G[H]) if and only if either uv ∈ E(G)
or u = v and ab ∈ E(H). Note that any non-empty set C ⊆ V (G)× V (H) can be written
as C =

⋃
x∈S

[{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S.

3. Results

Theorem 1. Let G be a connected graph of order n ≥ 1. Then γme(G) = 1 if and only if
G = Kn or there exists v ∈ V (G) satisfying the following properties:
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(i) V (G) \NG[v] = {w ∈ V (G) : dmG (v, w) = 2} 6= ∅;

(ii) NG(v) ⊆ NG(w) for each w ∈ V (G) \NG[v]; and

(iii) dmG (x, y) ≤ 2 for all x, y ∈ V (G) \NG[v].

Proof. Suppose γme(G) = 1 and let S = {v} be a monophonic eccentric dominating
set of G. If G = Kn, then we are done. So suppose that G 6= Kn. Suppose NG[v] = V (G).
Since G 6= Kn, there exist vertices a, b ∈ V (G) such that dG(a, b) = 2 ≤ dmG (a, b). It follows
that v is not a monophonic eccentric vertex of a, contrary to our assumption of S. Thus,
V (G)\NG[v] 6= ∅. Now let w ∈ V (G)\NG[v]. Since v is a monophonic eccentric vertex of
w, we have em(w) = dmG (v, w) ≥ 2. Suppose dmG (v, w) 6= 2, say [v1, v2, ..., vk], where v1 = v,
vk = w and k ≥ 4, is a v-w monophonic path. Since dG(v2, w) ≥ 2, this would imply
that v is not a monophonic eccentric vertex of v2, a contradiction. Thus, dmG (v, w) = 2.
This shows that (i) holds. Next, let z ∈ NG(v) and let w ∈ V (G) \ NG[v]. Since v is a
monophonic eccentric vertex of z, it follows that dG(z, w) = 1, that is, z ∈ NG(w). This
shows that (ii) holds. Finally, let x, y ∈ V (G) \ NG[v]. If dmG (x, y) ≥ 3, then v is not a
monophonic eccentric vertex of x, a contradiction. Thus, dmG (x, y) ≤ 2, showing that (iii)
holds.

For the converse, suppose first that G = Kn. Then, clearly, γme(G) = 1. Next, suppose
that there exists v ∈ V (G) satisfying conditions (i), (ii), and (iii). Let S0 = {v}. By (ii),
v is a monophonic eccentric vertex of every element of NG(v). Let w ∈ V (G) \ NG[v].
Then dmG (v, w) = 2 by (i). Further, by (iii), it follows that v is a monophonic eccentric
vertex of w. Therefore, γme(G) = |S0| = 1.

Theorem 2. Let G1, G2, ..., Gk be the distinct components of G with k ≥ 2 and let
H = K1 +G = 〈v〉+G.

(i) If diamm(Gi) ≤ 2 for each i ∈ {1, 2, ..., k} and one of the components is trivial, then
γme(H) = 1.

(ii) If diamm(Gi) ≤ 2 for each i ∈ {1, 2, ..., k} and none of the components is trivial,
then γme(H) = 2.

Proof. (i) Let Gj be a trivial component of G. Set S = V (Gj) = {w}. Clearly,
NH(w) = {v}. Since diamm(Gi) ≤ 2 for each i ∈ {1, 2, ..., k}, the conditions given in
Theorem 1 are satisfied. Therefore, γme(H) = 1.

(ii) Since none of the components is trivial, none of the vertices of H satisfies the
conditions in Theorem 1. It follows that γme(H) ≥ 2. Pick wi ∈ V (Gi) for i = 1, 2 and
let S = {w1, w2}. Clearly, w1 is a monophonic eccentric vertex of v. Let z ∈ V (G) \ S.
Suppose z /∈ V (G1) ∪ V (G2). Since diamm(Gi) ≤ 2 for each i ∈ {1, 2, ..., k}, it follows
that w1 and w2 are monophonic eccentric vertices of z in H. Suppose z ∈ V (G1). By
assumption, dmGi

(z, w1) ≤ 2. Hence, emH(z) = dmH(z, w2) = 2, that is, w2 is a monophonic
eccentric vertex of z in H. Similarly, w1 is a monophonic eccentric vertex of z in H if
z ∈ V (G2). This shows that S is a monophonic eccentric dominating set of H. Therefore,
γme(H) = |S| = 2.
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Theorem 3. Let G be a connected non-complete graph and let K1 = 〈v〉. Then S is a
monophonic eccentric dominating set of K1 +G if and only if S ∩ V (G) is a monophonic
eccentric dominating set of G.

Proof. Suppose S is a monophonic eccentric dominating set of K1 + G. Since G is
non-complete, SG = S ∩ V (G) 6= ∅. Let w ∈ V (G) \ SG. If dG(w, x) = 1 for every x ∈ S,
then every element of SG is a monophonic eccentric vertex of w. Suppose dG(w, y) 6= 1 for
some y ∈ S. Then emK1+G(w) = emG (w) ≥ dmG (w, y) ≥ 2. Since S is a monophonic eccentric
dominating set of K1 + G, there exists a monophonic eccentric vertex z ∈ S of w. Since
dmK1+G(w, v) = 1, z 6= v. Thus, z ∈ SG and emG (w) = dmG (z, w). Hence, S ∩ V (G) is a
monophonic eccentric dominating set of G.

For the converse, suppose that SG = S ∩ V (G) is a monophonic eccentric dominating
set of G. Let u ∈ V (K1 + G) \ S. If u = v, then every element of S is a monophonic
eccentric vertex of u in K1 + G. Suppose u 6= v. Since SG is a monophonic eccentric
dominating set of G and u ∈ V (G) \ SG, there exists p ∈ SG such that emG (u) = dmG (p, u).
Hence, emK1+G(u) = dmK1+G(p, u). This proves that S is a monophonic eccentric dominating
set of K1 +G.

The next result is a consequence of Theorem 3 and the fact that γme(H) = 1 for every
complete graph H.

Corollary 1. Let G be a connected graph. Then γme(K1 +G) = γme(G).

Theorem 4. Let G1, G2, ..., Gk be the distinct components of G with k ≥ 2 and let
H = K1 + G = 〈v〉 + G. Suppose RG = {j ∈ {1, 2, ..., k} : diamm(Gj) ≥ 3} 6= ∅. Then
S is a monophonic eccentric dominating set of H if and only if Sj = S ∩ V (Gj) is a
d3m-monophonic eccentric set of Gj for each j ∈ RG and, in addition, S ∩ V (Gt) 6= ∅ for
some t ∈ {1, 2, ..., k} \ RG whenever |RG| = 1 and there exists p ∈ V (Gr) \ Sr such that
emGr

(p) = 1 or emGr
(p) = 2 and dmGr

(p, w) = 1 for all w ∈ Sr, where RG = {r}.

Proof. Suppose S is a monophonic eccentric dominating set of H and let j ∈ RG.
Let u ∈ V (Gj) \ Sj with emGj

(u) ≥ 3. Then by assumption, there exists w ∈ S such
that emH(u) = dmH(w, u). Since emH(u) = emGj

(u) ≥ 3, it follows that w ∈ Sj and that
emGj

(v) = dmGj
(w, u). This shows that Sj is a a d3m-monophonic eccentric set of Gj for

each j ∈ RG. Suppose now that |RG| = 1, say RG = {r}. Suppose there exists p ∈
V (Gr) \ Sr such that emGr

(p) = 1 or emGr
(p) = 2 and dmGr

(p, w) = 1 for all w ∈ Sr, where
RG = {r}. Since emH(p) = 2 and S is a monophonic eccentric dominating set of H, there
exist t ∈ {1, 2, ..., k} \RG and x ∈ S ∩ V (Gt) such that emH(p) = dmH(p, x) = 2. This shows
that S ∩ V (Gt) 6= ∅ for some t ∈ {1, 2, ..., k} \RG.

For the converse, suppose that Sj = S ∩ V (Gj) is a d3m-monophonic eccentric set of
Gj for each j ∈ RG and, in addition, S ∩ V (Gt) 6= ∅ for some t ∈ {1, 2, ..., k} \ RG

whenever |RG| = 1 and there exists p ∈ V (Gr)\Sr such that emGr
(p) = 1 or emGr

(p) = 2 and
dmGr

(p, w) = 1 for all w ∈ Sr, where RG = {r}. Let z ∈ V (H)\S. If v /∈ S and z = v, then
every element of S is a monophonic eccentric vertex of z in H. Suppose that z ∈ V (G).
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If |RG| ≥ 2, then by assumption, there exists q ∈ S (q ∈ Si or q ∈ Sj , where i, j ∈ RG and
i 6= j) such that emH(z) = dmH(z, q). Suppose |RG| = 1, say RG = {r}. Assume first that
z ∈ V (Gr). If emGr

(z) ≥ 3, then emGr
(z) = emH(z) and so z has a monophonic eccentric vertex

in H (in Gr) by assumption. Suppose emGr
(z) = 2. If dmGr

(p, w) = 2 for some w ∈ Sr, then
w is a monophonic eccentric vertex of z in H. Suppose dmGr

(p, w) = 1 for all w ∈ Sr. By
assumption, S∩V (Gt) 6= ∅ for some t ∈ {1, 2, ..., k}\RG. Then every element of S∩V (Gt)
is a monophonic eccentric vertex of z in H. If emGr

(z) = 1, then every element of S∩V (Gt)
is a monophonic eccentric vertex of z in H because emH(z) = 2. Next, suppose that z ∈ Gi

for i 6= r. Then emH(z) = 2. Hence, every element of Sr is a monophonic eccentric vertex
of z in H. Therefore, S is a monophonic eccentric dominating set of H.

Corollary 2. Let G1, G2, ..., Gk be the distinct components of G with k ≥ 2 and let
H = K1 +G = 〈v〉+G. Suppose RG = {j ∈ {1, 2, ..., k} : diamm(Gj) ≥ 3} 6= ∅.

(i) If |RG| ≥ 2, then γme(H) =
∑

j∈RG
µ3
m(Gj).

(ii) If RG = {r} and γme(H) 6= µ3
m(Gr), then γme(H) = µ3

m(Gr) + 1.

Proof. (i) Suppose |RG| ≥ 2. Let Sj be a d3m-monophonic eccentric set of Gj such that
µ3
m(Gj) = |Sj | for each j ∈ RG and set S = ∪j∈RG

Sj . Then S is a monophonic eccentric
dominating set of H by Theorem 4. Hence, γme(H) ≤ |S| =

∑
j∈RG

µ3
m(Gj).

Next, suppose that S0 is a minimum monophonic eccentric dominating set of H. Let
S′
j = S0∩V (Gj) for each j ∈ RG. By Theorem 4, S′

j is a d3m-monophonic eccentric set of Gj

for each j ∈ RG. Since |S′
j | ≥ µ3

m(Gj) for each j ∈ RG, γme(H) = |S0| ≥
∑

j∈RG
µ3
m(Gj).

This proves the assertion.
(ii) Suppose RG = {r} and γme(H) 6= µ3

m(Gr). Let S be a minimum monophonic
eccentric dominating set of H. Then S ∩ V (Gr) is a d3m-monophonic eccentric set of Gr

by Theorem 4. If S ∩ V (Gr) = S, then µ3
m(Gr) < |S| = γme(H) by assumption. If

S ∩ V (Gr) 6= S, again, µ3
m(Gr) ≤ |S ∩ V (Gr)| < |S| = γme(H) by assumption. Thus,

µ3
m(Gr) + 1 ≤ γme(H). Next, let SG be a minimum d3m-monophonic eccentric set of

Gr. Let t ∈ {1, 2, ..., k} \ {r} and choose any q ∈ V (Gt). Let S0 = SG ∪ {q}. Then
S0 is a monophonic eccentric dominating set of H by Theorem 4. This implies that
γme(H) ≤ |S0| = µ3

m(Gr) + 1. Therefore, γme(H) = µ3
m(Gr) + 1.

Theorem 5. Let G and H be connected non-complete graphs. Then S is a monophonic
eccentric dominating set of G + H if and only if S = SG ∪ SH , where SG and SH are
monophonic eccentric dominating sets of G and H, respectively.

Proof. Suppose S is a monophonic eccentric dominating set of G + H. Let
SG = S ∩ V (G) and SH = S ∩ V (H). Since G and H are non-complete graphs, SG 6= ∅
and SH 6= ∅. Let v ∈ V (G) \ SG. If dmG (v, x) = 1 for all x ∈ V (G) \ {v}, then
every element of SG is a monophonic eccentic vertex of v in G. Suppose dmG (v, y) 6= 1 for
some y ∈ V (G) \ {v}. Since S is a monophonic eccentric dominating set of G+H, there
exists q ∈ S such that emG+H(v) = dmG+H(v, q). Since dmG+H(v, h) = 1 for all h ∈ SH , it
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follows that q ∈ SG and emG (v) = dmG (v, q). This implies that SG is a monophonic eccentric
dominating set of G. Similarly, SH is a monophonic eccentric dominating set of H.

For the converse, suppose that S = SG ∪ SH , where SG and SH are monophonic
eccentric dominating sets of G and H, respectively. Let x ∈ V (G + H) \ S. Suppose
x ∈ V (G). Then x ∈ V (G) \ SG. By assumption, there exists w ∈ SG such that
emG (x) = dmG (x,w). It follows that emG+H(x) = dmG+H(x,w). Similarly, if x ∈ V (H), then
there exists u ∈ SH ⊆ S such that emG+H(x) = dmG+H(x, u). Therefore, S is a monophonic
eccentric dominating set of G+H.

Corollary 3. Let G and H be connected non-complete graphs. Then

γme(G+H) = γme(G) + γme(H).

The next result shows that the absolute difference of the domination number the
monophonic eccentric domination number can be made arbitrarily large.

Theorem 6. Let n be a positive integer. Then the following statements hold:

(i) There exists a connected graph G1 such that γ(G1)− γme(G1) = n.

(ii) There exists a connected graph G2 such that γme(G2)− γ(G2) = n.

Proof. (i) Consider the corona G1 = Pn+2 ◦ K1 of Pn+2 = [x1, x2, ..., xn+2] and K1

in Figure 1. Clearly, S1 = {x1, x2, ..., xn+1, xn+2} is a minimum dominating set and
S2 = {a, b} is a minimum monophonic eccentric dominating set of G1. Thus,
γ(G1)− γme(G1) = n.
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Figure 1: A graph G1 with γ(G1) = n+ 2 and γme(G1) = 2

(ii) Consider the graph G2 = K1+(∪n+2
j=1Hj), where Hj = P4 for each j ∈ {1, . . . , n+1}.

Clearly, γ(G2) = 1. Now RG2 = {1, 2, ..., n + 1} (see Theorem 4) and
µ3
m(Hj) = µ3

m(P4) = 1 for each j ∈ RG2 . Hence, γme(G2) =
∑

j∈RG
µ3
m(Hj) = n + 1

by Corollary 2. Thus, γme(G2)− γ(G2) = n. This proves the assertion.

Theorem 7. Let G and H be any connected non-trivial graphs. Then S is a monophonic
eccentric dominating set of G ◦H if and only if S = A ∪ (∪v∈V (G)Sv), where A ⊆ V (G)
and Sv ⊆ V (Hv) for each v ∈ V (G), and satisfies the following conditions:

(i) If v ∈ V (G) \A, then Sw 6= ∅ for some w ∈ V (G) with emG (v) = dmG (v, w).
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(ii) If x ∈ V (H) \ Sv and emHv(x) < emG (v) + 2, then Sw 6= ∅ for some w ∈ V (G) with
emG (v) = dmG (v, w).

(iii) If x ∈ V (H) \ Sv and emHv(x) = emG (v) + 2, then there exists y ∈ Sv such that
emHv(x) = dmHv(x, y) or Sw 6= ∅ for some w ∈ V (G) with emG (v) = dmG (v, w).

(iv) If x ∈ V (H) \ Sv and emHv(x) > emG (v) + 2, then there exists y ∈ Sv such that
emHv(x) = dmHv(x, y).

Proof. Suppose S is a monophonic eccentric dominating set of G ◦ H. Let
A = S∩V (G) and Sv = S∩V (Hv) for each v ∈ V (G). Let v ∈ V (G). If v ∈ V (G)\A, then
emG◦H(v) = emG (v)+1. Hence, by assumption, there exist w ∈ V (G) with emG (v) = dmG (v, w)
and q ∈ Sw such that emG◦H(v) = dmG◦H(v, q). This shows that (i) holds. Again, since S is
a monophonic eccentric dominating set of G ◦H, it is routine to show that (ii), (iii) and
(iv) hold.

For the converse, suppose that S is the given set and satisfies the given conditions.
Let x ∈ V (G ◦ H) \ S and let v ∈ V (G) such that x ∈ v + Hv. If x = v, then Sw 6= ∅
for some w ∈ V (G) with emG (v) = dmG (v, w) by (i). It follows that every element of Sw is a
monophonic eccentric vertex of x in G◦H. Suppose x ∈ V (Hv)\Sv. If emHv(x) > emG (v)+2,
then Sv contains a monophonic eccentric vertex of x in G◦H by (iv). If emHv(x) ≤ emG (v)+2,
then x has a monophonic eccentric vertex in G ◦ H by (ii) and (iii). Therefore, S is a
monophonic eccentric dominating set of G ◦H.

Theorem 8. Let G and H be any connected non-trivial graphs such that
radm(H) > diamm(G) + 2. Then S is a monophonic eccentric dominating set of G ◦H
if and only if Sv = S ∩ V (Hv) is a monophonic eccentric dominating set of Hv for each
v ∈ V (G). Moreover, γme(G ◦H) = |V (G)|γme(H).

Proof. Let v ∈ V (G) and let Sv = S ∩ V (Hv). Let x ∈ V (Hv) \ Sv. Since
radm(H) > diamm(G) + 2, emHv(x) > emG (v) + 2. By Theorem 7(iv), there exists y ∈ Sv

such that emHv(x) = dmHv(x, y) = dmG◦H(x, y). This shows that Sv is a monophonic eccentric
dominating set of Hv.

For the converse, suppose that Sv is a monophonic eccentric dominating set of Hv for
each v ∈ V (G). Let z ∈ V (G ◦H) \ S and let w ∈ V (G) such that z ∈ w + V (Hw). Since
radm(H) > diamm(G) + 2, the conditions in Theorem 7 are satisfied by S. Therefore, S
is a monophonic eccentric dominating set of G ◦H.

Next, let Dv be a minimum monophonic eccentric dominating set of Hv for each
v ∈ V (G). Then S0 = ∪v∈V (G)Dv is a minimum monophonic eccentric dominating set of
G ◦H. Thus, γme(G ◦H) = |S0| = |V (G)|γme(H).

For vertex v ∈ V (G), we denote by Nm
G (v) the set of all monophonic eccentric vertices

of v, i.e., Nm
G (v) = {w ∈ V (G) : emG (v) = dmG (v, w)}.

Let G be a connected graph. Denote by Vm(G) a smallest set of vertices of G satisfying
the properties:
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(A) For each v ∈ Vm(G) there exists w ∈ V (G) such that v ∈ Nm
G (w), and

(B) |Vm(G) ∩Nm
G (u)| = 1 for each u ∈ V (G).

As an example, consider the graph G obtained from C4 = [a, b, c, d, a] by adding the
pendant edge ae. The set {c, e} is the smallest subset of G satisfying properties (A) and
(B). Thus, Vm(G) = {c, e}.

Theorem 9. Let G and H be any connected non-trivial graphs such that
diamm(H) < radm(G) + 2. Then S is a monophonic eccentric dominating set of G ◦H
if and only if Sv 6= ∅ for each v ∈ Vm(G) having Sw 6= V (Hw) for some w ∈ V (G) with
v ∈ Nm

G (w), where Su = S∩V (Hu) for each u ∈ V (G). Moreover, γme(G◦H) = |Vm(G)|.

Proof. Suppose S is a monophonic eccentric dominating set of G ◦ H. Let
v ∈ Vm(G) and Sv = S∩V (Hv). Then Qv = {y ∈ V (G) : v ∈ Nm

G (y)} 6= ∅ by property (A)
of Vm(G). Suppose that Sw 6= V (Hw) for some w ∈ Qv, say
z ∈ V (Hw)\Sw. By property (B) of Vm(G), it follows that |Vm(G)∩Nm

G (w)| = {v}. From
the assumption that diamm(H) < radm(G)+2, it follows that emHw(z) < emG (w)+2. Hence,
emG◦H(z) = emG (w)+2 = dmG (w, v)+2. Since S is a monophonic eccentric dominating set of
G ◦H, Theorem 7(ii) guarantees the existence of q ∈ Sv such that emG◦H(z) = dmG◦H(z, q),
showing that Sv 6= ∅.

For the converse, suppose that the given condition holds. Let
z ∈ V (G ◦H) \ S and let w ∈ V (G) such that z ∈ V (w +Hw). Let v ∈ Nm

G (w) ∩ Vm(G).
Since diamm(H) < radm(G) + 2 and Sv 6= ∅ by assumption, every element of Sv is a
monophonic eccentric vertex of z. Since z was arbitrarily chosen, it follows that S is a
monophonic eccentric dominating set of G ◦H.

Next, choose any point xv ∈ V (Hv) for each v ∈ Vm(G) and let
S0 = {xv : v ∈ Vm(G)}. Then S0 is a minimum monophonic eccentric dominating set of
G ◦H. Thus, γme(G ◦H) = |S0| = |Vm(G)|.

Theorem 10. Let G and H be non-trivial connected graphs such that radm(G) > diamm(H).
Then C =

⋃
x∈S

[{x}×Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a monophonic

eccentric dominating set of G[H] if and only if the following hold:

(i) S is a monophonic eccentric dominating set of G.

(ii) For each x ∈ S such that Tx 6= V (H), S ∩Nm
G (x) 6= ∅.

Proof. Suppose C is a monophonic eccentric dominating set of G[H] and let
v ∈ V (G) \ S. Pick any a ∈ V (H). Then (v, a) /∈ C and so by assumption of C,
there exists (w, b) ∈ C such that emG[H]((v, a)) = dmG[H]((v, a), (w, b)). It follows that v 6= w

and emG (v) = dmG (v, w), i.e., w ∈ S ∩Nm
G (v). This shows that S is a monophonic eccentric

dominating set of G.
Next, let x ∈ S with Tx 6= V (H). Let p ∈ V (H) \ Tx. Then (x, p) ∈ V (G[H]) \ C.

Hence, there exists (z, q) ∈ Nm
G[H]((x, p))∩C. Since radm(G) > diamm(H), it follows that
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dmG (x, z) > dmH(p, q). Hence, dmG[H]((z, q), (x, p)) = dmG (x, z) and z ∈ S ∩ Nm
G (x), showing

that (ii) holds.
For the converse, suppose that (i) and (ii) hold. Let (v, a) ∈ V (G[H]) \ C. If v /∈ S,

then there exists w ∈ Nm
G (v) ∩ S by (i). Let d ∈ Tw. Then (w, d) ∈ C. Now, because

radm(G) > diamm(H), it follows that

emG[H]((v, a)) = dmG[H]((v, a), (w, d)) = dmG (w, v) = emG (v).

Suppose v ∈ S. Then a /∈ Tv, i.e., Tv 6= V (H). By (ii), it follows that there exists
z ∈ S ∩Nm

G (v). Pick any b ∈ Tz. Then (z, b) ∈ C and

emG[H]((v, a)) = dmG[H]((v, a), (z, b)) = dmG (z, v) = emG (v).

Therefore, C is a monophonic eccentric dominating set of G[H].

Corollary 4. Let G and H be non-trivial connected graphs such that radm(G) >
diamm(H). Then γme(G[H]) = γtme(G).

Proof. Let S be a γtme-set of G and let p ∈ V (H). For each x ∈ S, let Tx = {p}.
Then C =

⋃
x∈S

[{x} × Tx] = S × {p} is a monophonic eccentric dominating set of G[H] by

Theorem 10. Thus,
γme(G[H]) ≤ |C| = |S| = γtme(G).

Next, let C0 =
⋃
x∈S0

[{x}×Rx] be a γme-set of G[H]. Then S0 is a monophonic eccentric

dominating set of G by Theorem 10(i). If S0 is a total monophonic eccentric dominating
set, then

γme(G[H]) = |C0| ≥ |S0| ≥ γtme(G).

Suppose S0 is not a total monophonic eccentric dominating set. Then there exists
y ∈ S0 such that Nm

G (y) ∩ S0 = ∅. By Theorem 10(ii), Ry = V (H). Let
S1 = {v ∈ S0 : Nm

G (v) ∩ S0 = ∅}. Again, Rv = V (H) for each v ∈ S1 by Theorem
10(ii). For each v ∈ S1, choose a vertex zv ∈ Nm

G (v) and set S2 = {zv : v ∈ S1}. Then
S2 ∩ S0 = ∅ and |S1| ≥ |S2|. Clearly, S∗ = S0 ∪ S2 is a total monophonic eccentric
dominating set of G and we have
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γme(G[H]) = |C0| =
∑
x∈S0

|Rx|

=
∑

x∈S0\S1

|Rx|+
∑
x∈S1

|Rx|

=
∑

x∈S0\S1

|Rx|+ |V (H)||S1|

≥
∑

x∈S0\S1

|Rx|+ 2|S1|

≥
∑

x∈S0\S1

|Rx|+ (|S1|+ |S2|)

≥ |S0 \ S1|+ S1 + S2 = |S∗| ≥ γtme(G).

Accordingly, γme(G[H]) = γtme(G).

Theorem 11. Let G and H be non-trivial connected graphs such that radm(H) >

diamm(G). Then C =
⋃
x∈S

[{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is

a monophonic eccentric dominating set of G[H] if and only if

(i) S = V (G) and

(ii) Tx is a monophonic eccentric dominating set of H for each x ∈ V (G).

Proof. Suppose C is a monophonic eccentric dominating set of G[H]. Suppose
S 6= V (G), say x ∈ V (G)\S. Pick any a ∈ V (H). Then (v, a) /∈ C. As C is a monophonic
eccentric dominating set of G[H], there exists (w, b) ∈ C such that
emG[H]((v, a)) = dmG[H]((v, a), (w, b)). However, the assumption that radm(H) > diamm(G)

implies that emG[H]((v, a)) = emH(a) = dmH(a, b) > emG (v). This is impossible because w 6= x.
Thus, S = V (G), showing that (i) holds.

Let x ∈ V (G). If Tx = V (G), then it is a monophonic eccentric dominating set
of H. Suppose Tx 6= V (H) and let q ∈ V (H) \ Tx. Since (x, q) ∈ V (G[H]) \ C and
emG[H]((x, q)) = emH(q), it follows that there exists p ∈ Tx ∩ Nm

H (q). Hence, Tx is a
monophonic eccentric dominating set of H. This shows that (ii) holds.

For the converse, suppose that (i) and (ii) hold. Let (z, a) ∈ V (G[H]) \ C. Since
S = V (G), it follows that a /∈ Tx. As Tx is a monophonic eccentric dominating set of H
according to (ii), there exists b ∈ Tx such that emH(a) = dmH(a, b). With the assumption
that radm(H) > diamm(G), it follows that

emG[H]((z, a)) = emH(a) = dmH(a, b) = dmG[H]((z, a), (z, b)),

where (z, b) ∈ C. Therefore, C is monophonic eccentric dominating set of G[H].
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The next result is an immediate consequence of Theorem 11.
Corollary 5. Let G and H be non-trivial connected graphs such that radm(H) >
diamm(G). Then γme(G[H]) = |V (G)|γme(H).

Conclusion: Monophonic paths and monophonic distance-related concepts had been
used to define monophonic eccentric dominating set and monophonic eccentric domina-
tion number of a graph. It was shown that the absolute difference of the domination
number and the monophonic eccentric domination number can be made arbitrarily large.
Monophonic eccentric dominating sets in the join, corona, and lexicographic product of
two graphs were characterized and, under some conditions, their monophonic eccentric
domination numbers were subsequently determined. Several aspects of the concept (e.g.
its complexity) and the corresponding parameter remains to be investigated. Moreover,
other variants of the concept may as well be introduced and studied.
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