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Abstract. Let G be a simple connected graph. For S ⊆ V (G), the weakly connected closed
geodetic dominating set S of G is a geodetic closure IG[S] which is between S and is the set
of all vertices on geodesics (shortest path) between two vertices of S. We select vertices of G
sequentially as follows: Select a vertex v1 and let S1 = {v1}. Select a vertex v2 ̸= v1 and let
S2 = {v1, v2}. Then successively select vertex vi /∈ IG[Si−1] and let Si = {v1, v2, ..., vi} for
i = 1, 2, ..., k until we select a vertex vk in the given manner that yields IG[Sk] = V (G). Also, the
subgraph weakly induced ⟨S⟩w by S is connected where ⟨S⟩w = ⟨N [S], Ew⟩ with Ew = {u, v ∈
E(G) : u ∈ S or v ∈ S} and S is a dominating set of G. The minimum cardinality of weakly
connected closed geodetic dominating set of G is denoted by γwcg(G). In this paper, the authors
show and investigate the concept weakly connected closed geodetic dominating sets of some graphs
and the join, corona, and Cartesian product of two graphs are characterized. The weakly connected
closed geodetic domination numbers of these graphs are determined. Also, some relationships
between weakly connected closed geodetic dominating set, weakly connected closed geodetic set,
geodetic dominating set, and geodetic connected dominating set are established.
2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: weakly connected closed geodetic dominating set, and weakly con-
nected closed geodetic domination number.

1. Introduction

In this paper we explore a parameter that is, defined in the same manner that the well-
known weakly connected closed geodetic number of a graph G is. Indeed, while a weakly
connected closed geodetic set of a graph G necessitates a geodetic closure IG[S] which is
between S and is the set of all vertices on geodesics (shortest path) between two vertices of
S and the subgraph weakly induced ⟨S⟩w by S is connected where ⟨S⟩w = ⟨N [S], Ew⟩ with
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Ew = {u, v ∈ E(G) : u ∈ S or v ∈ S}. The motivation of introducing the concept is to give
a further investgation on weakly connected domination, closed geodetic domination and
some of its variations. In fact, it can be shown that every weakly connected closed geodetic
dominating set is a weakly connected closed geodetic set of a graph G. Thereupon, the
weakly connected closed geodetic number of a graph G is at most equal to the weakly
connected closed geodetic domination number of a graph G.

The concept of weakly connected closed geodetic nmbers was introduce and studied by
Patangan, et. al [12]. Some concept and its number are also introduced by Aniversario,
et.al [1], Chellathurai, et. al [6], Dunbar, et.al [7], Jamil, et.al [11], and Sandueta, et.al
[13]. Furthermore, the weakly connected closed geodetic number of a graph may be used
to give bounds on some weakly connected closed geodetic domination related parameters.
Moreover, this newly concept may be applied to introduce some concepts (say, a variant
of weakly connected closed geodetic domination) in the future.

2. Terminology and Notation

A set is a dominating set of G if NG[S] = V (G). The domination number of G, denoted
by γ(G), is the minimum cardinality among the dominating sets of G. A dominating set S
with |S| = γ(G) is said to be γ-set of G. A connected dominating set S of a graph G is a
dominating set such that the subgraph ⟨S⟩ induced by S in G is connected. The minimum
cardinality of a connected dominating set of G is called the connected domination number
of G, denoted by γc(G). A connected dominating set S with |S| = γc(G) is called γc-set
of G Tarr, et.al [14], and Duckworth, et.al [8].

Let S ⊆ V (G). The subgraph weakly induced by S is the graph ⟨S⟩w = (NG[S], Ew),
where Ew = {uv ∈ E(G) : u ∈ S or v ∈ S}. The symbol Ew(S) means Ew, Patangan,
et.al [12]. A dominating set S ⊆ V (G) is a weakly connected dominating set in G if
the subgraph ⟨S⟩w weakly induced by S is connected. The weakly connected domination
number γw(G) of G is the minimum cardinality among all weakly connected dominating
sets of G. A weakly connected dominating set S with |S| = γw(G) is said to be γw-set of
G, Sandueta, et.al [13].

Let u, v ∈ V (G). A shortest path from u to v in G is called a u-v geodesic of G. The set
IG[u, v] consists of u, v, and all vertices lying in some u-v geodesic of G. For a nonempty
subset S of V (G), IG[S] =

⋃
u,v∈S

I[u, v], Chartrand, et.al [4]. Let G be a connected graph,

then set S ⊆ V (G) is a geodetic set of G if IG[S] = V (G). The set IG[S] is called the
geodetic closure of G. The minimum cardinality of a geodetic set is the geodetic number
of G, and is denoted by g(G). The geodetic number of a disconnected graph is the sum
of the geodetic numbers of its components. A geodetic set of cardinality g(G) is called a
g-set. Henceforth, the set IG(u, v) denotes the set IG[u, v] \ {u, v}. A set S ⊆ V (G) is
called a geodetic dominating set of G if S is both a geodetic set and a dominating set. The
minimum cardinality of a geodetic dominating set of G is the geodetic domination number
of G, and is denoted by γg(G). A geodetic dominating set S with |S| = γg(G) is said to be
a γg-set G.A set of vertices in S in a graph G is said to be geodetic connected dominating set
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of G if S is both a geodetic set and connected dominating set. The minimum cardinality of
a geodetic connected dominating set of G is called a geodetic connected domination number
of G, denoted by γgc(G). A geodetic connected dominating set S with |S| = γgc(G) is said
to be a γgc-set of G. The geoodesic set, geodetic dominating set and geodetic connected
dominating set are studied by Escuadro, et.al [9], Patangan et.al, [12], and Tejaswini, et.al
[15]. The set S is a closed geodetic cover of a graph G if S = {v1, v2, ..., vk} and is obtained
by choosing the vertices v1, v2, ..., vk such that the following hold:

(i) v1 ̸= v2;

(ii) vi /∈ IG[Si−1] for 3 ≤ i ≤ k; and

(ii) IG[Sk] = V (G), where Si = {v1, v2, ..., vi} for all i = 1, 2, ..., k

If S ⊆ V (G) satisfies (i) and (ii) of the definition above, then S is a closed geodetic subset
of V (G). The collection of all closed geodetic covers of G is denoted by C∗(G). The closed
geodetic number of G, is given by cgn(G) = min{|S| : S ∈ C∗(G)}. A set S ∈ C∗(G) with
|S| = cgn(G) is called the closed geodetic basis of G and is denoted by cgb(G) Aniversario,
et.al [1], and Patangan, et.al [12].

A vertex v in a connected G is an extreme vertex if the neighborhood N(v) of v induces
a complete subgraph of G. The set of all extreme vertices in G is denoted by Ext(G). By a
neighborhood N(v) of a vertex v in G is the set of all vertices x in G suh that dG(v, x) ≤ 1.
A set S ⊆ V (G) is said to be a closure absorbing set in G if for every v ∈ V (G) \ S, there
exist u,w ∈ N(v) ∩ S with dG(u,w) = 2, Cagaanan [3], and Aniversario, et.al [1]. Let
G be the connected graph and S ⊆ V (G). The 2 - path closure P2[S]G of S is that set
P2[S]G = S ∪ {w ∈ V (G) : w ∈ IG[u, v] for some u, v ∈ S with dG(u, v) = 2}. The set S is
called 2 - path closure absorbing set if P2[S]G = V (G), Canoy, et.al [5], and Aniversario,
et.al [1]. A set S is called a weakly connected closed geodetic set of G, if it satisfies the
following properties:

(i) S ∈ C∗(G); and

(ii) ⟨S⟩w is connected.

The minimum cardinality of a weakly connected closed geodetic set is called the weakly
connected closed geodetic number of G, denoted by wcgn(G). In a weakly connected closed
geodetic set S, for every v ∈ S, there exists u ∈ S such that dG(u, v) ≤ 2. Moreover,
if {S1, S2, ..., Sk} is the sequence corresponding to the weakly connected geodetic set S,
⟨Si⟩w is connected for each i = 1, 2, ..., k, Patangan, et.al [12].

3. Results

Definition 1. A weakly connected closed geodetic set of G which is dominating is called a
weakly connected closed geodetic dominating set of G. The minimum cardinality of a weakly
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connected closed geodetic dominating set is called weakly connected closed geodetic domi-
nation number of G, denoted by γwcg(G). A weakly connected closed geodetic dominating
set S with |S| = γwcg(G) is said to be a γwcg-set of G.

Example 1. Let G be the graph in Figure 1 and S = {u2, u4, u6}. Then u2 ̸= u4 with
u6 /∈ IG[u2, u4] and

IG[u2, u4] = {u2, u4},
IG[u2, u6] = {u2, u1, u6} ∪ {u2, u5, u6} = {u1, u2, u5, u6} and
IG[u4, u6] = {u4, u5, u6} ∪ {u4, u3, u6} = {u3, u4, u5, u6}.

Thus, IG[S] = {u1, u2, u3, u4, u5, u6} = V (G). Since u6 /∈ IG[u2, u4], IG[S] is a geodetic
closure of S. Also, NG[S] = V (G), ⟨S⟩w is connected. In fact, it can be verified that there
is no set of lesser cardinality than S that is a weakly connected. Note that u6 /∈ IG[u2, u4].
Thus, S = {u2, u4, u6} is a weakly connected closed geodetic set and dominating.

u1 u2

u3

u4u5

u6

G :

u1 u2

u3

u4u5

u6

⟨S⟩w :

Figure 1: Graph G with γwcg(G) = 3

Remark 1. Every weakly connected closed geodetic dominating set of a graph G is weakly
connected closed geodetic set. So, wcgn(G) ≤ γwcg(G).

Remark 2. For any nontrivial connected graph G of order n,

2 ≤ max{γ(G), wcg(G)} ≤ γwcg(G) ≤ n.

Remark 3. Every superset of a weakly connected closed geodetic dominating set is weakly
connected closed geodetic dominating set.

Lemma 1. Aniversario, et al [1] Every geodetic cover of a connected graph G contains all
its extreme vertices.

Theorem 1. Let G be a connected graph of order n. Then

(i) every weakly connected closed geodetic dominating set of G contains its extreme ver-
tices.
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(ii) if the set S of extreme vertices of G is a weakly connected closed geodetic dominating
set of G. Then S is a unique minimum weakly connected closed geodetic dominating
set of G and γwcg(G) = |S|.

Proof.

(i) Let S be a weakly connected closed geodetic dominating set and let v be an extreme
vertex of G. Assume that v /∈ S. Then by Lemma 1, S is not a geodetic cover of G.
Thus, S is not a closed geodetic dominating set of G. Hence, S is not weakly con-
nected closed geodetic dominating set of G, which is a contradiction. Therefore, each
extreme vertex of G belongs to every weakly connected closed geodetic dominating
set of G.

(ii) Let S be a set of extreme vertices of G. Suppose S is a weakly connected closed
geodetic dominating set of G and let v be an extreme vertex of G.
Claim 1: S is a minimum weakly connected closed geodetic dominating set of G.
Suppose S is not γwcg-set of G. Then there exists v ∈ S such that S \{v} is a weakly
connected closed geodetic dominating set of G. So, v /∈ IG[u,w] for some u, w ∈ S
and v ̸= x, y for all x, y ∈ V (G) since v is an extreme vertex of G. Then v /∈ V (G),
which is a contradiction. Consequently, S is a minimum weakly connected closed
geodetic dominating set of G.

Claim 2: S is unque minimum weakly connected closed geodetic dominating set of
G.
Let S be a unique weakly connected closed geodetic dominating set of G. Then
since S contains its extreme vertices and is a minimum weakly connected closed
geodetic dominating set of G. Therefore, S is unque minimum weakly connected
closed geodetic dominating set of G. Furthermore, unique.

The next result immediately follows from Theorem 1.

Corollary 1. Every weakly connected closed geodetic dominating set of G contains its
extreme vertices, then

(i) the complete graph Kn has γwcg(Kn) = n for n ≥ 2.

(ii) the path Pn of order n has γwcg(Pn) =
⌈
n+1
2

⌉
.

(iii) the cycle Cn of order n has γwcg(Cn) =
⌈
n
2

⌉
for n ≥ 4.

(iv) the complement of a cycle Cn of order n has γwcg(Cn) = 3 for n ≥ 5.

(v) the fan Fn of order n has γwcg(Fn) =
⌈
n
2

⌉
for n ≥ 4.

(vi) the wheel Wn of order n has γwcg(Wn) =
⌈
n−1
2

⌉
for n ≥ 5.

(vii) the Petersen graph G has γwcg(G) = 4.
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Theorem 2. Let G be a connected graph of order n. Then γwcg(G) = n if and only if
G = Kn.

Proof. Suppose that γwcg(G) = n. Assume that G ̸= Kn. Then there exist x, y ∈ V (G)
such that dG(x, y) = 2. Now, construct a set S = {v1, v2, ..., vk} where S ∈ C∗(G) and
x = v1 and y = v2. Since IG[v1, v2] ̸= {v1, v2} and vi ∈ IG[Si−1] for all i = 3, 2, 4, ..., k,
we have IG[S] ̸= S. In fact, IG[S] = V (G). Thus, k < n. Moreover, Since NG[S] = V (G)
and Ew(S) of G is induces a connected subgraph, it follows that ⟨S⟩w is also connected,
Furthermore, since IG[S] = V (G), it follows that S is a dominating set of G. Therefore.
γwcg(G) = n which is a contradiction to the assumption. Consequently, G = Kn. The
converse follows from Corollary 1 (i).

Lemma 2. Let m,n ≥ 2 and let U and W be the partite sets of Km,n. A subset S of
V (Km,n) is a weakly connected closed geodetic dominating set of Km,n if and only if S is
any of the following:

(i) S = U ;

(ii) S = W ;

(iii) S = U ∪ {w} for some w ∈ W ;

(iv) S = W ∪ {u} for some u ∈ U .

Theorem 3. Let m,n ≥ 2 and let U and W be the partite sets of Km,n. Then
γwcg(Km,n) = min{|S| : S ∈ W(Km,n)}.

Proof. Let m,n ≥ 2 and let U and W be the partite sets of Km,n. By Lemma 2,
γwcg(Km,n) = min{|U |, |W |, |U ∪ {w}| for some w ∈ W and |W ∪ {u}| for some u ∈ U}.

Corollary 2. Let m,n ≥ 2 and let U and W be the partite sets of Km,n. Then
γwcg(Km,n) = min{m,n}.

Theorem 4. Let m,n ≥ 2 and S ⊆ V (Km,n). Then S is a γwcg-set of Km,n if and only
if S is wcg-set of Km,n.

Theorem 5. For the complete bipartite Km,n,

(i) γwcg(Km,n) = 2, for m = n = 1.

(ii) γwcg(Km,n) = n, for n ≥ 2, m = 1.

(iii) γwcg(Km,n) = m, for m ≥ 2, n = 1.

Corollary 3. The star K1,n−1 of order n has γwcg(K1,n−1) = n− 1.
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Theorem 6. For a helm Hn, γwcg(Hn) = n+ 1 for n ≥ 3.

Proof. Let ui be the vertices of a cycle Cn where n = 1, 2, 3, ..., n, v
′ be the center

vertex of Hn and vi be the pendant vertices of Hn where n = 1, 2, 3, ..., n. Then every vi is
connected to each vertex ui. Let S1 = {v1} and S2 = {v1, v3} where IHn [S2] = {v1, v2, v3}.
Continuing this process we obtain a set Sn ∈ C∗(G) where IHn [Sn] = V (Hn). Therefore Sn

is a closed geodetic cover of Hn. However, Sn is not a dominating set of Hn since Sn does
not dominate the vertex v

′ . Now, we need to pick v
′
/∈ Sn for Sn+1 = {v′

, v1, ..., vn}. Let
S1 = {v′}, S2 = {v′

, v2} where IHn [S2] = {v′
, v1, v2}. Continuing this process we obtain

a set Sn+1 ∈ C∗(G) where IH2 [Sn+1] = V (Hn). Thus, Sn+1 is both closed geodetic cover
and dominating set of Hn. Clearly, NG[Sn+1] = V (Hn) and Ew(S) induces a connected
subgraph. It follows that ⟨S⟩w is connected. Therefore, Sn+1 is weakly connected closed
geodetic dominating set of Hn. Furthermore, γwcg(Hn) = |Sn+1| = n+ 1.

The next results present some relationships between γwcg(G), wcgn(G), γw(G), γg(G),
γgc(G) and γ(G).

Theorem 7. Let G be any connected graph of order n ≥ 2. Then γwcg(G) = 2 if and only
if wcgn(G) = 2.

Theorem 8. If G is a connected graph with γ(G) = 1, then γwcg(G) = wcgn(G).

Proposition 1. For a complete bipartite graph Km,n with integers m,n ≥ 2,

γwcg(Km,n) = min{m,n} = wcgn(Km,n).

Theorem 9. Let G be a connected graph of order n. Then,

γg(G) ≤ γwcg(G).

Proof. Let G be a connected graph. Suppose that γwcg(G) < γg(G). Let
S = {v1, v2, v3, ..., vi} is a γg-set of G. Then γwcg(G) < |S| = γg(G). Hence, by removing
an element in S, say v1 we have γwcg(G) ≤|S|. If |S \ {u1}| = γwcg(G), then S \ {u1}
is a geodetic dominating set of G, a contradiction. If γwcg(G) < |S \ {u1}|, then repeat
the process above until we get |S \ {u′is}| = γwcg(G). Therefore, S \ {u′is} is a geodetic
dominating set of G, which is a contradiction. Consequently, we have γg(G) ≤ γwcg(G) in
any case.

Theorem 10. Let G be a complete graph Kn for n ≥ 2, if G = Kn,
then γg(Kn) = γwcg(Kn).

Corollary 4. The γwcg(G) = γw(G) for some special graphs given as follows:

(i) The complement of a cycle Cn of order n has

γwcg(Cn) = 3 = γg(Cn) for n ≥ 5.
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(ii) The star graph K1,n−1 of order n has

γwcg(K1,n−1) = n− 1 = γg(K1,n−1).

(iii) The wheel graph Wn has

γwcg(Wn) =
⌈
n−1
2

⌉
= γg(Wn) for n ≥ 5.

Theorem 11. The complete bipartite Km,n has γg(Km,n) ≤ γwcg(Km,n), for m,n ≥ 2.

Proposition 2. Let G be a complete graph Kn for n ≥ 2 vertices. Then

γwcg(Kn) = γgc(Kn).

Proposition 3. Let G be a path Pn, then γwcg(Pn) < γgc(Pn).

Theorem 12. Let G be a cycle Cn, then γwcg(Cn) ≤ γgc(Cn) for n ≥ 4.

Theorem 13. Let G be a complete bipartite Km,n for 2 ≤ m,n ≤ 4. Then

γwcg(Km,n) ≤ γgc(Km,n).

Corollary 5. If G is a complete bipartite Km,n for m, n ≥ 5. Then

γwcg(Km,n) ≥ γgc(Km,n).

The join of two graphs G and H, denoted by G + H, is the graph with vertex-set
V (G+H) = V (G)

•
∪ V (H) and edge-set E(G+H) = E(G)

•
∪E(H)

•
∪ {uv : u ∈ V (G), v ∈

V (H)}, Harary [2].

Lemma 3. Aniversario, et.al [1] If G is a connected graph and diam(G) = 2, then every
geodetic cover of G is a 2-path closure absorbing set in G.

Theorem 14. Aniversario, et.al. [1] Let H be a connected noncomplete graph, and let
G = H +Kp. Let S ⊆ V (H). If S is a 2-path closure absorbing set in H and S ∈ C∗(H),
then S ∈ C∗(G).

Theorem 15. Let H be a connected noncomplete graph and let G = H + Kp. If S is a
2-path closure absorbing in H and S ∈ W(H), then S ∈ W(G).

Proof. Let H be a connected noncomplete graph and let G = H +Kp. Suppose that S
is a 2 - path closure absorbing in H and S ∈ W(H). Then by Theorem 14, S ∈ C∗(G). To
show that S is a weakly connected dominating set of G. Since G is connected, for every u,
v ∈ S, dG(u, v) = 2 and for all y ∈ V (Kp), y is in u-v geodesic. Thus, V (⟨S⟩w) = V (G). It
remains to show that for every u, v ∈ S there is an edge mu or nv with m,n ∈ V (G) \ S.

Suppose there exists x ∈ S such that mx, nx /∈ Ew(S) for any m, n ∈ V (G) \ S.
If m, n ∈ V (Kp), then mx, nx ∈ Ew(S). However, if m, n ∈ V (H) \ S, then mx,
nx ∈ Ew(S). Further, if without loss of generality, m ∈ V (Kp) and n ∈ V (H) \ S,
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then mx, nx ∈ Ew(S). In either case, mx, nx ∈ Ew(S). Hence, ⟨S⟩w is connected. It
follows that S is a weakly connected set of G. Since every vertex in H is adjacent to
every vertex in Kp, there exist u, v ∈ S such that dH(u, v) = 2 such that every vertex
in Kp lies in the u − v geodesic of G and dG(u, v) = 2. It follows that V (Kp) ⊆ N [S].
Hence, V (G) = V (H) ∪ V (Kp) ⊆ N [S]. Hence, S is a dominating set of G. Thus, S is a
γwcg - set, that is S ∈ W(G).

Theorem 16. Let H be a connected noncomplete graph and G = H+Kp. If S is a γwcg-set
of G, then S ⊆ V (H) and S is a 2-path closure absorbing set in H.

Corollary 6. Let H be a connected noncomplete graph and G = H +Kp, then

γwcg(H +Kp) = min{|S|: S ⊆ V (H), S ∈ W(G) and P2[S]H = V (H)}.

Proof. Define ω = min{[S] : S ⊆ V (H), S ∈ W(G) and P2[S]H = V (H)}.
Case 1. Suppose that H is a connected noncomplete graph and G = H + Kp, then
γwcg(G) ≤ ω.
Case 2. Suppose that S ∈ W(G). Let S ⊆ V (G) be a γwcg-set of G. Then by Theorem
16, S ⊆ V (H) and S is a 2-path closure absorbing set in H. Hence γwcg(G) =|S|≥ ω.
Consequently, by combining these two inequalities the conclusion follows.

Corollary 7. Let H be a connected noncomplete graph and let G = H+Kp. If diam(H) =
2, then γwcg(G) = γwcg(H).

Proof. Suppose that G = H +Kp where H is a noncomplete graph with diam(H) = 2.
Case 1. Let S ⊆ V (H) such that S ∈ W(G). Then by Corollary 6, γwcg(G) =|S|≥
γwcg(H).
Case 2. Let S be a γwcg(G)-set of G. Then by Theorem 16 , S ⊆ V (H) and S is a 2-path
closure absorbing set in H. Thus, by Theorem 15, S ∈ W(G). Hence, by Corollary 6,
γwcg(G) =|S|≤ γwcg(H).
Consequently, combining these two inequalities the conclusion follows.

Theorem 17. Let G = H +K where H and K are connected noncomplete graphs. If S
is a γwcg-set of G, then either

(i.) S ⊆ V (H), where S is a 2-path closure absorbing set in H, or

(ii.) S ⊆ V (K), where S is a 2-path closure absorbing set in K.

Proof. Let G = H +K where H and K are connected noncomplete graphs. Suppose
γwcg(G) = k and let S = {y1, y2, ..., yk} ∈ W(G). If ⟨S⟩ is a complete subgraph of G
and IG[S] = V (G), then NG[S] = V (G) and Ew(S) is connected which implies that ⟨S⟩w
is connected. Hence, V (⟨S⟩w) = V (G), a contradiction. Thus, there exist integers i, j,
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1 ≤ i < j ≤ k such that dG(yi, yj) = 2. Either yi, yj ∈ V (H) or yi, yj ∈ V (K). Suppose
yi, yj ∈ V (H). We claim that S ∩ V (K) = ∅. Clearly, V (K) ⊆ IG[yi, yj ].

Suppose that S ∩ V (K) = {z} and let z = yl. Then l < j. We consider the set
S∗ = {xi, x2, ..., xk−1} where

xn =

{
yn, if 1 ≤ n ≤ l − 1

yn+1, if l ≤ n ≤ k − 1 .

Since dG(yl, yn) = 1 for all n = 1, 2, ..., l − 1, l + 1, ..., k, IG[S
∗] = V (G). This implies

that S∗ ∈ C∗(G). Since G is connected, for every xi, xj ∈ S∗, dG(xi, xj) = 2. Then there
exists z ∈ V (G) \ S such that z lies in xi-xj geodesic. Thus, for NG[S

∗] = V (G) and xi,
xj ∈ Ew(S) for all z ∈ V (G)\S. This implies that S∗ ∈ W(G), contrary to the assumption
that γwcg(G) = k.

Suppose that |S ∩ V (K)| ≥ 2. In here, we consider two subcases,
Subcase 1. When dG(x, y) = 1 for all x, y ∈ S ∩ V (K); and
Subcase 2. When for some x, y ∈ S

⋂
V (K), dG(x, y) = 2.

Suppose that dG(x, y) = 1 for all x, y ∈ S ∩ V (K) = {yr1 , yr2 , ..., yrl}. Then rn < j
for all n = 1, 2, ..., l. We consider the set S∗ = S ∩ V (H). Write S∗ = {x1, x2, ..., xk−l}
such that if xn = yp and xm = yq, then n < m if and only if p < q. Since yi, yj ∈ S∗,
we have for every n = 1, 2, ..., l, IG[x, yrn ] = {x, yrn} ⊆ IG[S

∗] for all x ∈ S. Thus,
IG[S

∗] = IG[S] = V (G). Hence, there exists z ∈ V (G) \ S∗ such that z lies in x-yrn
geodesic. Thus, NG[S

∗] = NG[S] = V (G) and xz, yz ∈ E(⟨S⟩w) for all z ∈ V (G) \ S∗.
This means that S∗ ∈ W(G). The fact that k-l < k, a contradiction. Lastly, suppose that
dG(ym, yn) = 2 for some ym, yn ∈ S ∩ V (K) with m < n. Again, we must have n < j.
But, if dG(ym, yn) = 2, then V (H) ⊆ IG[ym, yn], and in particular, yj ∈ IG[ym, yn]. But by
definition of S, yj /∈ IG[Sn]. It follows that yj /∈ NG[Sn]. Hence, NG[Sn] ̸= V (G). Thus,
Sn /∈ W(G), a contradiction.

Now, we are left to show that S is a 2-path closure absorbing in H. Suppose that
S ⊆ V (H). By Theorem 16 and Lemma 3, P2[S]G = V (G). Let z ∈ V (H) \ S. Then
z ∈ V (G) \ S, and there exist x, y ∈ S such that z ∈ IG[x, y] and dG(x, y) = 2. This
implies that [x, z, y] is a x-y geodesic in H. Thus, z ∈ IH [x, y] and dH(x, y) = 2. This
means that P2[S]H = V (H), and so S is a 2-path closure absorbing in H.

Similarly, if yi, yj ∈ V (K), then S ⊆ V (K). Moreover, if S ⊆ V (K), then S is a 2-path
closure absorbing in K.

Theorem 18. Let G = H + K, where H and K are connected noncomplete graphs. If
either

(i.) S ⊆ V (H), where S is a 2-path closure absorbing set in H and S ∈ W(H) or

(ii.) S ⊆ V (K), where S is a 2-path closure absorbing set in K and S ∈ W(K),

then S ∈ W(G).
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Theorem 19. Let G = H + K, where H and K are connected noncomplete graphs.
Then γwcg(G) = min{Γ(H),Γ(K)}, where Γ(H) = min{|S|: S ⊆ V (H), S ∈ W(G) and
P2[S]H = V (H)} and Γ(K) = min{|S|: S ⊆ V (K), S ∈ W(G) and P2[S]K = V (K)}.

Proof. Let G be a connected graph and let G = H +K where H and K are connected
noncomplete graphs. Assume that S ⊆ V (G) is a γwcg-set of G. Then by Theorem 17,
we have S ⊆ V (H) and S is a 2-path closure absorbing set in H or S ⊆ V (K) and
S is a 2-path closure absorbing set in K. Hence, γwcg(G) ≥ min{Γ(H),Γ(K)}, where
Γ(H) = min{|S|: S ⊆ V (H), S ∈ W(G) and P2[S]H = V (H)} and Γ(K) = min{|S|: S ⊆
V (K), S ∈ W(G) and P2[S]K = V (K)}. By Theorem 18, γwcg(G) ≤ min{Γ(H),Γ(K)}.
Consequently, γwcg(G) = min{Γ(H),Γ(K)}.

Corollary 8. The weakly connected closed geodetic domination number of the join graph of
the Path graph Pn, cycle graph Cn, and complete bipartite graph Km,n are given as follows.

(i.) γwcg(Pm + Pn) = min{⌈m+1
2 ⌉, ⌈n+1

2 ⌉}, for m,n > 2.

(ii.) γwcg(Cm + Cn) = min{⌈m2 ⌉, ⌈
n
2 ⌉}, for m,n > 3.

(iii.) γwcg(Km,n +Kp) = min{m,n}, for m,n > 2.

(iv.) γwcg(Km,n +Kp,q) = min{m,n, p, q}, for m,n, p, q ≥ 2.

Corollary 9. Let H and K are connected noncomplete graphs and G = H + K. If
diam(H) = diam(K) = 2, then γwcg(G) = min{γwcg(H), γwcg(K)}.

The corona of graphs G and H, G ◦ H, is the graph obtained by taking one copy of
G and |V (G)| copies of H, and then joining the ith vertex of G to every vertex of the ith
copy of H. For every v ∈ V (G), denote by Hv the copy of H whose vertices are attached
one by one to the vertex v. Subsequently, denote by v + Hv the subgraph of the corona
G ◦H corresponding to the join ⟨{v}⟩+Hv, v ∈ V (G), Harary [2].

Theorem 20. Jamil, et.al [11] Let G = H ◦K, where H is a nontrivial connected graph
and K a noncomplete graph, and let S ⊆ V (G). Then S ∈ C∗(G) if and only if S =

(
⋃

v∈V (H)

Sv) ∪ S0, where Sv ⊆ V (Kv) and Sv ∈ C∗(v + Kv), and S0 is a closed geodetic

subset of V (H).

Lemma 4. Let G = H ◦K, where H is a nontrivial connected graph, and K a noncomplete
graph. If S ∈ W(G), then S ∩ V (Kv) ∈ W(v +Kv) for all v ∈ V (H).

Lemma 5. Let G = H ◦K, where H is a nontrivial connected graph of order m and K
a noncomplete graph. Let Sv ⊆ V (Kv) for all v ∈ V (H). If Sv ∈ W(v + Kv) for each
v ∈ V (H), then S =

⋃
v∈V (H)

Sv ∈ W(G).
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Theorem 21. Let G = H ◦K, where H is a nontrivial connected graph and K a noncom-
plete graph, and let Sv ⊆ V (G). Then S ∈ W(G) if and only if S = (

⋃
v∈V (H)

Sv)∪S0, where

Sv ⊆ V (Kv) and Sv ∈ W(v +Kv), and S0 is a weakly connected closed geodetic subset of
V (H).

Proof. Suppose that S ∈ W(G). Then S ∈ C∗(G). By Theorem 20, S = (
⋃

v∈V (H)

Sv) ∪

S0 . where Sv ⊆ V (K) and Sv ∈ C∗(v + Kv) and S0 is a closed geodetic subset. By
Lemma 4, S ∩ V (Kv) ∈ W(v+Kv) for all v ∈ V (H). Thus, S0 = S \

⋃
v∈V (H)

Sv is a closed

geodetic subset is also a weakly connected closed geodetic subset of V(H). It remeains to
show that Sv ∈ W(v +Kv). That is, Sv is a weakly connected closed geodetic dominating
set of v +Kv.

Now for any x, y ∈ Sv there exists z ∈ Sv such that xz, yz ∈ E(v+Kv). Thus, Ew(SV )
will induce a connected subgraph since N [Sv] = V (v +Kv), we have Sv ∈ W(v +Kv).

Conversely, suppose that S = (
⋃

v∈V (H)

Sv)∪S0 . where Sv ⊆ V (K) and Sv ∈ W(v+Kv)

and S0 is a weakly connected closed geodetic subset of V (H). By Lemma 5,
⋃

v∈V (H)

Sv ∈

W(G). If S0 = ∅, then we are done. Suppose that S0 ̸= ∅. By Theorem 20 and and Lemma
3, S = (

⋃
v∈V (H)

Sv) ∪ S0 gives S0 = S \
⋃

v∈V (H)

, where S ∈ C∗(G) and
⋃

v∈V (H)

∈ C∗(G) and

S0 is a weakly connected closed geodetic subset of V(H). Thus, for any x, y ∈ V (G) \ S
there exists s ∈ S such that xs, ys ∈ E(G). Hence, Ew(S) will induce a weakly connected
subgraph of G. Therefore, S = (

⋃
v∈V (H)

Sv) ∪ S0 ∈ W(G).

Corollary 10. Let G = H ◦K, where H is a connected graph and K a noncomplete graph.
Then S is γwcg-set of G if and only if S =

⋃
v∈V (H)

Sv, where each Sv ⊆ V (v + Kv) is

γwcg-set of v +Kv.

Corollary 11. Let G = H ◦ K, where H is a connected graph of order m and K a
noncomplete graph. Then γwcg(G) = m · γwcg(K1 ◦K).

Theorem 22. Let G = H ◦K, where H is a connected graph of order m. If n ≥ 3, then
γwcg(H ◦ Cn) = m · ⌈n2 ⌉.

Proof. Let G = H ◦ K, where H is a connected graph of order m and K = Cn be a
noncomplete graph. Then, we have

γwcg(H ◦ Cn) = m · γwcg(K1 ◦ Cn), by Corollary 11
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= m · γwcg(Wn+1)

= m ·
⌈n+ 1− 1

2

⌉
, by Corolary 1 (vi)

= m ·
⌈n
2

⌉

Corollary 12. If G = Pm ◦ Cn. Then γwcg(G) = m ·
⌈
n
2

⌉
for n ≥ 3.

Theorem 23. Let G = H ◦K, where H is a connected graph of order m. If n ≥ 3, then
γwcg(H ◦ Pn) = m · ⌊n+2

2 ⌋.

Proof. Let G = H ◦ K, where H is a connected graph of order m and K = Pn be a
noncomplete graph. Then, we have

γwcg(H ◦ Pn) = m · γwcg(K1 ◦ Pn), by Corollary 11
= m · γwcg(Fn+1)

= m ·
⌈n+ 1

2

⌉
, by Corolary 1 (v)

Corollary 13. If G = Cm ◦ Pn. Then γwcg(G) = m ·
⌈
n+1
2

⌉
, n ≥ 3.

Theorem 24. Let H be a nontrivial connected graph of order n and K = Kn. Then
S =

⋃
v∈V (H)

V (v +Kv) is a γwcg-set of H ◦Kn.

Proof. Let H be a nontrivial connected graph of order n and K = Kn. Suppose that
S =

⋃
v∈V (H)

Sv, Sv = V (v + Kv). By Lemma 5, S =
⋃

v∈V (H)

Sv ∈ W(H ◦ Kn). Then, by

Corollary 10, S =
⋃

v∈V (H)

V (v +Kv) is a γwcg-set of H ◦Kn.

Corollary 14. Let G = H ◦K, where H is a nontrivial connected graph of order m and
K = Kn with n ≥ 4. Then γwcg(G) = m · (n+ 1) .

The Cartesian product of two graphs G and H, denoted by G□H is the graph with
V (G□H) = V (G)× V (H) and edge set E(G□H) satisfying the following conditions:

(u1, v1)(u2, v2) ∈ E(G□H)

if and only if either u1u2 ∈ E(G) and v1 = v2 or u1 = u2 and v1v2 ∈ E(H), Harary [2].
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Lemma 6. Chellathurai, et.al [6] Let G = (V,E) be the Cartesian product H□K of
connected graphs H = (V1, E1) and K = (V2, E2). If S ⊆ V , then IG[S] ⊆ IG[S1]□IG[S2].

Lemma 7. Chellathurai, et.al [6] Let G = (V,E) be the Cartesian product H□K of
connected graphs H = (V1, E1) and K = (V2, E2). If S ⊆ V ,then NG[S] ⊆ NG[S1]□NG[S2]

Lemma 8. Let H and J be graphs of order m and n respectively, and let G = H□J be
the Cartesian product of graphs H and J .

(i.) If S ⊆ V (H) (or S ⊆ V (J)), then V [S×{vi}] ⊆ V (Hi)(orV (Ji)) for v ∈ Ji (or Hi).

(ii.) If S ⊆ V (H) (or S ⊆ V (J)) is a γwcg-set of a graph H (or J), then V [S × {vi}] is
a γwcg-set of graph Hi (or Ji). But, V [S × {vi}] is not a γwcg-set of G.

Remark 4. Let H and J be graphs of order m and n respectively, and let H□J be the
Cartesian product of graphs H and J . If S ⊆ V (H) (or S ⊆ V (J)) is a γwcg-set of graphs
H (or J), then S × {vi} is a γwcg-set of graph Hi (or Ji).

Theorem 25. Let H and J be connected graphs. Then

γwcg(H□J) ≥ max{γwcg(H), γwcg(J)}.

Equality holds if H and J are complete graphs.

Proof. Let S ⊆ V (H□J) be a γwcg-set of H□J . Then by Lemma 6 and 7, V (H□J) =
IG[S] ⊆ IG[S1]□IG[S2] and V (H□J) = NG[S] ⊆ NG[S1]□NG[S2]. Since G is connected
and NG[S] = V (H□J), there exists xv, vy ∈ E(H□J) such that x ∈ S or y ∈ S for
some v ∈ V (H□J). Hence, ⟨S⟩w ⊆ ⟨S1⟩w□⟨S2⟩w is also connected. Thus, S1 and S2 are
γwcg-sets of H and J respectively, with γwcg(H) ≤ |S1| and γwcg(J) ≤ |S2|. Therefore,
γwcg(H□J) = |S| ≥ max{|S1| |S2|} ≥ max{γwcg(H), γwcg(K)}. So, equality holds.

Corollary 15. For every nontrivial connected graph H,

γwcg(H) ≤ γwcg(H□Kn).

Theorem 26. Let H be a connected graph of order at least 3 and diameter at most 2.
Then H has γwcg-set S with a vertex x such that every vertex of H lies on some u-
v geodesic in H for some w ∈ S and ⟨S⟩w = ⟨NH [S], Ew⟩ is connected if and only if
γwcg(H) = γwcg(H□K2).

Proof. Let H□K2 be formed from two copies H1 and H2 of H and S be a minimum
weakly connected closed geodetic dominating set of H1 such that S contains a vertex v with
the property that every vertex of H1 lies on some u−v geodesic in H1 for some v ∈ S. Let
D consists of vertex x together with those vertices of H2 corresponding to those vertices in
S −{u}. Hence, |D| = |S|. We show that D is weakly connceted closed geodetic dominat-
ing set of H□K2. Let x /∈ D be a vertex of H□K2. First, suppose that x ∈ V (H1). Since,
IH [S] = V (H1) and diam(H1) ≤ 2, it follows that, x ∈ IH [u, v] = IH [S] and v ̸= x. Since
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v
′ is the corresponding vertex of v ∈ S, v′ ∈ D and x ∈ N [D] where v ̸= x. Also, since

NH [S] = V (H1) and Ew = {uv′ ∈ E(H1) : u ∈ S or v′ ∈ S} which implies that ⟨S⟩w is con-
nected, and diam(H1) ≤ 2, x ∈ NH [D] where v ̸= x. Therefore, D is a weakly connected
closed geodetic dominating set of H□K2. Next, suppose that x ∈ IH [u

′
, v

′
], where u′ is the

vertex in V (H2) corresponding to v and v
′ ∈ D. Since diam(H2) ≤ 2, x ∈ IH [u, v

′
] ⊆ IH [D]

and x ∈ NH [v
′
] ⊆ NH [D], and NH [S] = V (H1) and Ew = {uv′ ∈ E(H1) : u ∈ S or v′ ∈ S}

which implies that ⟨S⟩w is connected. Therefore D is a weakly connected closed geodetic
dominating set of H□K2. Now, γwcg(H□K2) ≤ |D| = |S| = γwcg(H). Consequently, by
Corollary 15, γwcg(H) = γwcg(H□K2).

Conversely, suppose that γwcg(H) = γwcg(H□K2) where H□K2 is formed from two
copies of H1 and H2 of H. Let D be a minimum weakly connected closed geodetic domi-
naing set of H□K2. Clearly, D∩V (Hi) ̸= ∅, i = 1, 2. Let x ∈ D∩V (H1) and let S consist
of vertices of D∩V (H1) together with those vertices in D∩V (H2). Clearly, S is a weakly
connected closed geodetic dominating set of H1 and |S| = |D|. Since, D is a minimum
weakly connected closed geodetic dominating set of H1. We show that every vertex of H1

lies on some u− v geodesic for some v ∈ S and ⟨S⟩w = ⟨NH [S], Ew⟩ is connected. Suppose
that there exists a vertex x ∈ V (H1) such that x ∈ IH [u, v] for all v ∈ S. Then x /∈ NH [u]
and d(u, x) = d(u, v) + d(u, x) > 2, a contradiction, Consequently, diam(H1) ≤ 2.

Conlusion: The paper has introduced the concept of weakly connected closed geode-
tic dominating sets of some graphs and the join, corona, and Cartesian product of two
graphs are characterized. The weakly connected closed geodetic domination numbers of
these graphs are determined. Also, some relationships between weakly connected closed
geodetic dominating set, weakly connected closed geodetic set, geodetic dominating set,
and geodetic connected dominating set are established. A worthwhile direction for further
investigate is to establish other variations of the concept of the weakly connected closed
geodetic dominating sets, the weakly connected closed geodetic sets, geodetic dominat-
ing sets, and geodetic connected dominating sets, characterize the weakly connected closed
geodetic dominating sets in the lexicographic and composition of two graphs and determine
the exact values of the weakly connected closed geodetic domination numbers of graphs
associated with the lexicographic and composition of two graphs.
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