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Abstract. In this work, we focus on the implementation of epidemic techniques on computer virus
and study the dynamic transmission of several viruses to minimize the destruction of computers.
We aim to make and analyze computer viruses through the Atangana-Baleanu sense and the
Atangana-Taufik scheme, which is used for the fractional derivative model for the computer virus
epidemic. It contained infected external computer effects and removable storage media on the
computer viruses. For the validation of the model, we also discussed its positivity and boundedness.
Fixed point theory and the iterative methods helped a lot to find out the existence and uniqueness
of the model. In the case of numerical simulation, we used Atanagana-Taufik technique to illustrate
the effects of varying the fractional order. The graphical results support our theoretical results
from which, we analyze the infected external computer effects and removable storage media on the
computer viruses.
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1. Introduction

The malicious and destructive results that can be obtained from program codes are
known as computer viruses. They are automated programs that, against the user’s wishes,
replicate themselves to spread to new targets and infect computers. A lot of time and effort
has gone into researching how to avoid harmful actions. To effectively control the spread of
computer viruses, it is critical to understand how malicious codes spread over the Internet.
To reduce the threat of virus several techniques can be proposed with the help of epidemic
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models. Computer viruses have different types ranging from host dependent viruses and
network worms, which cause a significant threat to our daily life and work [35]. The
interconnected networks are the crucial channel of the fast spread of computer viruses.
The network security community provides long and continuous attention to the virus
diffusion. In Cohen [13] and Murray [26] noticed the analogy between computer viruses,
their biological counterparts, and different techniques that investigate the dynamics of
computer sciences. The first dynamical model for computer viruses was proposed by
Kephart and White [20]. After that, different models for viruses on the computer were
proposed [14, 18, 24, 25, 31, 33, 38, 39, 42]. There was no infectivity in the previous models.
The original SLBS (susceptible-latent-breaking-susceptible) model for the computer virus
was organized by Yang et al [40].

In recent years the fractional calculus has fascinated the attention of researchers and
the various features of that study under investigation. Genetic mutations is dominant tool
for defining the dynamic function of various body systems. The power of these component
operators is their non-local features that are not in the integer separator operator. The
real-world problems include characterization of memory and hereditary properties, while
fractional order problems include integration and transects differentiation that can be
understandable through fractional calculus [6, 10]. Riemann Liouville proposed idea of
fractional derivative. Scientist used the latest fractional order derivative in the exponential
kernel [7, 17]. The approaches of epidemic model shows different problems of non-singular
kernel, which includes trigonometric and exponential functions [15, 16, 34]. The COVID-
19 disease conceptual model which effectively catches the proposed outbreak of this virus
[4, 37, 41]. The nonlinear fractional differential equation containing Atanagana-Baleanu
fractional derivative is solved by Toufik and Atangana [36]. The most repetitive feature
of these models is their global (non-local) features that include fractional application are
also discuss in [1–3, 5, 29]. Khan and co-authors investigated several fractional models
to study the dynamics of the zika virus, pine with disease, covid-19, and gonorrhea with
optimal control [9, 21–23]. A new fractional derivative with a nonsingular kernel involving
exponential, Mittag-leffler, power functions, and some advanced approaches for epidemic
models have been elaborated in [8, 11, 27, 27, 28, 30]. The Lie group method is used in
[32] to obtain the Lie symmetry algebra admitted by the time fractional Black-Scholes
equation. In [12], authors build a proper extension of the classical prolongation formula of
conformable derivative point transformations. This method was demonstrated and used to
build a symmetry group admitting conformable ordinary and partial differential equations.
A new dynamical model was developed in [18]. The authors thoroughly examined the
model, and discovered that the unique (viral) equilibrium is globally asymptotically stable.
The writers [19] presented an approximation algorithm that transforms the given system
of equations into a nonlinear matrix equation by representing the unknown solutions and
their derivatives in matrix forms along with the collocation points. A combination of the
idea of quasi-linearization and the Bessel/Legendre-collocation method was applied to the
original nonlinear system in addition to the direct Bessel or Legendre-collocation method.

In this work, we apply the Atangana-Baleanu fractional derivative with sumudu trans-
form and Atangan-Tufik scheme with Mittag-Leffler kernel to a non-integer order for the



J. Asad et al. / Eur. J. Pure Appl. Math, 15 (3) (2022), 897-915 899

computer virus model. We also discussed the positivity and boundedness of the fractional
order system. The existence and uniqueness of the solutions of the proposed factional
scheme are reputable using fixed-point theory and an iterative method. Lastly, simulation
are made to see actual behaviour of this physical phenomena.

2. Preliminaries

Definition 1. For any function Ψ(t) over a set, the Sumudu transform

Z =

{
Ψ(t) : ∃ ϕ, such that ϕ1, ϕ2 > 0, |Ψ(t)| < ϕe

|ϕ|
ϕi , if t ∈ (−1)j × [0,∞)

}
is defined by

A(r) = ST [ϕ] =

∫ ∞

0
exp(−ϕ)Ψ(rt)dϕ r ∈ (−ϕ1, ϕ2)

Definition 2. The Atangana Baleanu in Caputo sense in [18, 25] for function Ψ(t)
is given as

ABC
σD

σ
τ (Ψ(t)) =

AB(σ)

m− σ

∫ t

a

dm

dwm
h(w)Eσ

{
−σ(t− w)σ

m− σ

}
dw m− 1 < σ < m (1)

we have [
ABC

σD
σ
τΨ(t)

]
(s) =

AB(σ)

1− α

sσL [Ψ(t)] (s)− sσ−1Ψ(0)

sσ + σ
1−σ

(2)

The sumudu transform for (1), we have

ST
[
ABC

σD
σ
τΨ(t)

]
(s) =

B(σ)

1− σ

{
σΓ(α+ 1)Eσ

(
− wσ

1− σ

)}
× [ST (Ψ(t))−Ψ(0)] (3)

Definition 3. A function Ψ(t) for ABC fractional order σ is given by

ABC
σI

σ
τ (Ψ(t)) =

(1− σ)Ψ(t)

B − σ
+

α

B(σ)Γ(σ)

∫ t

σ
Ψ(s)(t− s)σ−1ds (4)

3. Fractional Order Computer Virus Model

The classical computer virus model given in [41], having four compartments S(t),L(t),B(t)
and R(t) which represent the susceptible, latent computers, breaking-out computers and
recovered computer after infection with internal and external sources with time t respec-
tively. Besides the subsequent basis assumptions are created as: the exploit rate of each
compartment is positive constant µ; the coming into rates of the four compartments are
b1,b2,b3,b4 are positive constants respectively; each computer in the S-compartment is dis-
eased with L (or B) computers with a chance of β1L (or β2B), where β1, β2 are favorable
times; each computer in S-room is diseased with changeable storage media that may have
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θ; each computer in the L-compartment breaks down with α; each computer in the R-
compartment loses potential protection η; because of fixing and modernizing the antivirus
software well-timed, each computer on the Internet is likely to receive γ1. As a result of
re-installing the operating system, each computer in room L (or B) is at risk of chance γ2
or γ3, the actual complete order model obtained from [41]. We have following system of
differential equations

dS
dt = b1 + γ2L+ γ3B + ηR− µS − γ1S − β1LS − β2BS − θS,
dL
dt = b2 + β1LS + β2BS + θS − γ1L− γ2L− µL− αL,
dB
dt = b3 + αL− µB − γ1B − γ3B,
dR
dt = b4 + γ1S + γ1L+ γ1B − ηR− µR.

(5)

We can express the above system in ABC fractional order form as:
ABC

0D
α
t S(t) = b1 + γ2L+ γ3B + ηR− µS − γ1S − β1LS − β2BS − θS,

ABC
0D

α
t L(t) = b2 + β1LS + β2BS + θS − γ1L− γ2L− µL− αL,

ABC
0D

α
t B(t) = b3 + αL− µB − γ1B − γ3B,

ABC
0D

α
t R(t) = b4 + γ1S + γ1L+ γ1B − ηR− µR.

(6)

with given initial conditions

S(0), L(0), B(0), R(0) ≥ 0 (7)

3.1. Analysis of the Model:

Theorem 1. The solution of the proposed system (6) is bounded and unique in R4
+ ac-

cording to initial conditions.

Proof. The existence and uniqueness of the solution of system of the equations (6) on
the time interval (0,∞) can be obtained in the region R4

+ is positively invariant. From
model of system of the equations (6), we find

ABC
0D

α
t S(t)|S=0 = b1 + γ2L+ γ3B + ηR ≥ 0,

ABC
0D

α
t L(t)|L=0 = b2 + β2BS + θS ≥ 0,

ABC
0D

α
t B(t)|B=0 = b3 + αL ≥ 0,

ABC
0D

α
t R(t)|R=0 = b4 + γ1S + γ1L+ γ1B ≥ 0.

(8)

If {S(0), L(0), B(0), R(0)} ∈ R4
+, then according to above equations, the solution {S(t), L(t), B(t), R(t)}

cannot escape from the hyperplanes S = 0, L = 0, B = 0 and R = 0. Solution’s lie in the
domain R4

+ is a positively invariant set.

Theorem 2. The region

A ={ABC
0D

α
t S(t),

ABC
0D

α
t L(t),

ABC
0D

α
t B(t),ABC

0D
α
t R(t) ∈ R4

+|0

and ABC
0D

α
t S(t) +

ABC
0D

α
t L(t) +

ABC
0D

α
t B(t) +ABC

0D
α
t R(t) ≤ Λ

µ
}

is a positive invariant set for the system (6).
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Proof. For the verification of the results used the system (6), we have

ABC
0D

α
t N(t) = (b1 + b2 + b3 + b4)− µN(t)

let Λ = (b1 + b2 + b3 + b4), then

ABC
0D

α
t N(t) = Λ− µN(t)

Using the Laplace transformation, we get

sαN(t)− sα−1N(0) =
Λ

s
− µN(s)

which further gives

N(s) =
s−1Λ

sα + µ
− sα−1N(0)

sα + µ

From equations (6), we infer that if (S0, L0, B0, R0) ∈ R4
+, then

N(t) = ΛtαEα,α+1(−µtα) + Eα,1(−µtα)

=
(Ω− δ) (µtαEα,α+1(−µtα))

µ
+ Eα+1(−µtα)

≤ Λ

µΓ(1)

≤ Λ

µ

and

≤ (b1 + b2 + b3 + b4)

µ

Hence the solution is bounded in the given domain for sub-compartments of the system.
This proved the results.

3.2. Equilibrium Point:

By substituting the left hand side of the system equal to zero, we get equilibrium point
of the system. Let ABC

0D
α
t N(t) =ABC

0D
α
t S(t) +

ABC
0D

α
t L(t) +

ABC
0D

α
t B(t) +ABC

0D
α
t R(t) and b = b1 + b2 + b3 + b4. By solving the system (6), we have limt→∞N = N∗

and limt→∞R = R∗, where

N∗ =
b

µ
R∗ =

µb4 + bγ1
µ(γ1 + η + µ)

We get {
L̇ = b2 + (β1L+ β2B + θ)(N∗ −R∗ − L−B)− (γ1 + γ2 + µ+ α)L

Ḃ = b3 + αL− (µ+ γ1 + γ3)B

with initial conditions (L(0), B(0)) ∈ ζ, where

ζ = {(L,B)|L ≥ 0, B ≥ 0, 0 ≤ L+B ≤ N∗ −R∗}

Hence it is invariant.
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4. Computer Virus Model with ABC Derivative

In this section, consider the system (6) with ABC derivative and definition of sumudu
transform, we get

B(α)αΓ(α+1)Eα

(
−wα

1− α

)
ST [S(t)−S(0)] = ST [b1 + γ2L+ γ3B + ηR− µS − γ1S − β1LS − β2BS − θS]

(9)

B(α)αΓ(α+1)Eα

(
−wα

1− α

)
ST [L(t)−L(0)] = ST [b2 + β1LS + β2BS + θS − γ1L− γ2L− µL− αL]

(10)

B(α)αΓ(α+ 1)Eα

(
−wα

1− α

)
ST [B(t)−B(0)] = ST [b3 + αL− µB − γ1B − γ3B] (11)

B(α)αΓ(α+ 1)Eα

(
−wα

1− α

)
ST [R(t)−R(0)] = ST [b4 + γ1S + γ1L+ γ1B − ηR− µR]

(12)
By reorganizing the system of equations(9)-(12), we have

ST [S(t)] = S(0)+
1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

)×ST [b1+γ2L+γ3B+ηR−µS−γ1S−β1LS−β2BS−θS]

(13)

ST [L(t)] = L(0)+
1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

)×ST [b2+β1LS+β2BS+θS−γ1L−γ2L−µL−αL]

(14)

ST [B(t)] = B(0) +
1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b3 + αL− µB − γ1B − γ3B] (15)

ST [R(t)] = R(0)+
1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) ×ST [b4+γ1S+γ1L+γ1B−ηR−µR] (16)

we get

S(t) =S(0) + ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b1 + γ2L+ γ3B + ηR− µS

− γ1S − β1LS − β2BS − θS]}
(17)

L(t) = L(0)+ST−1

 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b2 + β1LS + β2BS + θS − γ1L− γ2L− µL− αL]


(18)

B(t) = B(0) + ST−1

 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b3 + αL− µB − γ1B − γ3B]


(19)
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R(t) = R(0)+ST−1

 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b4 + γ1S + γ1L+ γ1B − ηR− µR]


(20)

Therefore, the following is obtained

S(n+1)(t) =S(0) + ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b1 + γ2Ln + γ3Bn + ηRn−

(µ+ γ1 + θ)Sn − β1LnSn − β2BnSn]}
(21)

L(n+1)(t) =L(0) + ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b2 + β1LnSn + β2BnSn + θSn

− (γ1 + γ2 + µ+ α)Ln]}
(22)

B(n+1)(t) = B(0)+ST−1

 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b3 + αLn − (µ+ γ1 + γ3)Bn]


(23)

R(n+1)(t) = R(0)+ST−1

 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b4 + γ1Sn + γ1Ln + γ1Bn − (η + µ)Rn]


(24)

And obtained solution of the system of equations(21)-(24) is presented as S(t) = limn→∞ Sn(t);
L(t) = limn→∞ Ln(t); B(t) = limn→∞Bn(t) and R(t) = limn→∞Rn(t)

Theorem 3. Let (X, |.|) be a Banach space and H a self-map of X satisfying

∥Hx−Hr∥ ≤ θ∥X −Hx∥+ θ∥x− r∥

∀x, r ∈ X, where 0 ≤ θ < 1. Assume that H is a picard H-stable. Let us consider the
system of equations (21)-(24) and we obtained

1− α

B(α)αΓ(α+ 1)Eα

(
−wα

1−α

) (25)

It is also known as fractional Lagrange multiplier.

Theorem 4. Express K be a self-map is specified by

K[S(n+1)(t)] =S(n+1)(t) = S(0) + ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b1 + γ2Ln

+ γ3Bn + ηRn − (µ+ γ1 + θ)Sn − β1LnSn − β2BnSn]}
(26)



J. Asad et al. / Eur. J. Pure Appl. Math, 15 (3) (2022), 897-915 904

K[L(n+1)(t)] =L(n+1)(t) = L(0) + ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

)
× ST [b2 + β1LnSn + β2BnSn + θSn − (γ1 + γ2 + µ+ α)Ln]}

(27)

K[B(n+1)(t)] = B(n+1)(t) = B(0)+ST−1

 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

) × ST [b3 + αLn − (µ+ γ1 + γ3)Bn]


(28)

K[R(n+1)(t)] =R(n+1)(t) = R(0) + ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

)
× ST [b4 + γ1Sn + γ1Ln + γ1Bn − (η + µ)Rn]}

(29)

Proof. Considering the norm properties and triangular inequalities, we get

∥K[Sn(t)]−K[Sm(t)]∥ ≤∥Sn(t)− Sm(t)∥+ ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

)
× ST [b1 + γ2(Ln(t)− Lm(t)) + γ3(Bn(t)−Bm(t)) + η(Rn(t)−Rm(t))

− (θ + µ+ γ1)(Sn(t)− Sm(t))− β1(Ln(t)− Lm(t))(Sn(t)− Sm(t))

− β2(Bn(t)−Bm(t))(Sn(t)− Sm(t))]}

∥K[Ln(t)]−K[Lm(t)]∥ ≤∥Ln(t)− Lm(t)∥+ ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

)
× ST [b2 + β1(Ln(t)− Lm(t))(Sn(t)− Sm(t))

+ β2(Bn(t)−Bm(t))(Sn(t)− Sm(t)) + θ(Sn(t)− Sm(t))

− (γ1 + γ2 + µ+ α)(Ln(t)− Lm(t))]}

∥K[Bn(t)]−K[Bm(t)]∥ ≤∥Bn(t)−Bm(t)∥+ ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

)
× ST [b3 + α(Ln(t)− Lm(t))− (µ+ γ1 + γ3)(Bn(t)−Bm(t))]}

∥K[Rn(t)]−K[Rm(t)]∥ ≤∥Rn(t)−Rm(t)∥+ ST−1{ 1− α

B(α)αΓ(α+ 1)Eα

(
wα

1−α

)
× ST [b4 + γ1(Sn(t)− Sm(t)) + γ1(Ln(t)− Lm(t))

+ γ1(Bn(t)−Bm(t))− (η + µ)(Rn(t)−Rm(t))]}

K fulfills the condition associated with theorem (3) when

θ = (0, 0, 0, 0)
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θ =∥Sn(t)− Sm(t)∥ × ∥ − (Sn(t) + Sm(t))∥+ b1 + γ2∥Ln(t)− Lm(t)∥+ γ3∥Bn(t)−Bm(t)∥
+ η∥Rn(t)−Rm(t)∥ − (θ + µ+ γ1)∥Sn(t)− Sm(t)∥ − β1∥Ln(t)− Lm(t)∥∥Sn(t)− Sm(t)∥
− β2∥Bn(t)−Bm(t)∥∥Sn(t)− Sm(t)∥∥Ln(t)− Lm(t)∥∥ − (Ln(t) + Lm(t))∥+ b2

+ β1∥Ln(t)− Lm(t)∥∥Sn(t)− Sm(t)∥+ β2∥Bn(t)−Bm(t)∥∥Sn(t)− Sm(t)∥
+ θ∥Sn(t)− Sm(t)∥ − (γ1 + γ2 + µ+ α)∥Ln(t)− Lm(t)∥∥Bn(t)−Bm(t)∥∥ − (Bn(t) +Bm(t))∥
+ b3 + α∥Ln(t)− Lm(t)∥ − (µ+ γ1 + γ3)∥Bn(t)−Bm(t)∥∥Rn(t)−Rm(t)∥∥ − (Rn(t) +Rm(t))∥
+ b4 + γ1∥Sn(t)− Sm(t)∥+ γ1∥Ln(t)− Lm(t)∥+ γ1∥Bn(t)−Bm(t)∥ − (η + µ)∥Rn(t)−Rm(t)∥

Hence proved its stable according to defied condition in theorem (3)

Theorem 5. Uniqueness of the system (6) solution obtained with iteration method. Con-
cern the following Hilbert space H = L2((p, q)× (0, r))

h : (p, q)× [0, T ] → R,

∫ ∫
ghdghd < ∞

In this regard, the following operations are considered

θ = (0, 0, 0, 0)

θ =b1 + γ2L(t) + γ3B(t) + ηR(t)− µS(t)− γ1S(t)− β1L(t)S(t)− β2B(t)S(t)− θS(t)

+ b2 + β1LS + β2BS + θS − γ1L− γ2L− µL− αL+ b3 + αL− µB − γ1B − γ3B

+ b4 + γ1S + γ1L+ γ1B − ηR− µR

(30)

We establish that the inner product of

T (S11(t)− S12(t), L11(t)− L12(t), B11(t)−B12(t), R11(t)−R12(t), (v1, v2, v3, v4))

where {S11(t) − S12(t), L11(t) − L12(t), B11(t) − B12(t), R11(t) − R12(t)} are the special
solutions of the system.

[b1 + γ2(L21(t)− L22) + γ3(B31(t)−B32(t)) + η(R41(t)−R42(t))− (θ + µ+ γ1)(S11(t)− S12(t))

− β1(L21(t)− L22(t))(S11(t)− S12(t))− β2(B31(t)−B32(t))(S11(t)− S12(t)), v1]

≤ [b1 + γ2∥L21(t)− L22(t)∥∥v1∥+ γ3∥B31(t)−B32(t)∥∥v1∥+ η∥R41(t)−R42(t)∥∥v1∥
− (θ + µ+ γ1)∥S11(t)− S22(t)∥∥v1∥ − β1∥L21(t)− L22(t)∥∥S11(t)− S12(t)∥∥v1∥
− β2∥B31(t)−B32(t)∥∥S11(t)− S12(t)∥∥v1∥]

[b2 + β1(L21(t)− L22(t))(S11(t)− S12(t)) + β2(B31(t)−B32(t))(S11(t)− S12(t))

+ θ(S11(t)− S12(t))− (γ1 + γ2 + µ+ α)(L21(t)− L22(t)), v2]

≤ [b2 + β1∥(L21(t)− L22(t))∥∥(S11(t)− S12(t))∥∥v2∥+ β2∥(B31(t)−B32(t))∥∥(S11(t)− S12(t))∥∥v2∥
+ θ∥(S11(t)− S12(t))∥∥v2∥ − (γ1 + γ2 + µ+ α)∥(L21(t)− L22(t))∥∥v2∥]
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[b3 + α(L21(t)− L22(t))− (µ+ γ1 + γ3)(B31(t)−B32(t)), v3]

≤ [b3 + α∥(L21(t)− L22(t))∥∥v3∥ − (µ+ γ1 + γ3)∥(B31(t)−B32(t))∥∥v3∥]

[b4 + γ1(S11(t)− S12(t)) + γ1(L21(t)− L22(t)) + γ1(B31(t)−B32(t))− (η + µ)(R41(t)−R42(t)), v4]

≤ [b4 + γ1∥(S11(t)− S12(t))∥∥v4∥+ γ1∥(L21(t)− L22(t))∥∥v4∥+ γ1∥(B31(t)−B32(t))∥∥v4∥
− (η + µ)∥(R41(t)−R42(t))∥∥v4∥]
Hence it is converge with topological concepts in parameters (χe1 , χe2 , χe3 , χe4)

∥S(t)− S11(t)∥, ∥S(t)− S12(t)∥ ≤ χe1

w

∥L(t)− L21(t)∥, ∥L(t)− L22(t)∥ ≤ χe2

δ

∥B(t)−B31(t)∥, ∥B(t)−B32(t)∥ ≤ χe3

ζ

∥R(t)−R41(t)∥, ∥R(t)−R42(t)∥ ≤ χe4

h

where

w =4(b1 + γ2∥L21(t)− L22(t)∥+ γ3∥B31(t)−B32(t)∥+ η∥R41(t)−R42(t)∥
− (θ + µ+ γ1)∥S11(t)− S22(t)∥ − β1∥L21(t)− L22(t)∥∥S11(t)− S12(t)∥
− β2∥B31(t)−B32(t)∥∥S11(t)− S12(t)∥)∥v1∥

δ =4(b2 + β1∥(L21(t)− L22(t))∥∥(S11(t)− S12(t))∥+ β2∥(B31(t)−B32(t))∥∥(S11(t)− S12(t))∥
+ θ∥(S11(t)− S12(t))∥ − (γ1 + γ2 + µ+ α)∥(L21(t)− L22(t))∥)∥v2∥

ζ = 4(b3 + α∥(L21(t)− L22(t))∥ − (µ+ γ1 + γ3)∥(B31(t)−B32(t))∥)∥v3∥

h =4(b4 + γ1∥(S11(t)− S12(t))∥+ γ1∥(L21(t)− L22(t))∥+ γ1∥(B31(t)−B32(t))∥
− (η + µ)∥(R41(t)−R42(t))∥)∥v4∥

where

≤(b1 + γ2∥L21(t)− L22(t)∥+ γ3∥B31(t)−B32(t)∥+ η∥R41(t)−R42(t)∥
− (θ + µ+ γ1)∥S11(t)− S22(t)∥ − β1∥L21(t)− L22(t)∥∥S11(t)− S12(t)∥
− β2∥B31(t)−B32(t)∥∥S11(t)− S12(t)∥) ̸= 0

≤(b2 + β1∥(L21(t)− L22(t))∥∥(S11(t)− S12(t))∥+ β2∥(B31(t)−B32(t))∥∥(S11(t)− S12(t))∥
+ θ∥(S11(t)− S12(t))∥ − (γ1 + γ2 + µ+ α)∥(L21(t)− L22(t))∥) ̸= 0

≤(b3 + α∥(L21(t)− L22(t))∥ − (µ+ γ1 + γ3)∥(B31(t)−B32(t))∥) ̸= 0

≤(b4 + γ1∥(S11(t)− S12(t))∥+ γ1∥(L21(t)− L22(t))∥+ γ1∥(B31(t)−B32(t))∥
− (η + µ)∥(R41(t)−R42(t))∥) ̸= 0

Where {∥v1∥, ∥v2∥, ∥v3∥, ∥v4∥} ̸= 0 ∥(S11(t) − S12(t))∥ = 0, ∥(L21(t) − L22(t))∥ = 0,
∥(B31(t) − B32(t))∥ = 0, ∥(R41(t) − R42(t))∥ = 0 so S11(t) = S12(t), L21(t) = L22(t),
B31(t) = B32(t), R41(t) = R42(t) This complete proof is uniqueness.
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5. Advanced Numerical Scheme

Here in this section considering the numerical scheme is defined in [36], we have{
ABC

0Dy(t) = h(t, w(t))
w(0) = w0

(31)

We have

w(t)− w(0) =
1− σ

ABC(σ)
h(t, w(t)) +

α

Γ(σ)×ABC(σ)

∫ t

0
h(τ, w(τ))(t− τ)σ−1dτ (32)

At a given point t(m+1),m = 0, 1, 2, 3, 4, 5, , we can write above equation

w(tm+1)−w(0) =
1− σ

ABC(σ)
h(tm, w(tm))+

α

Γ(σ)×ABC(σ)

∫ tm+1

0
h(τ, w(τ))(tm+1−τ)σ−1dτ

(33)

=
1− σ

ABC(σ)
h(tm, w(tm)) +

α

Γ(σ)×ABC(σ)

n∑
k=0

∫ tk+1

tk

h(τ, w(τ))(tm+1 − τ)σ−1dτ (34)

By using interval [tk, t(k+1)], the function h(τ, y(τ)), with the help of two-steps Lagrange
polynomial interpolation, we have

Pk(τ) =
τ − tk−1

tk − tk−1
h(tk, w(tk))−

τ − tk
tk − tk−1

h(tk−1, w(tk−1))

=
h(tk, w(tk))

h
(τ, tk−1)−

h(tk−1, w(tk−1))

h
(τ, tk)

∼=
h(tk, w(tk))

h
(τ, tk−1)−

h(tk−1, w(tk−1))

h
(τ, tk) (35)

By using (34), we get

wm+1 =w0 +
1− σ

ABC(σ)
h(tm, w(tm)) +

α

Γ(σ)×ABC(σ)

m∑
k=o

(
h(tk, yk)

h

∫ tk+1

tk

(τ − tk−1)(tn+1 − τ)σ−1dτ − h(tk−1, yk−1)

h

∫ tk+1

tk

(τ − tk)(tm+1 − τ)σ−1dτ)

(36)

For simplification, we will consider

Bσ,k,1 =

∫ tk+1

tk

(τ − tk−1)(tm+1 − τ)σ−1dτ (37)

similarly

Bσ,k,2 =

∫ tk+1

tk

(τ − tk)(tm+1 − τ)σ−1dτ (38)
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Bσ,k,1 = hα+1 (m+ 1− k)σ(m− k + 2 + σ)− (m− k)σ(m− k + 2 + 2)

α(α+ 1)

Bσ,k,2 = hα+1 (m+ 1− k)σ+1 − (m− k)σ(m− k + 1 + σ)

α(α+ 1)

By putting (37) and (38), we get

wm+1 =w0 +
1− σ

ABC(σ)
h(tm, y(tm)) +

σ

ABC(σ)

n∑
k=0

(
hσh(tk, yk)

Γ(α+ 2)
((q3)

σq2 − (q4)
σq1)

− hσh(tk−1, yk−1)

Γ(α+ 2)
((q3)

σ+1 − (q4)
σq5))

(39)

We obtain the following for the system of equations (6).

Sm+1 =S0 +
1− σ

ABC(σ)
f(tm, S(tm)) +

σ

ABC(σ)

n∑
k=0

(
hσf(tk, Sk)

Γ(α+ 2)
((q3)

σq2 − (q4)
σq1)

− hσf(tk−1, Sk−1)

Γ(α+ 2)
((q3)

σ+1 − (q4)
σq5))

(40)

Lm+1 =L0 +
1− σ

ABC(σ)
f(tm, L(tm)) +

σ

ABC(σ)

n∑
k=0

(
hσf(tk, Lk)

Γ(α+ 2)
((q3)

σq2 − (q4)
σq1)

− hσf(tk−1, Lk−1)

Γ(α+ 2)
((q3)

σ+1 − (q4)
σq5))

(41)

Bm+1 =B0 +
1− σ

ABC(σ)
f(tm, B(tm)) +

σ

ABC(σ)

n∑
k=0

(
hσf(tk, Bk)

Γ(α+ 2)
((q3)

σq2 − (q4)
σq1)

− hσf(tk−1, Bk−1)

Γ(α+ 2)
((q3)

σ+1 − (q4)
σq5))

(42)

Rm+1 =R0 +
1− σ

ABC(σ)
f(tm, R(tm)) +

σ

ABC(σ)

n∑
k=0

(
hσf(tk, Rk)

Γ(α+ 2)
((q3)

σq2 − (q4)
σq1)

− hσf(tk−1, Rk−1)

Γ(α+ 2)
((q3)

σ+1 − (q4)
σq5))

(43)

Where q1 = m − k + 2 + 2σ, q2 = m − k + 2 + σ, q3 = m + 1 − k, q4 = m − k and
q5 = m− k + 1 + σ

6. Results and Discussion

The mathematical analysis of the epidemic computer virus model with the effect of
external and internal storage media is proposed with the new fractional operator with
given parameters details in [41]. Numerical simulation carried out with ABC fractional
derivative for computer virus model. The graphs of the approximate solutions in different
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fractional order are provided in Figures 1-8, which show the memory effect. It can be
observed that internal and external storage media are the rich source of the spread of
the virus. Also, we found that external storage media has significant effect for the viral
the infection. From figures (1) and (5), we can see that susceptible computers decreases
due to the rapid increase in latent, breaking-out, and recovered computers. In fig (2),
the simulation show the dynamics of latent computers increase with time while decreasing
with time. In fig (3), we can see that the break out of computers also growing fast and
causing rapid and severe damage to computers. In fig (4), the recovery of computers
is smoothly increasing due to the effect of fractional operator. From figures 6-8, the
simulation shows the quick increase in latent and break out computers with time t and
causes the disturbance rapidly and slow the recovery rate of computers.

Figure 1: Simulation of S(t) Compartment with proposed fractional order scheme

Figure 2: Simulation of L(t) Compartment with proposed fractional order scheme
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Figure 3: Simulation of B(t) Compartment with proposed fractional order scheme

Figure 4: Simulation of R(t) Compartment with proposed fractional order scheme

Figure 5: Simulation of S(t) Compartment with proposed fractional order scheme
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Figure 6: Simulation of L(t) Compartment with proposed fractional order scheme

Figure 7: Simulation of B(t) Compartment with proposed fractional order scheme

Figure 8: Simulation of R(t) Compartment with proposed fractional order scheme



REFERENCES 912

7. Conclusion

In this work, we presented the new result for the fractional order computer virus model
with ABC fractional derivative and the Atangana-Toufik scheme. Qualitative analysis with
positivity and boundedness of the proposed system was also discussed. Additionally, the
uniqueness and stability of the proposed scheme of iterative results are proved by using
the fixed point theorem. Finally, numerical simulations at different fractional orders are
obtained, which support the theoretical results of the computer virus model. It is observed
that internal and external storage media are the cause of the spread of the virus. Also, we
found that all external storage media has a greater effect on viral infection with increasing
the time t. These results are very helpful to control the virus infection in computers to
overcome the threats on results. In future work, we intend to expand the modeling of a
computer virus in the stochastic fractional-order derivatives as well as partial differential
equation.
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