EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 1, 2023, 261-270
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Distance k-Cost Effective Sets in the Corona and Lexicographic Product of Graphs

Julius G. Caadan ${ }^{1, *}$, Rolando N. Paluga ${ }^{2}$, Imelda S. Aniversario ${ }^{3}$
${ }^{1}$ Surigao del Norte State University, 8400 Surigao City, Philippines
${ }^{2}$ Department of Mathematics, College of Mathematics and Natural Sciences, Caraga State University, 8600, Ampayon, Butuan City City, Philippines
${ }^{3}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Let G be a connected graph and $k \geq 1$ be an integer. The open k-neighborhood $N_{G}^{k}(v)$ of $v \in V(G)$ is the set $N_{G}^{k}(v)=\left\{u \in V(G) \backslash\{v\}: d_{G}(u, v) \leq k\right\}$. A set S of vertices of G is called distance k-cost effective of G if for every vertex u in $S, \quad\left|N_{G}^{k}(u) \cap(V(G) \backslash S)\right|-\left|N_{G}^{k}(u) \cap S\right| \geq 0$. The maximum cardinality of a distance k-cost effective set of G is called the upper distance k-cost effective number of G. In this paper, we characterized the distance k-cost effective sets in the corona and lexicographic product of two graphs. Consequently, the bounds or the exact values of the upper distance k-cost effective numbers of these graphs are obtained.

2020 Mathematics Subject Classifications: 05C76, 05C12
Key Words and Phrases: Distance k-cost effective set, upper distance k-cost effective number, distance k-domonating set, very distance k-cost effective set, corona, lexicographic product

1. Introduction

Let G be a connected simple graph with vertex and edge sets $V(G)$ and $E(G)$, respectively. The basic concepts of graph here are adapted from [2].

Let $v \in V(G)$. The open neighborhood $N_{G}(v)$ of v in G is the set $N_{G}(v)=\{u \in$ $V(G): u v \in E(G)\}$. The degree $\operatorname{deg}_{G}(v)$ of a vertex $v \in V(G)$ is the cardinality of $N_{G}(v)$. The minimum degree of G is $\delta(G)=\min \left\{\operatorname{deg}_{G}(v): v \in V(G)\right\}$ and the maximum degree of G is $\Delta(G)=\max \left\{\operatorname{deg}_{G}(v): v \in V(G)\right\}$. The distancce $d_{G}(u, v)$ between vertices u and v in G is the length of the shortest path from vertex u to vertex v in G. The diameter $\operatorname{diam}(G)$ of G is the maximum distance between any two vertices in G.

[^0]Let $k \geq 1$ be positive integer and $v \in V(G)$. The open k-neighborhood $N_{G}^{k}(v)$ of vertex v is the set of all vertices u of G such that $0<d_{G}(u, v) \leq k$. That is, $N_{G}^{k}(v)=\{u \in$ $\left.V(G): 0<d_{G}(u, v) \leq k\right\}$. The distance k-degree of v in G, denoted by $\operatorname{deg}_{G}^{k}(v)$, is the cardinality of $N_{G}^{k}(v)$. The minimum distance k-degree of G, denoted by $\delta^{k}(G)$, is given by $\delta^{k}(G)=\min \left\{\operatorname{deg}_{G}^{k}(v): v \in V(G)\right\}$ and the maximum distance k-degree of G, denoted by $\Delta^{k}(G)$, is given by $\Delta^{k}(G)=\max \left\{\operatorname{deg}_{G}^{k}(v) ; v \in V(G)\right\}$. Note that $\operatorname{deg}_{G}^{1}(v)=\operatorname{deg}_{G}(v)$, $\delta^{1}(G)=\delta(G)$, and $\Delta^{1}(G)=\Delta(G)$.

Let G be a connected graph. Haynes et al. in [7] defined a vertex $v \in S \subseteq V(G)$ as cost effective if $\left|N_{G}(v) \cap(V(G) \backslash S)\right|-\left|N_{G}(v) \cap S\right| \geq 0$. A set $S \subseteq V(G)$ is called cost effective if every vertex $v \in S$ is a cost effective. Paluga et al. in [3] applied the distance k version for this concept. Accordingly, a nonempty set $S \subseteq V(G)$ is a distance k-cost effective if for every $v \in V(G), \quad\left|N_{G}^{k}(v) \cap(V(G) \backslash S)\right|-\left|N_{G}^{k}(v) \cap S\right| \geq 0$. The maximum cardinality of a distance k-cost effective set in G is called upper distance k cost effective number of G and is denoted by $\alpha_{c e}^{k}(G)$. A distance k-cost effective set in G of cardinality $\alpha_{c e}^{k}(G)$ is called an upper distance k-cost effective set and is simply called $\alpha_{c e^{-}}^{k}$ set in G. For example, for any integer $n \geq 3$ and if $k=2, S$ is a distance 2 -cost effective set in P_{n} if $|S| \leq\left\lfloor\frac{2 n}{3}\right\rfloor$. Thus, $\alpha_{c e}^{2}\left(P_{n}\right)=\left\lfloor\frac{2 n}{3}\right\rfloor$.

The concept of cost effective set in graph was introduced by Haynes et al. in [7]. In 2018, Chellali et al. in [4] established a generalization of this concept. However, Paluga et al. [3] considered distance concept for the cost effective set. For some investigations of the cost effective concept, we refer the readers to see $[6,9,11]$. For some practical application of distance concept, we refer the readers to $[1,4,5,10,12]$.

In this paper, we characterized the distance k-cost effective sets in the corona and lexicographic product of two graphs. As direct consequences, we determined the bounds or the exact values of the upper distance k-cost effective numbers of these graphs.

2. Results

2.1. Preliminary Results

In this section, we present a characterization of a distance k-cost effective set in G. Some examples of the upper distance k-cost effective number of simple graphs are given. Moereover, we obtain a relationship between upper distance k-cost effective set and distance k-dominating set in G.

Theorem 1. Let G be a connected simple graph and $k \geq \operatorname{diam}(G)$. Then S is a distance k-cost effective set in G if and only if $|S| \leq\left\lfloor\frac{|V(G)|+1}{2}\right\rfloor$.

Proof: Let G be a connected simple graph and $k \geq \operatorname{diam}(G)$. Suppose S is a distance k-cost effective set in G. Then for each $u \in S$,

$$
\begin{aligned}
\left|N_{G}^{k}(u) \cap(V(G) \backslash S)\right|-\left|N_{G}^{k}(u) \cap S\right| & =|(V(G) \backslash\{u\}) \cap(V(G) \backslash S)|-|(V(G) \backslash\{u\}) \cap S| \\
& =|V(G)|+1-2|S| \\
& \geq 0 .
\end{aligned}
$$

Thus, $|S| \leq\left\lfloor\frac{|V(G)|+1}{2}\right\rfloor$.
Conversely, suppose that $|S| \leq\left\lfloor\frac{|V(G)|+1}{2}\right\rfloor$. Then $|S| \leq \frac{|V(G)|+1}{2}$. Now,

$$
\begin{aligned}
\left|N_{G}^{k}(u) \cap(V(G) \backslash S)\right|-\left|N_{G}^{k}(u) \cap S\right| & =|V(G)|+1-2|S| \\
& \geq|V(G)|+1-[|V(G)|+1] \\
& =0 .
\end{aligned}
$$

Thus, S is a distance k-cost effective set in G.
Corollary 1. Let G be a connected graph and $k \geq \operatorname{diam}(G)$. Then $\alpha_{c e}^{k}(G)=\left\lfloor\frac{|V(G)|+1}{2}\right\rfloor$.
Corollary 2. Let G be a connected graph and $k \geq 2$ be an integer. Then
i. $\alpha_{c e}^{k}\left(K_{n}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$, for positive integer n.
ii. $\alpha_{c e}^{k}\left(K_{m . n}\right)=\left\lfloor\frac{m+n+1}{2}\right\rfloor$, for positive integers m and n.
iii. $\alpha_{c e}^{k}\left(F_{n}\right)=\left\lfloor\frac{n+2}{2}\right\rfloor$, for integer $n \geq 3$.
iv. $\alpha_{c e}^{k}\left(W_{n}\right)=\left\lfloor\frac{n+2}{2}\right\rfloor$, for integer $n \geq 4$.

Let G be a connected graph and $k \geq 1$ be an integer. Henning et al. in [8] defined distance k-dominating set of G. Accordingly, a set $S \subseteq V(G)$ is said to be a distance k dominating set of G if for every $v \in V(G) \backslash S$, there exists $u \in S$ such that $d_{G}(u, v) \leq k$

Theorem 2. Every upper distance k-cost effective set in a connected graph G is a distance k-dominating set in G.

Proof: Suppose S is an upper distance k-cost effective set in G but not a distance k-dominating set in G. Then there exists $u \in V(G) \backslash S$ such that $d_{G}(u, s)>k$, for all $s \in S$. Let $A=S \cup\{u\}$ and $x \in A$. Suppose $x \neq u$, i.e., $x \in S$. Note that $u \notin N_{G}^{k}(x)$. Then $\left|N_{G}^{k}(x) \cap(V(G) \backslash A)\right|-\left|N_{G}^{k}(x) \cap A\right|=\left|N_{G}^{k}(x) \cap(V(G) \backslash S)\right|-\left|N_{G}^{k}(x) \cap S\right| \geq 0$. Suppose $x=u$. Then $\left|N_{G}^{k}(x) \cap(V(G) \backslash A)\right|-\left|N_{G}^{k}(x) \cap A\right| \geq 0$. Thus, A is a distance k-cost effective set in G. This is a contradiction since S is an upper distance k-cost effective set in G. Therefore, every upper distance k-cost effective set in a connected graph G is a distance k-dominating set in G.

2.2. Corona of Graphs

This section provides a neccesary condition for a distance k-cost effective set in the corona of two graphs. Correspondingly, a lower bound for the upper distance k-cost effective number of the corona of graphs is determined.

The corona $G \circ H$ of two graphs G and H is the graph obtained by taking one copy of G of order n and n copies of H, and then joining every vertex of the i th copy of H
to the i th vertex of G. For every $v \in V(G)$, denote H_{v} the copy of H whose vertices are attached one by one to the vertex v. Subsequently, denote by $v+H_{v}$ the subgraph of the corona $G \circ H$ corresponding to the join $\langle\{v\}\rangle+H_{v}, v \in V(G)$.

Theorem 3. Let G and H be connected graphs and $k \geq 1$ be an integer.
(i) If $k=1,2$ and S_{x} is a distance k-cost effective set in H_{x}, for every $x \in V(G)$, then $S=\bigcup_{x \in V(G)} S_{x}$ is a distance k-cost effective set in $G \circ H$.
(ii) If $k \geq 3$ and $\left|S_{x}\right| \leq \frac{|V(H)|\left(\delta^{k-2}(G)+1\right)+\delta^{k-1}(G)+2}{2\left(\Delta^{k-2}(G)+1\right)}$, for every $x \in V(G)$, then $S=$ $\bigcup_{x \in V(G)} S_{x}$ is a distance k-cost effective set in $G \circ H$.

Proof: Suppose S_{x} is a distance k-cost effective set in H_{x}, for every $x \in V(G)$. Let $S=$ $\bigcup_{x \in V(G)} S_{x}$ and $u \in S$. Then there exists $a \in V(G)$ such that $u \in S_{a}$. Since S_{a} is a distance k-cost effective set in H_{a}, for all $a \in V(G),\left|N_{H_{a}}^{k}(u) \cap\left(V\left(H_{a}\right) \backslash S_{a}\right)\right|-\left|N_{H_{a}}^{k}(u) \cap S_{a}\right| \geq 0$. if $k=1$, we have

$$
\left|N_{G \circ H}^{1}(u) \cap(V(G \circ H) \backslash S)\right|=\left|N_{H_{a}}^{1}(u)\left(V\left(H_{a}\right) \backslash S_{a}\right)\right|+1
$$

and

$$
\left|N_{G \circ H}^{1}(u) \cap S\right|=\left|N_{H_{a}}^{1}(u) \cap S_{a}\right|
$$

Thus, $\left|N_{G \circ H}^{1}(u) \cap(V(G \circ H) \backslash S)\right|-\left|N_{G \circ H}^{1}(u) \cap S\right| \geq 0$. Hence, S is a distance 1-cost effective set in $G \circ H$.

If $k=2$, then

$$
\left|N_{G \circ H}^{2}(u) \cap(V(G \circ H) \backslash S)\right|=\left|N_{H_{a}}^{2}(u) \cap\left(V\left(H_{a}\right) \backslash S_{a}\right)\right|+\operatorname{deg}_{G}(a)+1
$$

and

$$
\left|N_{G \circ H}^{2}(u) \cap S\right|=\left|N_{H_{a}}^{2}(u) \cap S_{a}\right| .
$$

Thus, $\left|N_{G \circ H}^{2}(u) \cap(V(G \circ H) \backslash S)\right|-\left|N_{G \circ H}^{2}(u) \cap S\right| \geq 0$. Hence, S is a distance 2-cost effective set in $G \circ H$.
(ii) Let $k \geq 3$ be an integer and $u \in S$. Then there exists $a \in V(G)$ such that $u \in S_{a}$. Now,

$$
\left.\begin{array}{rl}
\left|N_{G \circ H}^{k}(u) \cap(V(G \circ H) \backslash S)\right|-\left|N_{G \circ H}^{k}(u) \cap S\right|= & {\left[d e g_{G}^{k-1}(a)+1\right]+\left|V(H) \backslash S_{a}\right|} \\
& +\sum_{x \in N_{G}^{k-2}(a)}\left|\left(V(H) \backslash S_{x}\right)\right|
\end{array}\right)-\sum_{x \in N_{G}^{k-2}(a)}\left|S_{x}\right|-\left(\left|S_{a}\right|-1\right) .
$$

Julius G. Caadan, Rolando N. Paluga, Imelda S. Aniversario / Eur. J. Pure Appl. Math, 16 (1) (2023), 261-270 265

$$
\begin{aligned}
& =\operatorname{deg}_{G}^{k-1}(a)+2+|V(H)|-2\left|S_{a}\right|+\sum_{x \in N_{G}^{k-2}(a)}\left(|V(H)|-2\left|S_{x}\right|\right) \\
& \begin{array}{r}
\geq \operatorname{deg}_{G}^{k-1}(a)+2+|V(H)|-2\left|S_{p}\right|+\left|N_{G}^{k-2}(a)\right||V(H)| \\
\\
-2\left|N_{G}^{k-2}(a)\right|\left|S_{p}\right|, \text { where }\left|S_{p}\right|=\max \left\{\left|S_{x}\right|: x \in V(G)\right\} \\
= \\
\operatorname{deg}_{G}^{k-1}(a)+2+|V(H)|+\operatorname{deg}_{G}^{k-2}(a)|V(H)|-2\left|S_{p}\right| \\
\\
=\operatorname{deg}_{G}^{k-1}(a)+2+|V(H)|\left(\operatorname{deg}_{G}^{k-2}(a)+1\right)-2\left(\operatorname{deg}_{G}^{k-2}(a)+1\right)\left|S_{p}^{k-2}(a)\right|\left|S_{p}\right| \\
\begin{aligned}
\geq & \operatorname{deg}_{G}^{k-1}(a)+2+|V(H)|\left(\operatorname{deg}_{G}^{k-2}(a)+1\right)
\end{aligned} \\
\begin{aligned}
\geq & \operatorname{deg}_{G}^{k-1}(a)+2++|V(H)|\left(\operatorname{deg}_{G}^{k-2}(a)+1\right)
\end{aligned} \\
\quad-\left(\operatorname{deg}_{G}^{k-2}(a)+1\right)\left[\frac{|V(H)|\left(\operatorname{deg}_{G}^{k-2}(a)+1\right)+\operatorname{deg}_{G}^{k-1}(a)+2}{\left(\operatorname{deg}_{G}^{k-2}(a)+1\right)}\right. \\
\quad-\left[|V(H)|\left(\operatorname{deg}_{G}^{k-2}(a)+1\right)+\operatorname{deg}_{G}^{k-1}(a)+2\right]
\end{array} \\
& =0 .
\end{aligned}
$$

Thus, S is a distance k-cost effective set in $G \circ H$.
Corollary 3. Let G and H be connected graphs and $k \geq 1$ be an integer. Then
(i) $\alpha_{c e}^{k}(G \circ H) \geq|V(G)| \alpha_{c e}^{k}(H)$, for $k=1,2$.
(ii) $\alpha_{c e}^{k}(G \circ H) \geq|V(G)| \frac{|V(H)|\left(\delta^{k-2}(G)+1\right)+\delta^{k-1}(G)+2}{2\left(\Delta^{k-2}(G)+1\right)}$, for $k \geq 3$.

2.3. Lexicographic Product of Graphs

This section provides a neccesary condition for a distance k-cost effective set in the lexicographic product of two graphs. Consequently, a lower bound for the upper distance k-cost effective number of this graph is given.

The lexicographic product $G[H]$ of two graphs G and H is the graph with $V(G[H])=$ $V(G) \times V(H)$ and $(u, v)\left(u^{\prime}, v^{\prime}\right) \in E(G[H])$ if and only if either $u u^{\prime} \in E(G)$ or $u=u^{\prime}$ and $v v^{\prime} \in E(H)$.

Let $(u, v) \in S$ and $k \geq 1$ be an integer. Then

$$
\begin{align*}
\left|N_{G[H]}^{k}(u, v) \cap(V(G[H]) \backslash S)\right|=\mid N_{H_{u}}^{k}(v) & \cap\left(V(H) \backslash T_{u}\right)\left|+\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right|\right| V(H) \mid \\
& +\sum_{x \in N_{G}^{k}(u) \cap A}\left|V(H) \backslash T_{x}\right| \tag{1}
\end{align*}
$$

Julius G. Caadan, Rolando N. Paluga, Imelda S. Aniversario / Eur. J. Pure Appl. Math, 16 (1) (2023), 261-270 266 and

$$
\begin{equation*}
\left|N_{G[H]}^{k}(u, v) \cap S\right|=\sum_{x \in N_{G}^{k}(u) \cap A}\left|T_{x}\right|+\left|N_{H_{u}}^{k}(v) \cap T_{u}\right| \tag{2}
\end{equation*}
$$

Theorem 4. Let G and H be connected graphs and $k \geq 2$ be an integer. Let A be an $\alpha_{c e}^{k}$-set in G. Let $S=\bigcup_{a \in A}\left(\{a\} \times T_{a}\right)$ such that $\left|\{a\} \times T_{a}\right| \leq \frac{|V(H)|+1}{2}$, for each $a \in A$. Then S is a distance k-cost effective set in $G[H]$.

Proof: Let $k \geq 2$ be an integer and A be an $\alpha_{c e^{k}}^{k}$-set in G. Let $S=\bigcup_{a \in A}\left(\{a\} \times T_{a}\right)$ such that $\left|\{a\} \times T_{a}\right| \leq \frac{|V(H)|+1}{2}$, for each $a \in A$.

Let $(u, v) \in S$. Then using equations (1) and (2), we have

$$
\begin{aligned}
\left|N_{G[H]}^{k}(u, v) \cap S\right| & =\sum_{x \in N_{G}^{k}(u) \cap A}\left|T_{x}\right|+\left|N_{H_{u}}^{k}(v) \cap T_{u}\right| \\
& =\sum_{x \in N_{G}^{k}(u) \cap A}\left|T_{x}\right|+\left|T_{u}\right|-1
\end{aligned}
$$

and

$$
\begin{aligned}
&\left|N_{G[H]}^{k}(u, v) \cap(V(G[H]) \backslash S)\right|=\left|N_{H_{u}}^{k}(v) \cap\left(V(H) \backslash T_{u}\right)\right|+\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right||V(H)| \\
&+\sum_{x \in N_{G}^{k}(u) \cap A}\left|V(H) \backslash T_{x}\right| \\
&=|V(H)|-\left|T_{u}\right|+\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right||V(H)| \\
&+\sum_{x \in N_{G}^{k}(u) \cap A}\left[|V(H)|-\left|T_{x}\right|\right] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left|N_{G[H]}^{k}(u, v) \cap(V(G[H]) \backslash S)\right|-\left|N_{G[H]}^{k}(u, v) \cap S\right|=\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right||V(H)| \\
& +\sum_{x \in N_{G}^{k}(u) \cap A}\left[|V(H)|-2\left|T_{x}\right|\right]+|V(H)|-2\left|T_{u}\right|+1 \\
& \geq\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right||V(H)|+\sum_{x \in N_{G}^{k}(u) \cap A}[|V(H)|-2|V(H)|] \\
& +|V(H)|-2\left|T_{u}\right|+1 \\
& \left.=\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right||V(H)|-\mid N_{G}^{k}(u) \cap A\right)||V(H)| \\
& +|V(H)|-2\left|T_{u}\right|+1 \\
& =\left[\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{k}(u) \cap A\right|\right]|V(H)|+|V(H)| \\
& -2\left|T_{u}\right|+1 \\
& \geq\left[\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{k}(u) \cap A\right|\right]|V(H)|+|V(H)|
\end{aligned}
$$

Julius G. Caadan, Rolando N. Paluga, Imelda S. Aniversario / Eur. J. Pure Appl. Math, 16 (1) (2023), 261-270 267

$$
\begin{aligned}
& \quad-[|V(H)|+1]+1 \\
& =\left[\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{k}(u) \cap A\right|\right]|V(H)|
\end{aligned}
$$

Since A is an $\alpha_{c e}^{k}$-set in $G,\left[\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{k}(u) \cap A\right|\right]|V(H)| \geq 0$. Thus, $\left|N_{G[H]}^{k}(u, v) \cap(V(G[H]) \backslash S)\right|-\left|N_{G[H]}^{k}(u, v) \cap S\right| \geq 0$. Therefore, S is a distance k-cost effective set in $G[H]$.

Corollary 4. Let G and H be connected graphs and $k \geq 2$ be an integer. Then

$$
\alpha_{c e}^{k}(G[H]) \geq \frac{|V(H)|+1}{2} \alpha_{c e}^{k}(G)
$$

Theorem 5. Let G and H be connected graphs. Let A be an $\alpha_{c e}^{1}$-set in G, T_{a} be an $\alpha_{c e}^{1}$-set in H, for each $a \in A$, and $S=\bigcup_{a \in A}\left(\{a\} \times T_{a}\right)$. Then S is a distance 1-cost effective set in $G[H]$.

Proof: Let A be an $\alpha_{c e}^{1}$-set in G, T_{a} be an $\alpha_{c e}^{1}$-set in H, for each $a \in A$, and $S=$ $\bigcup_{a \in A}\left(\{a\} \times T_{a}\right)$. Let $(u, v) \in S$. Then $\left|N_{G[H]}^{1}(u, v) \cap S\right|=\left|N_{H_{u}}^{1}(v) \cap T_{u}\right|+\left|N_{G}^{1}(u) \cap A\right|\left|T_{u}\right|$ and

$$
\begin{aligned}
\left|N_{G[H]}^{1}(u, v) \cap(V(G[H]) \backslash S)\right|=\left|N_{H_{u}}^{1}(v) \cap\left(V(H) \backslash T_{u}\right)\right| & +\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right||V(H)| \\
& +\left|N_{G}^{1}(u) \cap A\right|\left|V(H) \backslash T_{u}\right| .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|N_{G[H]}^{1}(u, v) \cap(V(G[H]) \backslash S)\right|-\left|N_{G[H]}^{1}(u, v) \cap S\right| & =\left|N_{H_{u}}^{1}(v) \cap\left(V(H) \backslash T_{u}\right)\right| \\
& -\left|N_{H_{u}}^{1}(v) \cap T_{u}\right|+\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right||V(H)| \\
& -\left|N_{G}^{1}(u) \cap A\right|\left|T_{u}\right|+\left|N_{G}^{1}(u) \cap A\right|\left|V(H) \backslash T_{u}\right| \\
\geq\left|N_{H_{u}}^{1}(v) \cap\left(V(H) \backslash T_{u}\right)\right|-\mid & N_{H_{u}}^{1}(v) \cap T_{u}\left|+\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right|\right| V(H) \mid \\
=\left|N_{H}^{1}(v) \cap\left(V\left(H_{u}\right) \backslash T_{u}\right)\right|-\mid & N_{H_{u}}^{1}(v) \cap T_{u} \mid \\
& +\left[\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{1}(u) \cap A\right|\right]|V(H)| .
\end{aligned}
$$

Since T_{u} is an $\alpha_{c e}^{1}$-set in $H_{u}, \forall u \in A,\left|N_{H_{u}}^{1}(v) \cap\left(V(H) \backslash T_{u}\right)\right|-\left|N_{H_{u}}^{1}(v) \cap T_{u}\right| \geq 0$. Also, since A is an $\alpha_{c e}^{1}$-set in $G,\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{1}(u) \cap A\right| \geq 0$. Thus, $\mid N_{G[H]}^{1}(u, v) \cap$ $(V(G[H]) \backslash S)\left|-\left|N_{G[H]}^{1}(u, v) \cap S\right| \geq 0\right.$. Therefore, S is a distance 1-cost effective in $G[H]$.

Corollary 5. Let G and H be connected graphs. Then

$$
\alpha_{c e}^{1}(G[H]) \geq \alpha_{c e}^{1}(G) \alpha_{c e}^{1}(H)
$$

Corollary 6. Let G and H be connected graphs. Let A and B be $\alpha_{c e}^{1}$-sets in G and H, respectively. Then $A \times B$ is a distance 1-cost effective set in $G[H]$.

Definition 1. Let G be a nontrivial connected graph and $k \geq 1$ be an integer. A nonempty set $S \subseteq V(G)$ is said to be a very distance k-cost effective set in G if for every $u \in S,\left|N_{G}^{k}(u) \cap S^{c}\right|-\left|N_{G}^{k}(u) \cap S\right|>0$.

Example 1. Consider the graph G as shown in Figure 1. For each $v \in S=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ $\left|N_{G}^{2}(v) \cap(V(G) \backslash S)\right|-\left|N_{G}^{2}(v) \cap S\right|>0$. Thus, S is a very distance 2-cost effective set in G.

Figure 1: The Graph G with a very distance 2-cost effective set in G

Theorem 6. Let G and H be connected graphs and $k \geq 1$ be an integer. If A is a very distance k-cost effective set in G, then $A \times V(H)$ is a distance k-cost effective set in $G[H]$.

Proof: Let A be a very distance k-cost effective set in G and $k \geq 2$ be a positive integer. Let $(u, v) \in A \times V(H)$. Then

$$
\begin{aligned}
\left|N_{G[H]}^{k}(u, v) \cap(A \times V(H))\right| & =\left|N_{H}^{k}(v)\right|+\left|N_{G}^{k}(u) \cap A\right||V(H)| \\
& =\left|N_{G}^{k}(u) \cap A\right||V(H)|+|V(H)|
\end{aligned}
$$

and

$$
\left|N_{G[H]}^{k}(u, v) \cap(V(G[H]) \backslash(A \times V(H)))\right|=\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right||V(H)|
$$

Hence,

$$
\begin{aligned}
\mid N_{G[H]}^{k}(u, v) \cap(V(G[H]) \backslash & (A \times V(H)))\left|-\left|N_{G[H]}^{k}(u, v) \cap(A \times V(H))\right|\right. \\
& =\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right||V(H)|-\left|N_{G}^{k}(u) \cap A\right||V(H)|-|V(H)| \\
& =\left(\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{k}(u) \cap A\right|-1\right)|V(H)| .
\end{aligned}
$$

Since A is a very distance k-cost effective set in $G,\left|N_{G}^{k}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{k}(u) \cap A\right|>0$. Thus, $\left|N_{G[H]}^{k}(u, v) \cap(V(G[H]) \backslash(A \times V(H)))\right|-\left|N_{G[H]}^{k}(u, v) \cap(A \times V(H))\right| \geq 0$. Accordingly, $A \times V(H)$ is a distance k-cost effective set in $G[H]$.

Now for $k=1$, let A be a very distance 1 -cost effective set in G. Then for each $(u, v) \in A \times V(H)$, we have

$$
\begin{aligned}
&\left|N_{G[H]}^{1}(u, v) \cap(V(G[H]) \backslash(A \times V(H)))\right|-\left|N_{G[H]}^{1}(u, v) \cap(A \times V(H))\right| \\
&=\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right||V(H)|-\left|N_{G}^{1}(u) \cap A\right||V(H)|-\left|N_{H}^{1}(v)\right| \\
&=\left(\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{1}(u) \cap A\right|\right)|V(H)|-\left|N_{H}^{1}(v)\right| \\
& \geq\left(\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{1}(u) \cap A\right|\right)|V(H)|-|V(H)| \\
&=\left(\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{1}(u) \cap A\right|-1\right)|V(H)| .
\end{aligned}
$$

Since A is a very distance 1-cost effective set in $G,\left|N_{G}^{1}(u) \cap(V(G) \backslash A)\right|-\left|N_{G}^{1}(u) \cap A\right|>0$. Thus, $\left|N_{G[H]}^{1}(u, v) \cap(V(G[H]) \backslash(A \times V(H)))\right|-\left|N_{G[H]}^{1}(u, v) \cap(A \times V(H))\right| \geq 0$. Hence, $A \times V(H)$ is a distance 1-cost effective set in $G[H]$. Therefore, $A \times V(H)$ is a distance k-cost effective set in $G[H]$.
Corollary 7. Let G and H be connected graphs and $k \geq 1$ be an integer. Then $\alpha_{c e}^{k}(G[H]) \geq \alpha_{c e}^{k}(G)|V(H)|$.

Acknowledgements

This research is funded by the Commission on Higher Education (CHED) and Mindanao State University-Iligan Institute of Technology.

References

[1] K. A. Bibi, A. Lakshmi, and R. Jothilakshmi. Applications of distance-2 dominating sets of graph in networks. Advances in Computational Sciences and Technology, 10(9):2801-2810, 2017.
[2] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood City, CA, 1990.
[3] J. Caadan, R. Paluga, and I. Aniversario. Upper distance k-Cost Effective Numbers in the Join of Graphs. European Journal of Pure and Applied Mathematics, 13(3):701709, 2020.
[4] T.W. Haynes, M. Chellali, and S.T. Hedetniem. Client-server and cost effective sets in graphs. AKCE International Journal of Graphs and Combinatorics, 15:211-218, 2018.
[5] T.W. Haynes, M. Henning, and S.T. Hedetniemi. Domination in graphs applied to electrical power networks. J. Discrete Math, 15(4), 2000.
[6] T.W. Haynes, I. Vasylieva, and S.T. Hedetniemi. Very cost effective bipartitions in graphs. AKCE International Journal of Graphs and Combinatorics, 12:155-160, 2015.
[7] S.M. Hedetniemi, T.W. Haynes, S.T. Hedetniemi, T.L. McCoy, and I. Vasylieva. Cost Effective Domination in Graphs. Congr. Numer., 211:197-209, 2012.
[8] M. A. Henning, O. R. Swart, and H. C Swart. Bounds on distance domination parameters. Journal of Combinatorics, Information and System Sciences, 16:11-18, 1991.
[9] F. Jamil and H. Nuenay-Maglanque. Cost Effective Domination in the Join, Corona and Composition of Graphs. European Journal of Pure and Applied Mathematics, 12(3):978-998, 2019.
[10] A. H. Karbasi and R. E. Atani. Application of dominating sets in wireless sensor networks. Int. J. Secur. Its Appl, 7:185-202, 2013.
[11] J. Palco, R. Paluga, and G. Malacas. On k-cost effective domination number, cost effective domination index, and maximal cost effective domination number of simple graphs . Far East Journal of Mathematical Sciences, 114(1):55-68, 2019.
[12] M. Saravanan, R. Sujatha, R. Sundareswaran, and M. S. BALASUBRAMANIAN. Application of domination integrity of graphs in pmu placement in electric power networks. Turkish Journal of Electrical Engineering and Computer Sciences, 26(4):20662076, 2018.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4381
 Email addresses: juliusgcaadan@gmail.com (Julius G. Caadan), rnpaluga@carsu.edu.ph (Rolando N. Paluga), imelda.aniversario@g.msuiit.edu.ph (Imelda S. Aniversario)

