
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 15, No. 3, 2022, 938-947
ISSN 1307-5543 – ejpam.com
Published by New York Business Global

Semi-I -submaximality

Chawalit Boonpok
1 Mathematics and Applied Mathematics Research Unit, Department of Mathematics,
Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. This paper presents the concept of semi-I -submaximal ideal topological spaces. In
particular, some characterizations of semi-I -submaximal ideal topological spaces are investigated.
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1. Introduction

General topology has shown its fruitfulness in both pure and applied directions. The
importance of general topology has appeared in many fields of applications such as com-
putational topology for geometric design, computer-aided geometric design and engineer-
ing design. Hermann [11], Khalimsky [14] et al., Kong and Koppermann [15] applied
topology in computer science and digital topology. Moore and Peters [17] investigated
computational topology for geometric design. Rosen and Peters [18] used topology in
computer-aided geometric design and engineering design. The concepts of maximality
and submaximality of general topological spaces were introduced by Hewitt [12]. He dis-
covered a general way of constructing maximal topologies. The existence of a maximal
space that is Tychonoff is nontrivial and due to van Douwen [21]. The first systematic
study of submaximal spaces was undertaken in the paper of Arhangel’skĭi and Collins [2].
They gave various necessary and sufficient conditions for a space to be submaximal and
showed that every submaximal space is left-separated. This led to the question whether
every submaximal space is σ-discrete [2]. Every connected Hausdorff space which does
not admit a larger connected topology is submaximal [7].

The concept of ideals in topological spaces has been introduced and studied by Ku-
ratowski [16] and Vaidyanathaswamy [20]. The topology τ of a space is enlarged to a
topology τ⋆ using an ideal I whose members are disjoint with the members of τ . Every
topological space is an ideal topological space and all the results of ideal topological spaces
are generalizations of the results established in topological spaces. Some early applications

DOI: https://doi.org/10.29020/nybg.ejpam.v15i3.4382

Email address: chawalit.b@msu.ac.th (C. Boonpok)

https://www.ejpam.com 938 © 2022 EJPAM All rights reserved.



C. Boonpok / Eur. J. Pure Appl. Math, 15 (3) (2022), 938-947 939

of ideal topological spaces can be found in various branches of mathematics, like a gener-
alization of Cantor-Bendixson theorem by Freud [6], or in measure theory by Scheinberg
[19]. In [13], the present authors investigated some properties of ideal topological spaces.
In 2002, Hatir and Noiri [9] introduced the concepts of semi-I -open sets, α-I -open sets
and β-I -open sets in topological spaces via ideals and used these sets to obtain certain
decompositions of continuity. Hatir and Noiri [10] investigated the further properties of
semi-I -open sets and semi-I -continuous functions. In 2005, Açikgöz et al. [1] introduced
and studied the notion of I -submaximal ideal topological spaces. In 2010, Ekici and Noiri
[4] investigated several characterizations of I -submaximal ideal topological spaces. The
purpose of the present paper is to introduce the notion semi-I -submaximal ideal topolog-
ical spaces. Moreover, several characterizations of semi-I -submaximal ideal topological
spaces are investigated.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a topological space (X, τ). The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively. A nonempty collection I of subsets
of a set X is called an ideal on X if I satisfies the following two properties: (i) A ∈ I
and B ⊆ A ⇒ B ∈ I ; (ii) A ∈ I and B ∈ I ⇒ A ∪ B ∈ I . For a topological
space (X, τ) with an ideal I on X, a set operator (.)⋆ : P(X) → P(X) where P(X)
is the set of all subsets of X, called a local function [16] of A with respect to I and τ
is defined as follows: for A ⊆ X, A⋆(I , τ) = {x ∈ X | G ∩ A ̸∈ I for every G ∈ τ(x)}
where τ(x) = {G ∈ τ | x ∈ G}. A Kuratowski closure operator Cl⋆(.) for a topology
τ⋆(I , τ), called the ⋆-topology and finer than τ , is defined by Cl⋆(A) = A ∪ A⋆ [13]. We
shall simply write A⋆ for A⋆(I , τ) and τ⋆ for τ⋆(I , τ). A basis B(I , τ) for τ⋆ can be
described as follows: B(I , τ) = {V − I ′ | V ∈ τ and I ′ ∈ I }. However, B(I , τ) is
not always a topology [13]. A subset A of an ideal topological space (X, τ,I ) is called
⋆-closed (τ⋆-closed) [13] if A⋆ ⊆ A. The interior of a subset A in (X, τ⋆(I , τ)) is denoted
by Int⋆(A).

A subset A of an ideal topological space (X, τ,I ) is said to be semi-I -open [9] if
A ⊆ Cl⋆(Int(A)). The complement of a semi-I -open set is called semi-I -closed. By
sIO(X, τ), we denote the family of all semi-I -open sets of an ideal topological space
(X, τ,I ). For a subset A of an ideal topological space (X, τ,I ), the intersection of
all semi-I -open sets containing A is called the semi-I -closure [5] of A and denoted by
sClI (A). The semi-I -interior [5], denoted by sIntI (A), is defined by the union of all
semi-I -open sets of X contained in A.

Lemma 1. For a subset A of an ideal topological space (X, τ,I ), the following properties
hold:

(1) sIntI (A) is semi-I -open;

(2) sClI (A) is semi-I -closed;
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(3) A is semi-I -open if and only if A = sIntI (A);

(4) A is semi-I -closed if and only if A = sClI (A);

(5) x ∈ sClI (A) if and only if U ∩A ̸= ∅ for every semi-I -open set U containing x;

(6) X − sClI (A) = sIntI (X −A);

(7) X − sIntI (A) = sClI (X −A).

Proof. (1) and (2) follows from Theorem 3.4 of [10].
(3) and (4) follows from (1) and (2).
(5) Let x ∈ sClI (A). Suppose that U ∩A = ∅ for some semi-I -open set U containing

x. Then, A ⊆ X−U and X−U is semi-I -closed. Since x ∈ sClI (A), x ∈ sClI (X−U) =
X −U ; hence x ̸∈ U , which is a contradiction that x ∈ U . Therefore, U ∩A ̸= ∅ for every
semi-I -open set U containing x.

Conversely, assume that U∩A ̸= ∅ for every semi-I -open set U containing x. We shall
show that x ∈ sClI (A). Suppose that x ̸∈ sClI (A). Then, there exists a semi-I -closed
set F such that A ⊆ F and x ̸∈ F . Thus, X − F is a semi-I -open set containing x such
that (X − F ) ∩A = ∅. This a contradiction to U ∩A ̸= ∅; hence x ∈ sClI (A).

(6) Let x ∈ X − sClI (A). Then, x ̸∈ sClI (A), there exists a semi-I -open set V
containing x such that V ∩ A = ∅. Thus, V ⊆ X − A and hence x ∈ sIntI (X − A).
Consequently, we obtain X − sClI (A) ⊆ sIntI (X − A). On the other hand, suppose
that x ∈ sIntI (X − A). Then, there exists a semi-I -open set V containing x such that
V ⊆ X − A and so V ∩ A = ∅. By (5), we have x ̸∈ sClI (A); hence x ∈ X − sClI (A).
Thus, sIntI (X −A) ⊆ X − sClI (A). This shows that X − sClI (A) = sIntI (X −A).

(7) This follows from (6).

3. Semi-I -submaximal ideal topological spaces

In this section, we introduce the notion of semi-I -submaximal ideal topological spaces.
Moreover, several characterizations of semi-I -submaximal ideal topological spaces are
discussed.

Definition 1. A subset A of an ideal topological space (X, τ,I ) is said to be:

(i) semi-I -dense if sClI (A) = X;

(ii) semi-I -codense if X −A is semi-I -dense.

Definition 2. An ideal topological space (X, τ,I ) is called semi-I -submaxiaml if each
semi-I -dense subset of X is semi-I -open.

Definition 3. A subset A of an ideal topological space (X, τ,I ) is said to be:

(i) locally semi-I -closed if A is the intersection of a semi-I -open set and a semi-I -
closed set;
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(ii) co-locally semi-I -closed if A is the union of a semi-I -open set and a semi-I -closed
set.

Theorem 1. For a subset A of an ideal topological space (X, τ,I ), the following properties
are equivalent:

(1) A is locally semi-I -closed;

(2) A = U ∩ sClI (A) for some U ∈ sIO(X, τ);

(3) sClI (A)−A is semi-I -closed;

(4) A ∪ (X − sClI (A)) is semi-I -open;

(5) A ⊆ sIntI (A ∪ (X − sClI (A))).

Proof. (1) ⇒ (2): Suppose that A is locally semi-I -closed. Then, there exist a semi-
I -open set U and a semi-I -closed set F such that A = U ∩F . Since F is semi-I -closed,
sClI (A) ⊆ sClI (F ) = F and so A ⊆ U ∩sClI (A) ⊆ U ∩F = A. Thus, A = U ∩sClI (A).

(2) ⇒ (3): Suppose that A = U ∩ sClI (A) for some U ∈ sIO(X, τ). Since

sClI (A)−A = (X −A) ∩ sClI (A)

= X − (U ∩ sClI (A)) ∩ sClI (A)

= (X − U) ∩ sClI (A),

we have sClI (A)−A is semi-I -closed.
(3) ⇒ (4): Suppose that sClI (A)− A is semi-I -closed. Since X − (sClI (A)− A) =

(X − sClI (A)) ∪A, A ∪ (X − sClI (A)) is semi-I -open.
(4) ⇒ (5): The proof is obvious.
(5) ⇒ (1): By (5) and Lemma 1(6),

X − sClI (A) = sIntI (X − sClI (A))

⊆ sIntI (A ∪ (X − sClI (A)))

and hence A∪ (X − sClI (A)) ⊆ sIntI (A∪ (X − sClI (A))). Thus, A∪ (X − sClI (A)) is
semi-I -open. Since A = (A ∪ (X − sClI (A))) ∩ sClI (A), we have A is locally semi-I -
closed.

Definition 4. A subset A of an ideal topological space (X, τ,I ) is said to be:

(i) a t-sI -set if sIntI (A) = sIntI (sClI (A));

(ii) a B-sI -set if A = U ∩ V , where U is a semi-I -open set and V is a t-sI -set.

The following theorem gives some characterizations of semi-I -submaximal ideal topo-
logical spaces.
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Theorem 2. For an ideal topological space (X, τ,I ), the following properties are equiv-
alent:

(1) (X, τ,I ) is semi-I -submaximal;

(2) sClI (A)−A is semi-I -closed for every subset A of X;

(3) every subset of X is locally semi-I -closed;

(4) every subset of X is a B-sI -set;

(5) every semi-I -dense subset of X is a B-sI -set.

Proof. (1) ⇒ (2): Suppose that (X, τ,I ) is semi-I -submaximal. Let A be a subset
of X. Since

X = sClI (A) ∪ (X − sClI (A))

⊆ sClI (A) ∪ (X − sIntI (sClI (A)))

= sClI (A) ∪ sClI (X − sClI (A))

⊆ sClI (A ∪ (X − sClI (A)))

= sClI (X − (sClI (A)−A)),

we have sClI (X−(sClI (A)−A)) = X and hence X−(sClI (A)−A) is semi-I -dense. By
the hypothesis, X− (sClI (A)−A) is semi-I -open and so sClI (A)−A is semi-I -closed.

(2) and (3) are equivalent by Theorem 1.
(3) ⇒ (4) and (4) ⇒ (5) are obvious.
(5) ⇒ (1): Let A be a semi-I -dense subset of X. By (5), A is a B-sI -set and so

A = U ∩ V , where U is semi-I -open and sIntI (V ) = sIntI (sClI (V )). Since A ⊆ V ,
sClI (A) ⊆ sClI (V ) and hence X = sClI (V ). Thus, X = sIntI (sClI (V )) = sIntI (V ).
This implies that V = X. Therefore, A = U∩V = U∩X = U and hence A is semi-I -open.
Thus, (X, τ,I ) is semi-I -submaximal.

Definition 5. A point x of an ideal topological space (X, τ,I ) is called semi-I -isolated
if {x} is semi-I -open and (X, τ,I ) is called semi-I -discrete if every point of X is semi-
I -isolated.

Lemma 2. Let A be a subset of an ideal topological space (X, τ,I ). Then,

sIntI (sClI (A)−A) = ∅.

Proof. Let A be a subset of X. Since sIntI (X −A) = X − sClI (A), we have

sIntI (sClI (A)−A) = sIntI (sClI (A) ∩ (X −A))

⊆ sIntI (sClI (A)) ∩ sIntI (X −A)

= sIntI (sClI (A)) ∩ (X − sClI (A))

⊆ sClI (A) ∩ (X − sClI (A)) = ∅.
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Theorem 3. For an ideal topological space (X, τ,I ), the following properties are equiv-
alent:

(1) (X, τ,I ) is semi-I -submaximal;

(2) every subset of X is co-locally semi-I -closed;

(3) every subset A of X, for which sIntI (A) = ∅, is semi-I -closed;

(4) for every subset A of X, sClI (A)−A is semi-I -closed;

(5) every subset of X is locally semi-I -closed;

(6) each semi-I -codense subset of X is semi-I -closed.

Proof. (1) ⇒ (2): Let A be a subset of X. Since (X, τ,I ) is semi-I -submaximal,
by Theorem 2, there exist a semi-I -open set U and a semi-I -closed set V such that
X −A = U ∩V . Then, we have A = (X −U)∪ (X −V ), where X −U is a semi-I -closed
set and X − V is a semi-I -open set. Thus, A is co-locally semi-I -closed.

(2) ⇒ (3): Let A be a subset of X and sIntI (A) = ∅. By (2), there exist a semi-I -
open set U and a semi-I -closed set V such that A = U ∪ V . Then, we have

U = sIntI (U) ⊆ sIntI (A) = ∅

which yields U = ∅. Thus, A = V is semi-I -closed.
(3) ⇒ (4): Let A be a subset of X. By Lemma 2, sIntI (sClI (A) − A) = ∅ and by

(3), we have sClI (A)−A is semi-I -closed.
(4) ⇒ (5): It follows from Theorem 2.
(5) ⇒ (1): Let A be a semi-I -dense subset of X. By (5), there exist a semi-I -open

set U and a semi-I -closed set V such that A = U ∩V . Since A ⊆ V , sClI (A) ⊆ sClI (V )
and so X = sClI (V ). Thus, X = sIntI (sClI (V )) = sIntI (V ) which yields V = X.
Therefore, A = U ∩ V = U ∩ X = U and hence A is semi-I -open. This shows that
(X, τ,I ) is semi-I -submaximal.

(1) ⇒ (6): Let A be a semi-I -codense set. Then, X − A is semi-I -dense. Since
(X, τ,I ) is semi-I -submaximal, we have X −A is semi-I -open and hence A is semi-I -
closed.

(6) ⇒ (1): Let A be a semi-I -dense subset of X. Then, X − A is semi-I -codense.
By (6), X − A is semi-I -closed and so A is semi-I -open. Thus, (X, τ,I ) is semi-I -
submaximal.

Theorem 4. For an ideal topological space (X, τ,I ), the following properties are equiv-
alent:

(1) (X, τ,I ) is semi-I -submaximal;

(2) every subset A of X, for which sIntI (A) = ∅, is semi-I -closed;
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(3) every subset A of X, for which sIntI (A) = ∅, is semi-I -closed and semi-I -discrete;

(4) for every subset A of X, sClI (A)−A is semi-I -closed and semi-I -discrete;

(5) each semi-I -codense subset of X is semi-I -closed and semi-I -discrete;

(6) each semi-I -codense subset of X is semi-I -closed.

Proof. (1) ⇒ (2): Let A be a subset of X and sIntI (A) = ∅. Then, we have
sClI (X −A) = X − sIntI (A) = X and hence X −A is semi-I -dense. Since (X, τ,I ) is
semi-I -submaximal, X −A is semi-I -open. Thus, A is semi-I -closed.

(2) ⇒ (3): Let A be a subset of X and sIntI (A) = ∅. If B ⊆ A, then sIntI (B) ⊆
sIntI (A) = ∅ which yields sIntI (B) = ∅. Thus, by (2), B is semi-I -closed. So every
subset of A is semi-I -closed. Consequently, we obtain A is semi-I -discrete.

(3) ⇒ (5): Let A be semi-I -codense. Then, we have X − A is semi-I -dense and so
sClI (X − A) = X. Therefore, sIntI (A) = ∅, by (3), A is semi-I -closed and semi-I -
discrete.

(5) ⇒ (3): Let A be a subset of X and sIntI (A) = ∅. Then, sClI (X − A) =
X − sIntI (A) = X and hence X − A is semi-I -dense. Thus, A is semi-I -codense, by
(5), A is semi-I -closed and semi-I -discrete.

(3) ⇒ (4): Let A be a subset of X. By Lemma 2, sIntI (sClI (A) − A) = ∅ and by
(3), we have sClI (A)−A is semi-I -closed and semi-I -discrete.

(4) ⇒ (3): Let A be a subset of X and sIntI (A) = ∅. Then, sClI (X − A) =
X − sIntI (A) = X and hence A = sClI (X − A) − (X − A). By (4), we have A is
semi-I -closed and semi-I -discrete.

(5) ⇒ (6): This is obvious.
(6) ⇒ (1): Let A be a semi-I -dense subset of X. Then, we have X − A is semi-I -

codense. By (6), X − A is semi-I -closed and so A is semi-I -open. Thus, (X, τ,I ) is
semi-I -submaximal.

Theorem 5. For an ideal topological space (X, τ,I ), the following properties are equiv-
alent:

(1) (X, τ,I ) is semi-I -submaximal;

(2) for every subset A of X, sClI (A)−A is semi-I -closed;

(3) every subset of X is locally semi-I -closed;

(4) each semi-I -dense subset of X is locally semi-I -closed.

Proof. (1) ⇒ (2) and (2) ⇒ (3) follows from Theorem 2.
(3) ⇒ (4): The proof is obvious.
(4) ⇒ (1): Let A be a semi-I -dense subset of X. By (4), there exist a semi-I -open

set U and a semi-I -closed set V such that A = U ∩ V . Since A ⊆ V ,

X = sClI (A) ⊆ sClI (V ) = V
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which yields V = X. Thus, A = U ∩ V = U ∩X = U and hence A is semi-I -open. This
shows that (X, τ,I ) is semi-I -submaximal.

For a subset A of an ideal topological space (X, τ,I ), we denote by τ|A the relative
topology on A and I|A = {A ∩ I0 | I0 ∈ I } is an ideal on A.

Lemma 3. [3] Let (X, τ,I ) be an ideal topological space and B ⊆ A ⊆ X. Then,
B⋆(τ|A ,I|A) = B⋆(τ,I ) ∩A.

Lemma 4. [8] Let (X, τ,I ) be an ideal topological space and B ⊆ A ⊆ X. Then,
Cl⋆A(B) = Cl⋆(B) ∩A.

Lemma 5. Let (X, τ,I ) be an ideal topological space and A ⊆ B ⊆ X. If (B, τ|B ,I|B )
is an open subspace of (X, τ,I ), then sClI|B

(A) = sClI (A) ∩B.

Proof. Suppose that (B, τ|B ,I|B ) is an open subspace of (X, τ,I ) and A ⊆ B ⊆ X.
By Lemma 13(2) of [5] and Lemma 4, we have

sClI (A) ∩B = (A ∪ Cl⋆(Int(A))) ∩B

= (A ∩B) ∪ (Cl⋆(Int(A)) ∩B)

= A ∪ Cl⋆B(Int(A))

= A ∪ Cl⋆B(Int(A ∩B))

= A ∪ Cl⋆B(Int(A) ∩B)

= A ∪ Cl⋆B(IntB(A))

= sClI|B
(A).

Lemma 6. [10] Let (X, τ,I ) be an ideal topological space. If U ∈ τ and W ∈ sIO(X, τ),
then U ∩W ∈ sIO(U, τ|U ,I|U ).

Theorem 6. Let A be an open set of an ideal topological space (X, τ,I ). If (X, τ,I ) is
semi-I -submaximal, then (A, τ|A ,I|A) is semi-I|A-submaximal.

Proof. Suppose that (X, τ,I ) is semi-I -submaximal. Let D be a semi-I|A-dense
subset of (A, τ|A ,IA). Let U = D ∪ (X −A). By Lemma 5, we have

sClI (U) = sClI (D ∪ (X −A))

⊇ sClI (D) ∪ sClI (X −A)

⊇ (sClI (D) ∩A) ∪ sClI (X −A)

= sClI|A
(D) ∪ sClI (X −A)

= A ∪ sClI (X −A)

= A ∪ (X − sIntI (A))

⊇ A ∪ (X −A) = X
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and hence sClI (U) = X. Since (X, τ,I ) is semi-I -submaximal, U is semi-I -open. By
Lemma 6, D = A ∩ U is semi-I|A-open in (A, τ|A ,I|A). This shows that (A, τ|A ,I|A) is
semi-I|A-submaximal.

Next, we shall show that semi-I -submaximal ideal topological spaces are invariant
under semi-(I ,J )-open surjections.

Definition 6. A function f : (X, τ,I ) → (Y, σ,J ) is said to be semi-(I ,J )-open if
f(V ) is semi-J -open in Y for each semi-I -open set V of X.

Theorem 7. Let f : (X, τ,I ) → (Y, σ,J ) be a semi-(I ,J )-open surjection. If
(X, τ,I ) is semi-I -submaximal, then (Y, σ,J ) is semi-J -submaximal.

Proof. Suppose that (X, τ,I ) is semi-I -submaximal. Let A be a semi-J -dense
subset of Y . Since sIntI (f−1(Y − A)) ⊆ f−1(Y − A), we have f(sIntI (f−1(Y − A))) ⊆
f(f−1(Y −A)) ⊆ Y −A and hence sIntJ (f(sIntI (f−1(Y −A)))) ⊆ sIntJ (Y −A). Since
f is semi-(I ,J )-open, f(sIntI (f−1(Y −A))) ⊆ sIntJ (Y −A). Thus,

sIntI (f−1(Y −A)) ⊆ f−1(sIntJ (Y −A)).

It follows that X − sClI (f−1(A)) ⊆ X − f−1(sClJ (A)) and hence X = f−1(sClJ (A)) ⊆
sClI (f−1(A)). This implies that sClI (f−1(A)) = X. Therefore, f−1(A) is semi-I -dense
and so f−1(A) is semi-I -open. Since f is a semi-(I ,J )-open surjection, A = f(f−1(A))
is semi-J -open. Thus, (Y, σ,J ) is semi-J -submaximal.
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[13] D. Janković and T. R. Hamlett. New topologies from old via ideals. The American
Mathematical Monthly, 97:295–310, 1990.

[14] E. D. Khalimsky, R. Kopperman, and P. R. Meyer. Computer graphics and connected
topologies an finite ordered sets. Topology and its Applications, 36:1–17, 1990.

[15] T. Y. Kong, R. Kopperman, and P. R. Meyer. A topological approach to digital
topology. The American Mathematical Monthly, 98:901–917, 1991.

[16] K. Kuratowski. Topology, Vol. I. Academic Press, New York, 1966.

[17] E. L. F. Moore and T. J. Peters. Computational topology for geometric design and
molecular design. Mathematics for industry: challenges and frontiers, SIAM, pages
125–139, 2005.

[18] D. W. Rosen and T. Peters. The role of topology in engineering design research.
Research in Engineering Design, 2:81–98, 1996.

[19] S. Scheinberg. Topologies which generate a complete measure algebra. Advances in
Mathematics, 7:231–239, 1971.

[20] R. Vaidyanathaswamy. The localisation theory in set-topology. Proceedings of the
Indian Academy of Sciences, 20:51–61, 1945.

[21] E. K. van Douwen. Applications of maximal topologies. Topology and its Applications,
51:125–139, 1993.


